Dynamic Roles in
Multiparty Communicating Systems

Pedro Baltazar

Instituto de Telecomunicagoes, Technical University of Lisbon

Luis Caires
CITI-DI, Faculdade de Ciéncias e Tecnologia, Universidade Nova de Lisboa

Vasco T. Vasconcelos
Universidade de Lisboa, Faculdade de Ciéncias, LaSIGE

Hugo T. Vieira
CITI-DI, Faculdade de Ciéncias e Tecnologia, Universidade Nova de Lisboa

February 21, 2012,
Revised June 20, 2012

Abstract

Communication protocols in distributed systems often specify the
roles of the parties involved in the communications, e.g., for enforc-
ing security policies or task assignment purposes. Ensuring that im-
plementations follow role-based protocol specifications is challenging,
especially in scenarios found, e.g., in business processes and web ap-
plications, where multiple peers are involved, single peers participate
in several roles, or single roles are carried out by several peers. We
present a type-based analysis for statically verifying role-based multi-
party interactions, based on a simple 7-calculus model and prior work
on conversation types. Our main result ensures well-typed systems
follow the role-based protocols prescribed by the types, and addresses
systems where roles have dynamic distributed implementations.

1 Introduction

Communication is a central feature of nowadays software systems, as more
and more often systems are built using computational resources that are
concurrently available and distributed in the web. Examples range from op-
erating systems where functionality is distributed between distinct threads
in the system, to services available on the Internet which rely on third-party
(remote) service providers to carry out subsidiary tasks, following the emerg-
ing model of SaaS (software as a service) and cloud computing. Building

software from the composition of communicating interacting pieces is very
flexible, at least in principle, since resources can be dynamically discovered
and chosen according to criteria such as declared functionality, availabil-
ity and work load. In such a setting, all interacting parties must agree on
communication protocols without relying on centralized control. Verification
mechanisms that automatically check whether the code meets some common
protocol specification become then of crucial importance.

A protocol specification describes a set of message exchanges, recording
when these should occur as well as the parties involved in the interaction.
A party involved in a protocol may have a spatial meaning, for instance
denoting a distinguished site or process, or, more generally, a party may
have a behavioral meaning, a role in the interaction that may be realized
by one or more processes or sites. Conversely, a process may impersonate
different roles throughout its execution. Such flexibility is essential to address
systems, e.g., where a leader role is impersonated by different sites at different
stages of the protocol, and the role of each site changes accordingly.

A challenge that arises is then to devise techniques to verify whether
a system complies to a protocol specification, given such dynamic and dis-
tributed implementation of roles, just by inspecting the source code. A
particular situation where roles must be traced is when checking confor-
mance against security policies like, for example, those involving separation
of duties.

In this paper we present a type-based analysis for verifying if systems
defined in a model programming language follow the role-based protocol de-
scriptions as prescribed by types. Our development is based on conversation
type theory [2, 3|, extending it with the ability to specify and analyze the
roles involved in the interactions. The underlying model of our analysis
is based an extremely parsimonious extension to the m-calculus [13], where
communication actions specify a message label and the role performing the
action, inspired by TyCO [14]. Conversations generalize sessions [9, 11] with
support to multiparty interaction, addressing dynamically established col-
laborations between an unanticipated number of partners. A distinguishing
feature of the conversation types approach is that multiple parties interact
using labeled messages in a single medium of communication, while other
works support multiparty communication via message queues [10] and in-
dexed communication channels [1]. We choose to adopt the simplest possible
setting where session-like multiparty interaction may be studied, and extend
it in a minimal way so as to support general reasoning about roles. So, apart
from retaining the simplicity of conversation types, our theory addresses
systems where a single role may be realized by several parties and where
processes may dynamically change the role on behalf of which they are in-
teracting, as needed to model communicating workflows as present in actual
business processes. This contrasts with related approaches (see, e.g., [6, 10])
where roles have a “spatial” meaning, as they are mapped into the structure

of systems or sites in a static way.

In the remainder of this section we informally describe our type analysis
by going through some examples. Consider the protocol specification given
by type:

Sender — Receiver hello().Sender — Receiver bye()

which captures a binary interaction where messages hello and bye are sequen-
tially exchanged, and the communicating partners are identified by Sender
and Receiver which send and receive the messages, respectively (read — as
“sends to0”). A non surprising implementation of this interaction is given by:

chat <sender hello().chat <sender bye() | chat >receiver hello().chat >Rreceiver bye()

where two concurrent processes interact on channel chat following the proto-
col above. The process on the left sends the two messages under role Sender
(<Sender); as described by type !Sender hello(). !Sender bye(), while the pro-
cess on the right receives the two messages under role Receiver (>receiver),
described by type 7Receiver hello(). ?Receiver bye().

In this first example there is a perfect match between processes and the
roles under which the processes interact. However, this does not need to be
the case. Consider a different implementation of the same protocol:

chat <sender hello().chat receiver by€() | chat Preceiver ello().chat <sender bye()

where the process on the left sends message hello as Sender and then receives
message bye as Receiver, described by type !Sender hello(). ?Receiver bye(),
and the process on the right first acts first as Receiver and then as Sender,
described by type ?Receiver hello().!Sender bye(). Notice each role is carried
out by two distinct processes and each process implements two distinct roles.

Our type analysis ensures that both implementations follow the pre-
scribed protocol, since the protocol

Sender — Receiver hello().Sender — Receiver bye()
is decomposed in “complementary” types that describe the behavior of the
individual processes (for instance, in type !Sender hello(). ?Receiver bye() and
type ?Receiver hello(). !Sender bye()). Although very simple, this example
already distinguishes our approach from previous works, since the ability
to specify roles is absent in [2, 3] while [6, 10] do not support such role
distribution. Conceivably channel delegation (channel-passing) supported
by previous works may be used to represent a similar notion but, for this
example in particular, two channel delegations would be involved, it would
not be possible to directly observe that the two interactions take place in a
related medium (in our case the chat channel) and the ability to audit role
participation locally would be lost (as the personification of a different role
would be a consequence of channel-passing).

Buyer = (new chat)
Shop <Buyer buyService(chat).
chat <guyer buy().
(chat pguyer price() | MailBox <guyer storeService(chat))

Shop £ Shop Dshop buyService(x).
T DSeller buy()
T <seller Price().
(z <selier product() | T >shipper Product().x <shipper details())
Mail £ MailBox >y storeService(x).

& DRuyer details()
System 2= (xBuyer| *Mail| * Shop)

Figure 1: Code for the Purchase System.

Now consider a more realistic scenario (adapted from [3|) described by
type:

Buyer — Seller buy(). Seller — Buyer price().
Seller — Shipper product(). Shipper — Buyer details() (1)

which captures the interactions in a purchase system involving three parties.
Messages buy, price, product and details are exchanged between a Buyer, a
Seller, and a Shipper. First, the buyer sends the seller a buy request, then the
seller replies the price back to the buyer. After that, the seller informs the
shipper of the chosen product and the shipper sends the buyer the delivery
details.

Fig. 1 shows a possible implementation of the purchase interaction sys-
tem. Using the new construct, process Buyer creates a fresh channel chat
that will host the purchase interaction. This newly created name is passed
to a shop, via message buyService. Code Shop <guyer buyService(chat) rep-
resents the output of message buyService on channel Shop, passing name
chat under role Buyer. The Buyer process then sends message buy, after
which it is simultaneously active to receive price and to send storeService to
MailBozx, passing name chat.

The Shop process starts by receiving a channel name (that instantiates
variable) in message buyService. Then, in this received channel the Shop
impersonates the Seller role and receives message buy, after which it sends
message price. At this point, the Shop simultaneously impersonates Seller
and Shipper which exchanges message product, after which message details is
sent. Notice that this particular Shop carries out both the role of the Seller
and the role of the Shipper, allowing to represent a shop equipped with its
own shipping service.

The Mail process defines a message storage service that impersonates the
buyer in receiving the shipping delivery details. Notice that the buyer passes

name chat to the mailbox, allowing in this way a third party to dynamically
join the ongoing interaction, while still interacting on the delegated channel
(via message price). Hence, in this system the Buyer role is actually carried
out by two distinct processes (Buyer and Mail), which can be simultaneously
active.

The implementation shown in Fig. 1 involves three distinguished pro-
cesses that carry out the three roles identified in the protocol, albeit not in a
one-to-one-correspondence. The type given in (1) captures the interaction in
channel chat, which is passed from the buyer to the shop and to the mailbox
in messages buyService and storeService, respectively. In order to analyze
the protocol distribution between the three parties, we must consider the
“slices” of protocol that are delegated in messages. Namely, the overall pro-
tocol is split in the type that captures the behavior that is sent to the shop
(via message buyService):

?Seller buy(). !Seller price(). Seller — Shipper product(). |Shipper details()
and in the type that captures the behavior retained by the buyer:
'Buyer buy().?Buyer price().>7Buyer details()

The < type expresses the fact that the input of message details occurs “some-
time”, i.e., it does not necessarily occur exactly after the input of message
price. In fact the Buyer process illustrated in Fig. 1 does not guarantee that
the input is active only after the reception of message price. However, the
sequentiality of the message exchanges is ensured by the Seller process,
since the output of message details only occurs after the output of message
price. A type ¢B denotes a behavior that must occur sometime, but not
necessarily “now” — < B types obey the basic laws of the eventually temporal
logic operator.

The type of the buyer is further decomposed, at the level of messages
price and details, in ?Buyer price() and &?Buyer details(), the former being
retained by the buyer process and the latter delegated to the mailbox. The
type of the shop is further decomposed, at the level of message product, in
ISeller product() and ?Shipper product().!Shipper details() which explain the
behaviors of the parallel processes in the shop code. All decompositions
sketched above are captured by a type split, o, relation that explains how
protocols may be split in two complementary slices, along with subtyping.
OB types are crucial to the definition of type splitting, as they provide
algebraic support to the flexibility required to sequentially order message
exchanges between multiple parties.

In the previous example, the fact that message details is exchanged
after message price is not observable just by looking at the source code
of the buyer and mail. However, such ordering is guaranteed by the shop.

P:= 0[] (new z)P[] Pi|P2[*P[xv, {li(x;).Pi}icr | v < l(y).P
l € L(abels) z,y € N(ames) r,s € R(oles)

Figure 2: Process Syntax.

If we specify that the client, in general, exhibits such behaviors concur-
rently (e.g., ?Buyer price() | ?Buyer details()) we would require (order pre-
serving) decompositions of protocols into multiple threads of behavior. The
flexibility introduced by ©B types solves this problem as they support the
specification of orderings that are guaranteed via synchronization, e.g., type
?Buyer price().O7Buyer details() says that the reception of message details
may take place after the reception of message price, which along with the
behavior of the shop captured by the type

ISeller price(). Seller — Shipper product(). !Shipper details()
that says that the output of details necessarily occurs after the output of
message price, guarantees the overall ordering: first message price, then
product and finally details.

The purchase interaction of the system shown in Fig. 1 follows the pro-
tocol specification given in (1). Notice that the Buyer role is distributed
between two processes (Buyer and Mail), and that roles Seller and Shipper
are carried out by a single process (Shop). From the point of view of our
type analysis the system follows the prescribed protocol, regardless of the
spatial configuration of the processes that implement the roles.

2 Process Language

In this section we present the process model, first by introducing the syntax
and second by defining the operational semantics. Our process language
is the m-calculus [13] extended with labeled communication and role-based
annotations. The syntax, inspired on TyCO [14], is illustrated in Fig. 2,
where we consider given infinite sets of labels £, of channel names N and of
roles R. Labels are used to index communication and are static identifiers
that may neither be created nor communicated (e.g., XML tags). Names
are used to identify mediums of communication. For typing purposes, we
distinguish two distinct usages of channels: public (shared) communication
mediums (e.g., gateways to service providers) and private (linear) mediums
of communication, where a set of related interactions between several parties
may take place (capturing, e.g., service instance interactions, where related
communications share correlation tokens). Roles are used to identify the
parties involved in communications.

A process is either an inactive process 0, a name restriction (new z)P
where fresh name x is known only to process P, a parallel composition P; | Py

Pl0=P P |P=P|P (P |R)|Ps=P|(P|P)
(new z)(new y)P = (new y)(new xz)P
P |(new z)P, = (new z)(P1 | P2) (if & fn(Py))
(new)0 =0 x P=xP|P P=P (it Ph=,P)

Figure 3: Structural Congruence.

where P, and P, are simultaneously active or a replication *P where unlim-
ited copies of P are simultaneously active. Process constructs described up
to here (the static fragment) correspond exactly to the ones found in 7-
calculus. As for communication primitives, we extend (monadic) m-calculus
input and output with labeled communication and role annotations: the in-
put summation process x > {l;(z;).P;}icr is able to receive one message in
name x, under role r, labeled by any of the I;s, where ¢ ranges over index
set I (we assume that all labels /; in an input prefix are distinct). Upon
synchronization with a [; labeled message, the respective parameter x; is
instantiated and the respective continuation activated. Notice that the r
annotation identifies the role in which the reception is performed. Process
x <, l(y).P is able to send a message on channel x, under role r, labeled by [.
Upon synchronization the name y is sent and the continuation P activated.
In (new x)P all occurrences of x are bound in P, and in z >, {l;(x;).P;}icr
all occurrences of x; are bound in F;, for each ¢ =1,...,n.

We introduce some auxiliary notions: we use fn(P) to denote the set of
free names of process P, defined as expected, and P[x < y] to denote the
process obtained by replacing all free occurrences of x by y in P. As usual,
we omit inactive continuations (e.g., z <, I(y) stands for z <, {(y).0).

The operational semantics is given by a reduction relation and by a struc-
tural congruence. We consider the standard definition of structural congru-
ence, noted by =, defined as the least congruence that satisfies the rules
in Fig. 3. Structural congruence is used in the definition of the reduction
relation to syntactically rearrange the process, in order to allow reduction
to be defined, as usual, by capturing the basic case for synchronization and
identifying the active contexts in which a synchronization may take place.

For typing purposes, since we intend to match process behaviors with
type specifications, our reduction relation records (public) synchronization
information in labels. Reduction labels (ranged over by \) are of two forms:
a 7 label captures a private internal interaction, whereas an z : s — rl label
captures an [-labeled message exchange on channel x, between roles s(ender)
and r(eceiver).

We may now present the reduction relation, defined by the rules given
in Fig. 4, where we use P, 2, P, to represent that process P; reduces to
P, with label A\. Rule (RED-COMM) means that parallel output and input

z:s—rly

T Dy {ll(xz>PZ}Ze[‘ x s lk(y)P — Pk[xk — y] ‘ P (k S I)
(Red-Comm)
P1L>P1’ P2 p rxe{r,z:s—rl}
P | P, A Pl | P, (new)P —— (new)P’
(Red-Par,Red-Newl)

P2 p A=xz:5—7l y#£x P =P P{LPZ/ Pl =

Py

(new y)P N (new y)P’ P2 Py
(Red-New2,Red-Struct)
Figure 4: Reduction Relation.

I OB p{li(M;).Bi}ier

B := end | B|
i 1T pu=sls|?r] s—r

B
T ::= [(B) M := B
Figure 5: Conversation Types Syntax.

processes may exchange message [on channel x, the interaction being cap-
tured by label x : s — rl;, where also the roles involved in the interaction
are recorded. As the result of the synchronization, name ¥ is sent to the
receiving process which activates the continuation (respective to lx) instan-
tiating parameter . The continuation of the output prefix is also activated
as a consequence of the synchronization. Rule (RED-PAR) closes reduction
under parallel contexts, while rules (RED-NEwW1) and (RED-NEwW2) close
reduction under name restriction. (RED-NEWwW1) captures synchronization
in private names in the scope of the name restriction, either by “hiding” a
public synchronization in the restricted name or by allowing private synchro-
nizations. (RED-NEW2) captures public synchronizations in the scope of the
name restriction, not involving the restricted name. (RED-STRUCT) closes
reduction under structural congruence.

3 Type System

In this section we present our type system. The type language is given
in Fig. 5, where we distinguish between behavioral types that describe lin-
ear interactions (B) from types that describe shared message exchanges (T")
(cf. conversation [3| or session [11] initiation primitives). We also use mes-
sage (argument) types (M) that specify either a linear protocol or a shared
message type, and communication prefixes (p) that describe role-based com-
munication actions.

A behavioral type B specifies either the inactive behavior end, the paral-
lel composition By | By of two independent behaviors By and Bz, the some-

F end F Cend

Bi1#By FDBy F Bs FBi|By HFOB FOB,

+ B1| B F<O(By | Ba)

F p{li(M;).Bitier Op{li(M;).Bitier -

Figure 6: Type Well-Formedness.

time & B which says that behavior B may occur at any point in time, or
a menu of labeled actions p{l;(M;).B;}ic1, each one specifying the type of
the name communicated in the message M;, and the respective continuation
behavior B;. Depending on the communication prefix p, an action menu
represents either an input summation branching (when p is ?7), an output
choice (when p is !s)—cf. branch and choice session types [11]—or an inter-
nal choice s — r, i.e., a matched communication between an output and an
input. Notice that the communication roles are identified in the communica-
tion prefixes: the sender role in !s, the receiver role in 7r, and the two roles
involved in the interaction in s — r (s sends to 7). Notice also that input
and output actions (interface types that capture interactions with the envi-
ronment) are mixed with matched actions (capturing internal interactions)
at the same level in the type language.

The Conversation Type language is extended with role-based annotations
and sometime types (¢CB). Although a specification is not expected to use
OB types, these are crucial to allow the decomposition of protocols into
slices, some of which related to interactions that occur later in the protocol.

A message argument type M either specifies a behavioral linear type B,
in case a linear name is communicated in the message, or a shared message
exchange type T, in case a shared name is communicated in the message.
A shared message exchange type T abbreviates [(B), identifying the label
of the message exchanged and the (linear) type of the name sent in the
message — to simplify the presentation we consider that only linear names
can be communicated in shared messages (communicating shared names can
be easily encoded).

We now introduce some auxiliary notions, namely the type apartness,
well-formed types, and matched types, all defined as predicates. Type apart-
ness is used to identify non-interfering concurrent behaviors that may be
safely composed in a linear interaction. To define type-apartness we use
lab(B) to denote the set of labels occurring in type B, defined as expected.
We say that two types By and By are apart, and we write By# Bo, if the set
of labels of By is disjoint from the set of labels of By (lab(B1)Nlab(Bs) = 0).

Building on apartness, we introduce type well-formedness, noted - B,
given by the rules in Fig. 6. Informally, in a well-formed type labels do not
appear repeatedly in parallel (to ensure race-free behavior) or in sequence

B <: B B; <: B! - oB
By |B2 < Bi | B p{lz(Mz)Bz}zel < p{lz(M'L)B;}ZEI B <. OB

(B”Bz”BgEBM(BQ‘Bg) Bl’BQEBQ‘Bl B[endEB

<>(Bl ’Bg) = <>Bl ‘ <>B2 Cend = end

Figure 7: Subtyping Relation.

BlzBioBi/ BQZB&OBQI l_Bl‘BQ
Bi1| By = By | Byo BY | By
(S-END,S-PAR)

B=endoB

Viel B;=B)oB! {p1,p2} ={lr1,7r2} Fri—ro{li(M;).Bi}ier
r1 — ro{li(M;).Bi}ier = p1{li(M;). B }ier o Cpa{li(M;).BY Yier

(S-TAU)

VielI B;j=B/oOB F p{li(M;).B;}icr
i S-BRK
p{li(M;).Bi}ier = p{li(M;). B }ie1 0 OB ()
Viel Bj=B.oOB F Op{l(M;).B;}icr (S-BRKS)

B =DByo0B By =ByoB, By=B] By=DB), B3=DBj
B:BloBQ BlzBQOBg

(S-SYM,S-EQU)

Figure 8: Type Splitting Relation.

(useful to simplify presentation). Also well-formed < types are not applied
directly to message exchanges (s — r), since we are interested in specifying
message exchanges that happen exactly at some point in the protocol. Also
used by our typing is the notion of matched types, which captures systems
where all input actions have a matching output. We say that type B is
matched, noted matched(B), if all communication prefixes in B are of the
form s — 7.

The subtyping relation, noted <:, between behavioral types is given in
Fig. 7, where we use B = By when By <: By and By <: By. We distinguish
the use of subtyping to introduce flexibility at the level of & types: type B
is a subtype of &B which, intuitively, means that carrying out behavior B
immediately is a safe implementation of eventually carrying out behavior B.

10

We may now introduce type split, a ternary relation that explains how a
behavioral type may be safely decomposed in two slices of behavior, captur-
ing, in a compositional way, the behavioral contribution of distinct processes
to the overall interaction. The type splitting relation is defined by the rules
given in Fig. 8, where we use B = By o By to denote that type B may be
decomposed in parts B; and By. We briefly discuss the splitting rules. Rule
(S-END) specifies that a behavioral type may be decomposed in itself and
the inactive behavior, typing processes that contribute “all or nothing” to the
interaction. Rule (S-PAR) explains the decomposition of two independent
behaviors in two slices of behaviors each, capturing the decomposition of
a system in two processes that contribute both to independent interactions.
Rule (S-TAU) separates a matched communication, between roles 71 and rg,
in the respective output by role r; and input by role ro, given a splitting of
the continuation behaviors. The rule captures the decomposition of a system
in two processes that synchronize in a message, each with a given role in the
interaction, where one of them carries out the behavior immediately, while
the other may carry out the behavior at some point in time (<). In such way,
given that one of the behaviors is guaranteed to occur immediately we may
ensure that also the message exchange takes place immediately. Notice that
a rule that separates the message exchange in two immediate behaviors is
not necessary since the sometime behavior may also take place immediately
(via subtyping).

Rule (S-BRK) separates a < (sometime) distinguished slice of behavior
from a communication prefixed type, provided this behavior can be split out
of (all) the continuations. The rule thus captures the decomposition of a
system in two parts, where one retains the (entire) interaction capability
specified by the communication prefixed type while the other contributes to
ensuing interactions—singled out by the ¢. Notice that (S-BRK) allows to
split behaviors such that the same slice is shared between all branches, useful
when addressing, e.g., a branching protocol where every branch terminates
with an ok or ack message. Rule (S-BRKS) expresses the same principle as
(S-BRK) but for © prefixed types. Rule (S-SYM) closes the relation under
symmetry and rule (S-EQU) closes the relation under type equivalence.

To simplify the presentation, we sometimes write By o By to represent a
type B such that B = By o By (if any such B exists). Notice that Bj o Ba
does not uniquely identify a type, as B; and By may be the result of splitting
distinct types. Notice also that a type may be split in several ways. In
prior work on conversation types [3|, we use “merge” instead of “split”, in
the sense that if B = Bj o By then we may see B as the result of merging
the behaviors By and By. The merge was originally inspired in the (non-
algebraic) end-point projection introduced in [4]. We can show that splitting
is an associative relation, which is crucial property to our type system since
we rely on the flexibility of the type decomposition to address the behavioral
contributions of multiple parties.

11

We may now present the type system. A typing judgment is of the form
A; T+ P where A is the typing environment which describes the interactions
of P on linear channels, and I'" is the typing environment which describes the
interactions of P on shared channels (we write A;T" only when the domains
of A and I" are disjoint). Thus, a typing environment A is an assignment
of identifiers to behavioral types (A = 21 : By,...,x; : By) and a typing
environment I' is an assignment of identifiers to message exchange types
(I 22y :T,...,25: T}). We introduce some auxiliary notation to simplify
presentation: we use (z1 : Bi,...,xp : B, A1) o (21 : BY,...,zp : By, Ag)
to denote x; : Bi,...,z) : B, A1, Ay such that B; = Bl o B/, for all
i in 1,...,k and the domains of A; and Ay are disjoint. Also, we use
1 Bi,...,xp : By <t x1 : Bj,...,z; : B, when B; <: B], for all i in
1,...,k, and Agnq to denote z1 : end, ...,z : end.

We say process P is well-typed if A;T" F P may be derived using the
rules given in Fig. 9. We discuss the key features of the typing rules. Rule
(T-END) says the inactive process has no linear behavior (but complies
to any shared behavior specification). Rule (T-PAR) types the parallel
composition process with the linear types which may be split in the behaviors
of the two parallel branches, while ensuring both branches comply to the
same usage of shared types. Rule (T-NEW) types a restricted linear name
provided its usage is matched, i.e., it has no outstanding unmatched (7 or
) communications. Rule (T-SNEW) types a restricted shared name, if it
is used according to a shared message exchange.

Rules for communication prefixes are divided in three groups, depending
on the shared or linear usage of both communication subject and object.
Rules (T-SIN) and (T-SOUT) address the case when the communication
subject has shared usage while the object has linear usage. Notice that the
behavioral type B, specified in the argument type of the shared message ex-
change type [(B) of z, captures the slice of behavior which is delegated in the
communication. Type B describes the linear usage of the input parameter in
the premise of (T-SIN), and is singled out via splitting in the conclusion of
(T-SOUT), where splitting is used so as to take into account the usage of y
(the sent name) by the continuation (crucial to type processes that delegate
a name and continue to interact in it).

Rules (T-IN) and (T-OUT) address the cases when both the commu-
nication subject and object have linear usage, and follow the same lines as
described above. Both rules record the prefixed type p{l;(B}).B;}icr in the
conclusions, where p is either ?r or !r for input and output, respectively. A
single output is typed with a communication menu (containing the label of
the emitted message) so as to directly match input summation menus. Notice
that the prefixed type is taken up to subtyping, so as to allow to introduce
<& types that may be necessary for the split in the conclusion. Notice also
that the prefixed type is singled out via splitting, so as to take into account
behaviors of z originally assigned to other threads (due to name delegation).

12

Ay TE P Ao T'H Py

Aenq:TF O
end, Aoyl F P | Py

(T-END,T-PAR)

Ayx:B;T'FP matched(B) ATz (B FP
A;T F (new z)P A;T F (new z)P
(T-NEW,T-SNEW)

Viel Aoz : By : B;T'+ P, r{li(B}).Bi}icr <: B

T-IN
Aozx: B;T'Fxv, {li(yi).P}ier ()
I A :B.:T'+P Ir{l;(B)).B; }; : B
ke ox: By; / r{li(B}).Bi}icr < (T-OUT)
Aox:Boy: B I'tx< li(y).P
e 1 A BT, y; : T; - P, {l;(T).BiY, ' B
Vi € ox i L Yi 7 7 T{lz(z) z}zEI < (T—LSIN)
Aox: B,F Fa > {lz(yz)P'L}zEI
A B:T.y: T, - P 1r{l;(T}). B}, : B
ox k2 73/ k T{ () Z} el < (T—LSOUT)

Aox: BTy : Ty Fx< lk(y).P

Ayy:B;T,x: (B FP A;T,z: (B)F P
ATz I(B) Fxo, {l(y).P} Aoy: B;I',z: I(B) F z<,l(y).P
(T-SIN,T-SOUT)

A TEP A <: Ay Aeng;T'H P
Ay:TF P Aena: [F #P

(T-SUB,T-REP)

Figure 9: Typing Rules.
Rules (T-LSIN) and (T-LSOUT) follow similar lines, addressing the case
when the communication subject / object have linear / shared use. The last
two rules are (T-REP) which types the replicated process, provided it uses
no linear names, and the subsumption rule (T-SUB).

We can show that typing is preserved by substitution and by structural
congruence. Given that our main result involves relating process actions and
type specifications, we introduce type reduction, defined by the rules given in
Fig. 10. In this way, we are able to precisely describe process reductions via
the corresponding type reductions. Type reduction specifies how matched
types reduce, explaining a message exchange that activates the respective
continuation. Type reduction relies on reduction labels of the form s — rl,
identifying the roles involved in the communication and the label of the
exchanged message.

13

s—rl s—rl
s—rl), By — By By — By

s — T{ZZ(MZ)Bz}zeI — Bk (k € I) p—

B |B=YBy,|B B|B Y B|B,
Figure 10: Type Reduction.

s—rl

Bl I B2
A zx: BT @il A,z : By T
Figure 11: Typing Environment Reduction.

AT 5 AT A;F,m:TxﬁrlA;F,x:T

Type reduction provides the expected semantics of behavioral types.
Building on type reduction and in order to simplify the presentation of the
results we introduce typing environment reduction, given by the rules in
Fig. 11. Typing environment reduction specifies that environments seam-
lessly mimic internal 7 (non public) reductions as well as synchronizations
on shared channels. Also, typing environments exhibit linear reductions pro-
vided the reduction is observable at the level of the type of the respective
channel. We may now state our main result that explains process reduction
via typing environment reduction.

Theorem 3.1 (Type Preservation) Let A;T' = P. If P 2 P then
AT 2 AT and AT F P

Proof. By induction on the length of the derivation of P 2L p (see
Appendix).

Theorem 3.1 states that any reduction of a well-typed process is ex-
plained by the corresponding type reduction, thus ensuring that processes
interact according to the protocols prescribed by the types. Notice that this
compliance entails that the protocols are actually carried out by the roles
accordingly to the type specifications. We provide a precise characterization
of this property as follows.

Definition 3.2 (Role-Based Protocol Fidelity) Let P be a process and
A, T typing environments. We say P follows the role-based protocols pre-

scribed by A, T if for any reduction sequence of the process:
pALp 2 X p
there is a matching reduction sequence of the typing environments:

AT DL AT 22 AT

We have that well-typed processes satisfy role-based protocol fidelity as
a direct consequence of Theorem 3.1.

Corollary 3.3 (Role-Based Protocol Fidelity) Let A;T'+ P. We have
that P follows the role-based protocols prescribed by A, T.

14

In order to provide further intuition we proceed to typing an example.
Returning to Fig. 1, the type of name chat, as described in (1), page 4, is
checked by successively splitting and matching resulting types with subpro-
cesses. In this case, for example, we have that the type of Buyer after the
first delegation can be decomposed by using rules (S-END), (S-BRK) and
(S-BRK) (b = Buyer).

O?b{details().end} = end o &?b{details().end}
?b{price().O7b{details().end}} =?b{price().end} o OG7?b{details().end}

Ib{buy().7b{price().O7?b{details().end}}} =!b{buy().?b{price().end}} o O7?b{details().end}
Now, the splitting given above appears when typing the subprocess
chat <uyer buy().(chat >Ruyer price() | MailBox <guyer storeService(chat))

Here, the delegation of name chat, through service storeService, requires
that the behavior of chat to be split between the two processes. Using
(T-SUB), (T-SOUT) and (T-END) we have:

chat : end; MailBoz : storeService(?b{details().end}) - 0
chat :?b{details().end}; MailBox : storeService(---) F MailBox <guyer storeService(chat)
chat : &O?b{details().end}; MailBox : storeService(- - -) b MailBox <guyer storeService(chat)

The example shows that the sometime operator behaves as a delayed
choice between a dot, which expresses the sequentially of behaviors, and a
paralell composition, which types concurrent actions. These alternatives are
introduced by rules (S-TAU), in only one of the branches of the split types,
and in order to preserve, globally, the specified order of labels. Conceivably,
the same flexibility would be achieved by a different (S-TAU) rule, which
would immediately select between dot and parallel. Nevertheless, such rule
would need to “look inside” the types and pull parallels to the top level.
Therefore, this extension of session types with a new modality for breaking
sequentiality, enriches the languages of types with an operator that enables
us to perform choices locally and as needed. Such innovation yields a split
operation which is associative and structural on language of processes.

4 Concluding Remarks

Our development is based on previous work on conversation types [3], ex-
tended so as to address assignment of dynamic roles to the several parties
involved. Technically, we identified a minimal set of ingredients to add to
a core process specification language (the m-calculus [13], TyCO [14] more
precisely) so as to address role-based protocol verification (labeled channels
and role annotations) and extended the type analysis accordingly. Notice-
ably, the splitting relation defined in this paper is much more readable and

15

also more expressive than the merge relation in [3] — in particular, it allows
for splitting (the same) behavior out of the continuations of a branching be-
havior. Crucial to our development is the introduction of the < type which
allows to control behavior interleaving.

We discuss some extensions to our development. An essential feature
of any type analysis is a verification procedure. We are yet to implement
such a procedure, but we may already assert there exists such a procedure
in a setting where all bound names are type annotated. Another crucial
property left out of this paper is progress. However, we expect that the
progress analysis introduced in [3| for a labeled m-calculus, combined with
our typing analysis, may be used to single-out systems that enjoy progress.
An interesting further development to be addressed is the dynamic delegation
of roles. In our setting roles are statically annotated in processes. Extending
the language with role delegation would allow parties to dynamically assume
unanticipated roles.

Several works address role-based type specifications to enforce security
concerns (for example |7] introduces a type analysis to discipline role-based
access control to data). We focus on communication protocol assignment
and leave security to be handled orthogonally. Our approach builds on con-
versation type theory, introduced as a generalization of session types [9, 11|
to discipline multiparty interaction, including dynamically established con-
versations with an unanticipated number of participants. Other works share
the goal to address multiparty interaction, namely [1, 5, 10, 12|, with respect
to which we distinguish the approach of conversation since it addresses mul-
tiparty interaction where the number of participants is not fixed a priori,
while considering a simpler underlying model. We remark that in |1, 5, 10]
a notion of role assignment is explicit, unlike in [3] where types do not men-
tion identities of communicating partners. However, such role assignment
is achieved via a structural projection, forcing single roles to be carried out
by single threads. A different notion of dynamic roles is also considered in
the approaches described in [6, 8], allowing for several processes, much like
a thread pool, to simultaneously carry out a single role.

In this work we have presented a type-based analysis which ensures that
systems follow the prescribed role-based protocol specifications. Novel to
our approach is the flexibility of role assignment, allowing us to address
dynamic distributed implementations of role specifications, where a single
role can be distributed between several processes and a single process can
dynamically switch between roles. To the best of our knowledge, ours is the
only (session-type like) approach that addresses such configurations, that
are actually found in, e.g., real world business protocols. Our development
extends conversation types with role-based protocol specifications, retaining
the simplicity of the approach, simplifying and generalizing the underlying
technical framework, and contrasting with related approaches in the dynamic
and flexible nature of roles.

16

References

[1]

2]

3]

4]

[5]

[6]

7]

18]

19]

[10]

[11]

[12]

Lorenzo Bettini, Mario Coppo, Loris D’Antoni, Marco De Luca, Mar-
iangiola Dezani-Ciancaglini, and Nobuko Yoshida. Global Progress in
Dynamically Interleaved Multiparty Sessions. In CONCUR 2008, vol-
ume 5201 of LNCS, pages 418-433. Springer, 2008.

Luis Caires and Hugo T. Vieira. Conversation Types. In ESOP 2009,
18th European Symposium on Programming, Proceedings, volume 5502
of LNCS, pages 285-300. Springer, 2009.

Luis Caires and Hugo T. Vieira. Conversation Types. Theoretical Com-
puter Science, 411(51-52):4399-4440, 2010.

Marco Carbone, Kohei Honda, and Nobuko Yoshida. Structured
Communication-Centred Programming for Web Services. In ESOP
2007, volume 4421 of LNCS, pages 2—17. Springer, 2007.

Giuseppe Castagna, Mariangiola Dezani-Ciancaglini, and Luca
Padovani. On Global Types and Multi-party Sessions. In FMOOD-
S/FORTE 2011, volume 6722 of LNCS, pages 1-28. Springer, 2011.

Pierre-Malo Deniélou and Nobuko Yoshida. Dynamic Multirole Session
Types. In POPL 2011, pages 435-446. ACM, 2011.

Silvia Ghilezan, Svetlana Jaksic, Jovanka Pantovic, and Mariangiola
Dezani-Ciancaglini. Types and Roles for Web Security. Transactions
on Advanced Research, 8(2):16-21, 2012.

Elena Giachino, Matthew Sackman, Sophia Drossopoulou, and Susan
Eisenbach. Softly Safely Spoken: Role Playing for Session Types. In
PLACES 2009, 20009.

Kohei Honda. Types for Dyadic Interaction. In CONCUR 1993, volume
715 of LNCS, pages 509-523. Springer, 1993.

Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty Asyn-
chronous Session Types. In POPL 2008, pages 273-284. ACM Press,
2008.

Kokei Honda, Vasco T. Vasconcelos, and Makoto Kubo. Language
Primitives and Type Discipline for Structured Communication-Based
Programming. In ESOP 1998, volume 1381 of LNCS, pages 122-138.
Springer, 1998.

Luca Padovani. Session Types at the Mirror. In ICE 2009, volume 12
of EPTCS, pages 71-86, 2009.

17

[13] Davide Sangiorgi and David Walker. The w-Calculus: A Theory of
Mobile Processes. Cambridge University Press, 2001.

[14] Vasco T. Vasconcelos and Mario Tokoro. A typing system for a calculus
of objects. In ISOTAS 1993, volume 472 of LNCS, pages 460-474.
Springer, 1993.

A Proofs

B Example:

We illustrate reduction using the purchase interaction example discussed in
the Introduction. Consider the following code:

(new chat)
(Seller <puyer buyService(chat).
chat <uyer buy().chat buyer price().chat bguyer details())
|
Seller >selier buyService(x).
T Dseller DuY().2 <seller price().Shipper <selier shipService(x).
T Seller pT‘OdUCt()
|

Shipper >shipper shipService(x).
& DShipper Product ().« <shipper details()

The only possible interaction in the system is the exchange of the buyService
message in name Seller between Buyer and Seller. As the result of this
communication, channel chat is sent from the buyer to the seller, allowing
them to share a private medium of communication. The buyService message
exchange, recorded in label Seller : Buyer — SellerbuyService(), leads to the
system:

(new chat)
(chat <Buyer buy().chat bguyer price().chat >puyer details()

chat Bseier buy().chat <sejier price().Shipper <selier shipService(chat).
chat <selier product())
|

Shipper Sshipper shipService(x).
T DShipper Product (). Ashipper details()

At this point the exchange of messages buy and then price between Buyer
and Seller in channel chat may take place (described via 7 labels, since chat

18

is private to the system), leading to the following configuration:

(new chat)
(chat >Ruyer details()
|

Shipper <selier ShipService(chat).chat <sejier product())
!
Shipper Sshipper shipService(x).

T DShipper Product (). Ashipper details()

By now message shipService may be exchanged in name Shipper, where
channel chat is sent to Shipper, allowing for a third-party to join the ongo-
ing interaction. Notice Seller and Shipper get to interact on the delegated
channel chat afterwords, exchanging message product. Notice also that label
Seller : Shipper — SellershipService() describes the shipService message ex-
change, identifying the roles involved in the interaction. This information is
relevant to our typing analysis, presented in the next section, where process
behaviors are checked against type specifications.

C Proofs

Proposition C.1 (Associativity) If B = Bj o B’ and B’ = By o B3 then
there exists B" such that B = B" o B3 and B" = By o Bs.

Proof. By induction on the length of the derivation tree of B = By o B'.

Base: B = Bj o B’ by rule [S-END]. We have two cases.

1. Byisend and B = B’. In this case, let B” = By. Hence, By = endoBsy
and B = By o Bs.

2. B’ is end and B = Bj;. In this case, we set B” = end = end o end,
with BQ = Bg = end.

Step: Suppose the Proposition is valid for all derivation trees of degree
< k. Let B = By o B’ be a derivation with degree k + 1. Lets analyze all
possible cases.

1. [S-PAR] is the last rule in the derivation tree of B = B; o B’. Hence,
B = B} | BS with By = B}, | BS; and B’ = BY,| BS,, such that

R1 R2

BI = BII [¢] BIQ B; = 351 o] 352 [S_PAR]

B} | B3 = By | B3y o By | B,

19

(a) If B' = By o Bs by rule [S-END], then we have two cases: By =
end and B3 = end. If B, = end, then we let B” = By. And, if
B3 = end, then we set B” = B.

(b) Suppose B’ = By o Bs by rule [S-PAR|. Hence

By = Biy; © By B3y = B3y © B3sy
BT, ‘ B3y = By |B521 0 Blyg ’ B39y

[S-PAR]

Where By = B}y, | B3y, and B3 = B}y, | B35s.

Now, applying the induction hypothesis to branch R1 and B}, =
B}y, o By, yields BS = (B o Bfy;) o0 Bly,. ' In the same
manner, applying the induction hypothesis to branch R2 yields
B3 = (B3, 0 B3y;) © B3g,.

Therefore, by applying rule [S-PAR| we have

RYT’ R2’

B} = (Bl © Bly) © By B3 = (B3, © Biyy) © Biag [S-PAR]

BY | B3 = (B} 0 Blyy) | (B3) © B3gy) 0 Biag | B3os

Hence, we let B” = (B};0B35) | (BS;0B35;), and by rule [S-PAR]
we get B” = By o Bs.

2. [S-TAU] is the last rule in B = By o B'.

B;=Bj;joBy Viel

S-TAU]

We need to consider two cases.

(a) By =!7{l;(B}).B1;}i. If B = By o Bs, then it must be by rule
[S-END] or [S-BRK]. The case of rule [S-END] is straightforward
as before. Now, if B’ = By o B3 comes by rule [S-BRK]| we have
also two cases.

By, = B:l oB" Viel
?S{ZZ(B{)BQZ}Z :S{Zz(BZ/)BZ”}Z o) BW

[S-BRK]

'"Here, we use (B’ o B”) to denote a B, such that B = B’ o B”.

20

i. By =7?s{l;(B}).B/}; and B3 = B"'. In this case, we apply the
induction hypothesis on B; and get B; = (By;0 B!')o B", for
all i € I. Hence, by rule [S-BRK] we have

B, = (Blz o B;/) oB" Viel
r— S{lz(B;)BZ}Z =7r— S{ll(Bé)(Bh ¢} Bz”)}z o B"

[S-BRK]

Hence, taking B"” = r — s{l;(B}).(B1; o B/)} yields, by rule
[S-TAUJ,
B” :'T{lz(Bl/)BM}ZO(ZS{ZZ(B;)B;/}Z = Bl o] BQ.

ii. By =?s{l;(B}).B/}; and By = B"”. Once more, by applying
the hypothesis to B; we have B; = (By; o B") o By;, for all
i € I. Applying rule [S-TAU] yields

T — S{ll(B;)(BllOB;/)}l :'T{ZZ(B;)(BlZOB///)}lO?S{ll(B;)Bgz}l

Now, we set B” =lr{l;(B}).(By; o B")};, because by rule [S-
BRK]| we have B” =!r{l;(B}).(B1; 0o B")}; =lr{li(B}).B1}i o
B" = By o Bs.

(b) By =?r{l;(B}).B;};. This case is analogous to the previous case

(a).

3. [S-BRK] is the last rule in B = By o B'.

B, =B!oB" Yiel

[S-BRK]

Once more, two cases to be considered.

(a) By = p{li(B}).B!'}; and B3 = B"’. This case is analogous to the
previous case (a) (7).

(b) Bs = p{l;(B}).B/}; and By = B"'. This case is analogous to the
previous case (a) (it).

4. [S-BRKS] is the last rule in B = Bj o B’. Analogous to the previous
case.

Lemma C.2 (Substitution) If A;T'+ P and
1. A=Az : B and Aoy : B is defined then A' oy : B;T' Pz « y].

21

2.T=T"2:T and T,y : T is defined then A;T",y : T + Plx < y].
Proof. By induction on the length of the derivation of A;T" - P.

Lemma C.3 (Subject Congruence) IfA;T'+ P and P = P’ then A;T
P
Proof. By induction on the length of the derivation of P = P’.

Theorem 3.1 (Type Preservation)
(repetition of the statement in page 14)

IFA;TEP and P25 P and
e \ =1 then A;T + P';
e A\ =ux:s5—rl then (1) A = A,z : B and B B and Az
B;TEP or (2)T=1"2:T and A;T + P'.

Proof. By induction on the length of the derivation of P Ny
(Case (RED-COMM))

AT oy {li(z). P tier | @ <s Ik (y). P (1)
x:s—rl
T Dy {lz(.%'z)Pz}ze[’ T <g lk(y)P — k Pk[xk — y] ’P (2)
(Assumption)

(Case x € dom(I") Ny € dom(A))

ATz 11(B) F ooy {li(z1).Pr} (3)

I={1},k=1 (4)
(T-S1N))

Ay oy: BTV z:11(B)Fx<sli(y).P (5)
((T-SOUT))

A=A1o0Aso0y:B (6)

T =T",z:1,(B) (7)

AT Eao, {li(z1).Pi} |z <s li(y).P (8)
((3), (5) and (1))

Ay, xy: B;T 2z : 13(B) F Py 9)

(Inversion on (T-SIN) and (3))

22

A1 o y: B defined

((6))
Ay oy: BT, z:11(B)F Pz «]

((9) and (10) and Lemma C.2)
Ao;T 2 :11(B) - P

(Inversion on (T-SOUT) and (5))
AT E Pz < y]| P

((12), (11), (6), (7) and (T-PAR))

(Case x € dom(A) Ny € dom(A))

Ay o x: 77{l;(B)).B;}ier; T F @y {1i(24).Piier

((T-IN))
Ag o z:1s{l;(B)).B!'}ier oy : Bi; T =2 <5 Iy (y).P

((T-OUT))
A=Ay 0 Ayox:?{li(B)).Biticr o x:s{li(B}).B!'}icr o y : By,

((14), (15) and (1))
Viel Ay ox:By,x:B;THP

(Inversion on (T-IN) and (14))
Ay o x: By o y: By, defined

((16))
Ay ox:Bgoy: BT F Plag — v

((17) and (18) and Lemma C.2)
Ay ox:B;THP

(Inversion on (T-OUT) and (15))
Ay oAyoxz:(BroB)oy: BTk Pylxy — y]| P

((20), (19), (16) and (T-PAR))
A=Aj;o0oAyox:s—r{li(B).(B;o B)}icroy: By

((16))
AsﬂkAl oAgox:(BroBy)oy: By
((22))

23

(Case z € dom(A) Ay € dom(T))

Ay o x: 7{li(T).BlYier; T F x o {li(2:). P Yier
((T-LSIN))
Ag o x: 18{l;(T).B!'Yier; Ty : T+ x <5 I (y). P
((T-LSOUT))
r=r,y:T
A=Ay 0 Ayox:{li(T).Bj}icr o x:!s{li(T).B}icr
((24), (25) and (1))
Viel Alox:Bz{;F,xi:Tl—PZ-
(Inversion on (T-LSIN) and (24))
I,y : T defined
((26))
Ay ox: BT y: TF Pz —]
((28) and (29) and Lemma C.2)
Ay ox:BlLT,y: THP
(Inversion on (T-LSOUT) and (25))
Ay o Ayox: (B, o Bl);TF Pelag — vy | P
((31), (30), (27), (26) and (T-PAR))
A=Ay o0Ayox:s—r{ly(T).(B; o B)}ier

(27))
AsﬂkAl oAy ox: (B}, o By)
((33))
(Case (RED-PAR))

A; 'k P1 |P2
P | P, 2 PP,

(Assumption)
Yy o

(Inversion on (RED-PAR) and (36))
A = Al (¢] AQ
AQ; 'k P2
Al; 'k P1

(Inversion on (T-PAR) and (35))

24

(Case A =r1)
AT P

AT+ PPy

(Case A\=xz:s5— 71l (1))

Al :All,$2B1

s—rl

Bl —>Bi
Y,z : BT+ P

Ay = AL x: By
A=A z:B

A=A o A

B = Bj o By

B4 B

B' =B o By

A z:BF PP

(Case A=z:5—1l(2))

F=0",2:T
AT F P

AT+ PPy

(41)
(Induction hypothesis on (40) and (37))

(42)
((41), (39), (38) and (RED-PAR))

(43)

(44)

(45)
(Induction hypothesis on (40) and (37))

(46)

(47)

(48)

(49)
((38))

(50)

(51)
((49) and (44))

(52)

((51), (48), (45), (39), (46) and (T-PAR))

(Induction hypothesis on (40) and (37))
(55)
((54), (38), and (39))

25

(Case (RED-NEW1))

A;T F (new z)P

(new)P — (new)P’

P2 p

A=z:8s—rl V A=171
(Case (T-NEW))

Axr:BT'HP
matched(B)

(Case A =1)
Az:B;TFP

A;T + (new z)P'
(Case A==z :5—7l)

B=Y B

Az:BT+P

matched (B')

A;T + (new z)P'

(Case (T-SNEW))

ATz (B)FP

(Assumption)

(Inversion on (RED-NEW1) and (57))

(Inversion on (T-NEW) and (56))

(Induction hypothesis on (60) and (58))

((62), (61) and (T-NEW))

(Induction hypothesis on (60) and (58))

((61) and (64))

((65), (66) and (T-NEW))

(Inversion on (T-SNEW) and (56))

26

(Case A =1)
AT,z :I(B)F P

AT+ (new z)P'

(Case A=xz:s5—7l)
AT,z :l(B)F P

A;T + (new z)P'

(Case (RED-NEW2))

A;T + (new y)P

(new y)P 2, (new y) P’
P2 P

A=z:s—7rl (x#£y)
(Case (T-NEW))

Ay:B;'EP
matched(B)

(Case A\=z:5—rl(1))

Ay:Bi=Ay:B,x:B
B B
Ay:By,z: BT+ P

Az : BTk (new y)P’

(Induction hypothesis on (68) and (58))

((69) and (T-SNEW))

(Induction hypothesis on (68) and (58))

((71) and (T-SNEW))

(Assumption)

(Inversion on (RED-NEW2) and (74))

(Inversion on (T-NEW) and (73))

(Induction hypothesis on (77) and (75))

((81), (78) and (T-NEW))

27

(69)

(70)

(Case A\=xz:5—71l(2))
r=1r",z:T
Ay:B;I'FP

AT+ (new y)P'

(Case (T-SNEW))
ATy U(By)FP

(Case A\=z:5—71l(1))

A=A z:B
B4 B

A z:B;T,y:1(B)F P
A z: B';T'F (new y)P’

(Case A\=x:5—71l(2))

(Induction hypothesis on (77) and (75))

((84), (78) and (T-NEW))

(Inversion on (T-SNEW) and (73))

(Induction hypothesis on (86) and (75))

((89) and (T-SNEW))

Toy:U(B)=T"y:U(B1),z:T

AT,y : (B F P

AT+ (new y)P'

(Case (RED-STRUCT))

ATFP

P2 P,

PlEP{

A
Pl — Py

PQEPQI

AT P

(Induction hypothesis on (86) and (75))

((92) and (T-SNEW))

(Assumption)

(Inversion on (RED-STRUCT) and (95))

((94) and Lemma C.3)

28

(Case A =r1)
AT Py

AT P

(Case A\=xz:s5— 71l (1))

A=A z:B
B4 B

A'z: BTk P

AN, z:B.THP,

(Case A\=2z:5—rl(2))

r=r.2:T
AT+ P

A;F}—PQ

(100)
(Induction hypothesis on (99) and (97))

(101)
((100) and Lemma C.3)

(102)

(103)

(104)
(Induction hypothesis on (99) and (97))

(105)
((104) and Lemma C.3)

(106)

(107)
(Induction hypothesis on (99) and (97))

(108)

((107) and Lemma C.3)

29

