
Typing Dynamic Roles in Multiparty Interaction

Pedro Baltazar1, Vasco T. Vasconcelos1, and Hugo T. Vieira2

1 LaSIGE, Dept. de Informática, Faculdade de Ciências,
Universidade de Lisboa, Portugal

{pbtz|vv}@di.fc.ul.pt
2 CITI, Dept. de Informática, Faculdade de Ciências e Tecnologia,

Universidade Nova de Lisboa, Portugal
htv@fct.unl.pt

Abstract. We present a type-based analysis for role-based multiparty
interaction. Novel to our approach are the notions that a role specified in
a protocol may be carried out by several parties, and that one party may
assume different roles at different stages of the protocol. We build on
Conversation Types by adding roles to protocol specifications. Systems
are modeled in π-calculus extended with labeled communication and role
annotations. The main result shows that well-typed systems follow the
role-based protocols prescribed by the types, addressing systems where
roles have dynamic distributed implementations.

1 Introduction

Communication is a central feature of nowadays software systems, as more and
more often systems are built using computational resources that are concurrently
available and distributed in the network. Extreme examples include operating
systems where functionality is distributed between distinct threads in the sys-
tem, and a service available on the Internet which relies on third-party (remote)
service providers to carry out subsidiary tasks. Building software from the com-
position of distributed interacting pieces is very flexible, at least in principle,
since resources can be dynamically discovered and chosen according to criteria
such as availability and work load. In such a setting, all interacting parties must
agree on the communication protocols, and verification mechanisms that auto-
matically check if the code meets some common protocol specification are then
of crucial importance.

A protocol specification describes the set of message exchanges, including
when are they to occur and the parties involved in the interaction. A party
involved in a protocol may have a spatial meaning, for instance denoting a dis-
tinguished site or process, or, more generally, a party may have a behavioral
meaning, a role in the interaction that may be realized by one or more processes
or sites. Conversely, a process may impersonate different roles throughout its
execution. Such flexibility is essential to address systems, e.g., where a leader
role is impersonated by different sites at different stages of the protocol, and the
role of a single site changes accordingly. The challenge is then to verify whether a

buy

product

details

price

Buyer Seller Shipper

Fig. 1. Purchase Interaction Message Sequence Chart.

system complies to a protocol specification, given such dynamic and distributed
implementation of roles, just by inspecting at the source code.

In this paper we present a type-based analysis which checks if systems follow
the role-based protocol descriptions prescribed by the types. Our development
is based on the conversation type theory [2, 3], extending it with the ability to
specify and analyze the roles involved in the interactions. The underlying model
of our analysis is based on TyCO [9], used in our setting as an extension to the
π-calculus [8], where communication actions specify a message label and the role
performing the action. While retaining the simplicity of conversation types, our
theory is able to address systems where a single role may be realized by several
parties and when processes may dynamically change the role in which they are
interacting. This contrasts with related approaches (see, e.g., [7, 4]) where roles
have a spatial meaning, as they are mapped into the structure of systems in a
static way.

In the remaining of the Introduction we informally describe the type analysis
of an example system, and also present a second example to illustrate the flexibil-
ity of our approach. Consider the message sequence chart shown in Fig. 1 (taken
from [3]), which captures the interaction of a purchase system involving three
parties. Messages buy, price, product and details are (sequentially) exchanged
between a Buyer, a Seller, and a Shipper. First, Buyer sends to Seller a buy
message, then Seller replies to Buyer on message price. After that, Seller sends
to Shipper message product and Shipper sends to Buyer message details.

Fig. 2 illustrates a possible implementation of the purchase interaction. Pro-
cess Buyer specifies the creation of a fresh chat that will host the purchase
interaction, via the new construct. This newly created name is passed to the
Seller, via message buyService. The code Seller "Buyer buyService(chat) repre-
sents the output of message buyService, in channel Seller, passing name chat.

2

- labels L = {buyService, shipService, buy, product, price, details}
- names N = {x,Seller,Shipper,Buyer, chat}
- roles R = {Seller,Shipper,Buyer}

Buyer
def≡ (new chat)

Seller "Buyer buyService(chat).
chat "Buyer buy().
chat #Buyer price().
chat #Buyer details()

Seller
def≡ Seller #Seller buyService(x).

x #Seller buy().
x "Seller price().
Shipper "Seller shipService(x).

x "Seller product()

Shipper
def≡ Shipper #Shipper shipService(x).

x #Shipper product().
x "Shipper details()

System
def≡ (Buyer | Seller | Shipper)

Fig. 2. Purchase System Code (a).

Also, the role which sends the message is identified (role Buyer). The remaining
interactions of the Buyer process (and, in this case, role) are in channel chat: first
sends (") message buy, after which receives (#) message price and then sends
message details.

The Seller process starts by receiving a channel name (that instantiates vari-
able x) in message buyService. Then, in this received channel the Seller process
(and role) receives a buy message, after which sends message price. At this
point, the Seller asks a third party to join the ongoing interaction, by sending
message shipService in Shipper passing the identity of the channel which hosts
the ongoing interaction (x). After that, the Seller process keeps interacting in
the delegated channel x, sending a product message in it. The Shipper process
(and role) receives a channel name in message shipService in channel Shipper,
in which the process receives message product and then sends message details.

The implementation shown in Fig. 2 involves three distinguished processes
that carry out the three roles identified in the protocol. The type:

Buyer→ Seller buy().
Seller→ Buyer price().
Seller→ Shipper product().
Shipper→ Buyer details()

(1)

(which describes the protocol illustrated in Fig. 1) captures the interaction in
channel chat. Channel chat is passed along from Buyer to Seller and then from
Seller to Shipper in messages buyService and shipService, respectively. In order to

3

analyze the protocol distribution between the three parties, we must consider the
slices of protocol which are delegated in messages buyService and shipService.

The type ?Shipper product(). !Shipper details() describes the interactions
of Shipper in the channel received in the shipService message. From the point of
view of the Seller, when it asks Shipper to join the ongoing interaction, the type
?Shipper product(). !Shipper details() is delegated in the output of message
shipService. So, to type the Seller we need to consider both the slice of protocol
delegated in the message and the slice retained by the emitting process (the out-
put of message product, typed !Seller product()). This composition is captured
via a merge (#") operation, which describes the behavioral combination of the
protocols:

?Shipper product(). !Shipper details() #" !Seller product()
⇒ Seller→ Shipper product(). !Shipper details()

The merge yields type Seller→ Shipper product(). !Shipper details() which
describes the protocol of Seller and Shipper combined, at the moment the Shipper
is asked to join the interaction: Seller sends to Shipper message product and
Shipper outputs message details. Notice that both a message exchange internal
to the system, where both emitting and receiving roles are identified, and a
message exchanged with the external environment, where just the role internal
to the system is identified, are specified in the type.

The Seller interaction in the channel received in message buyService is typed:

?Seller buy(). !Seller price(). Seller→ Shipper product(). !Shipper details()

which (behaviorally) combined with the type of the Buyer interaction:

!Buyer buy().?Buyer price().?Buyer details()

yields the expected protocol, that of (1).
In the system shown in Fig. 2 there is a perfect matching between processes

and the roles in which the processes interact. However, as explained before, in our
model this does not need to be the case. Fig. 3 shows a distinct implementation
of the interaction scheme given in Fig. 1 with two differences. The first difference
is that now the Buyer delegates the reception of message details to some spe-
cialized mailbox. More specifically, after receiving message price, the Buyer asks
MailBox to join the ongoing interaction, passing name chat in message storeSer-
vice. MailBox receives a name in message storeService, and, assuming the role
of Buyer, receives message details in the received channel. The second difference
is that the Seller process, in particular the code that follows the reception of the
buyService message, is now also responsible for the interactions of the Shipper
role. The Seller process starts by interacting in the Seller role (messages buy and
price) and then spawns two threads with different roles (Seller and Shipper).

The type of Seller interaction in the channel received in the buyService is the
same as before, now explained by the merge of the behaviors of the two parallel
threads. Instead, the type of the Buyer interaction is also recovered, now obtained

4

- labels L = {buyService, buy, product, price, details, storeService}
- names N = {x,Seller,Buyer,MailBox, chat}
- roles R = {Seller,Shipper,Buyer}

Buyer
def≡ (new chat)

Seller "Buyer buyService(chat).
chat "Buyer buy().
chat #Buyer price().
MailBox "Buyer storeService(chat)

Seller
def≡ Seller #Seller buyService(x).

x #Seller buy().
x "Seller price().

(x "Seller product()
|
x #Shipper product().
x "Shipper details())

MailBox
def≡ MailBox #Mail storeService(x).

x #Buyer details()

System
def≡ (Buyer | MailBox | Seller)

Fig. 3. Purchase System Code (b).

considering the delegated slice of protocol to the MailBox in message storeService
(the reception of message details in role Buyer). The purchase interaction of the
system shown in Fig. 3 also follows the protocol specification depicted in Fig. 1.
From the point of view of our type analysis both systems follow the prescribed
protocol, regardless of the spatial configuration of the processes implementing the
roles. Notice that the Buyer role is distributed between the Buyer and MailBox
processes, and that roles Seller and Shipper are carried out by process Seller.

In the rest of the paper we present our formal development, including the
definition of the semantics of the process and type languages and of the type
system. Our main result says that given a type specification and a well-typed
implementation then each interaction in the process is explained by a corre-
sponding interaction in the types, hence, all interactions in the process follow
the protocols prescribed in the types.

2 Process Language

In this section we define the language of processes, and its structural congruence
and semantics.

First, the language of processes can be seen as variant of TyCO, with labelled
inputs and outputs. We start be considering denumerable sets of labels L, names
N , and roles R. In Fig. 4 we present the syntax of processes. As usual, the
language comprises the inaction 0, name restriction (new x)P , and parallel

5

composition P1 |P2 of concurrent processes P1 and P2. Moreover, the language
include terms x "r l(y).P (answers), which represent a process that performs
a output (“replies” or “declares”) l(y) on channel x with role r, and continues
executing P . For the complementary input action, the syntax includes terms
x#r{li(xi).Pi}i∈I (questions) describing a process that inputs (“asks” or “listens”)
{li}i∈I on channel x, with role r. And after receiving an answer li(y) on x, binds
xi to y and continues with Pi, for any i ∈ I. In order to avoid ambiguities, we
require each of these terms to have distinct labels. Processes are ranged over by
P, P ′, . . . , P1, P2, . . . We take the standard definitions of free and bound names or
variables for processes. Processes that differ only in the names of bound variables
are deemed equal. And we also assume that every bound name or variable is
different from the others. We write P [x ← y] for the substitution of y to free
occurrences of x in P .

P ::= 0 ! (new x)P ! (P1 |P2) ! x #r {li(xi).Pi}i∈I ! x "r l(y).P Process terms
l ∈ L Labels

x, y ∈ N Names
r, s ∈ R Roles

Fig. 4. Syntax of Process

The structural congruence between process P1 ≡ P2 is defined as the least
equivalence relation that fulfills the conditions expressed in Fig. 5, and that
preserves the process constructors.

P | 0 ≡ P P1 |P2 ≡ P2 |P1 (P1 |P2) |P3 ≡ P1 | (P2 |P3)

(new x)(new y)P ≡ (new y)(new x)P

(new x)P1 |P2 ≡ (new x)(P1 |P2) if x #∈ fn(P2)

(new x)0 ≡ 0

Fig. 5. Structural Congruence

The semantics of processes is defined as the least relation P
λ−→ P ′ that

satisfies the rules in Fig. 6. Here, λ is a usage label and is either empty (τ) or a
communication (x : r → s : l). Usage labels are important to entangle and link
the semantics of processes with that of typing environments. In the sequel, they
will be the backbone to define and proof preservation of well–typed processes.
The meaning associated to usage labels is that, one step reduction with label

6

x : r → s : l denotes that a message labelled l is communicated from a party
assuming role r to another with role s. And a reduction with label τ means that
the reduction occurs in a restricted name.

x #r {li(xi).Pi}i∈I | x "s l(y).P
x:r→s:l−→ Pk[xk ← y] |P if ∃k ∈ I, l = lk

(Red-Comm)

P1
λ−→ P ′

1

P1 |P2
λ−→ P ′

1 |P2

(Red-Par)

P
λ−→ P ′ λ ∈ {τ, x : r → s : l}
(new x)P

τ−→ (new x)P ′ (Red-New1)

P
λ−→ P ′ λ = x : r → s : l y #= x

(new y)P
λ−→ (new y)P ′

(Red-New2)

P1 ≡ P ′
1 P ′

1
λ−→ P ′

2 P ′
2 ≡ P2

P1
λ−→ P2

(Red-Struct)

λ ::= τ ! x : r → s : l

Fig. 6. Operational Semantics.

For example, the application of rule [Red-Comm] in our Example 2 yields
the following transition. The process

Shipper "Seller shipService(chat).chat "Seller product.0 |
Shipper #Shipper shipService(x).x #Shipper product.x "Shipper details.0

reduces to

chat "Seller product.0 | chat #Shipper product.chat "Shipper details.0

with label Shipper : Seller→ Shipper : shipService.

3 Type System

In this section we present a behavioral type system for conversation processes.
To each process and channel we assign the “conversation” (exchange of messages
between roles) which takes place in that channel.

We start by defining the type language, and its semantics. Next, we introduce
a merge operation between conversation types, and exemplify its use. Finally,

7

B ::= end ! B |B ! ρ{Mi.Bi}i∈I types
ρ ::= !r! ?r ! r → s communication prefixes

M ::= l(B) message types
l ∈ L Labels

r, s ∈ R Roles

Fig. 7. Syntax of Conversation Types

we state the main result, which demonstrates how the correctness of a process
is captured by the typing system.

Fig. 7 defines the syntax of conversation types. The behavior of a channel is
end if nothing is to be “said” in that channel. The parallel composition B1 |B2

describes a channel where two conversations B1 and B2 occur concurrently. And,
ρ{Mi.Bi}i∈I represents “saying” {Mi}i∈I and after having the possibility of con-
tinuing as Bi, for all i ∈ I. Once more, to disallow confusions, we consider that
all messages {Mi}i∈I are different. The three possible communication prefix have
the following meanings:

– !r - output (declared/replying) with role r;
– ?r - input (listening/asking) with role r;
– r → s - a communication from role r to role s.

The prefixes !r and ?r are called unmatched, since they represent waiting for a
question and reply, respectively. And the prefix r → s is called a match, because
it represents an already identified exchange question-reply between roles r and
s. The matched prefix r → s will be crucial to verify if in a conversation nothing
is left unanswered or unlistened. The predicate matched(B) characterizes all
types containing only matched prefixes.

The structural congruence B1 ≡ B2, which defines equivalent types, is the
least equivalence relation where parallel composition is commutative and asso-
ciative, end |B ≡ B, and that preserves the type constructors. In the sequel, we
identify congruent types.

The semantics of types is based on the idea that the type of process P1 |P2

must be obtained from the types of P1 and P2. And, the resulting type must
capture all possible communications between the two threads via matched pre-
fixes. In Fig. 8 we present the operational semantics of conversation types. Rule
[B-Red-Com] expresses the principle that reduction is limited to matched com-
munications, i.e., matched prefixes r → s. Hence, no interaction may occur be-
tween parallel types, which means they represent two concurrent independent
conversations. Type independence is defined by apartness: two types B1 and B2

are apart, noted B1#B2, if they do not have labels in common. The definition
of merge imposes a linear usage of labels and guarantees race-free conversations,

8

r → s{Mi.Bi}i∈I
r→s:lk−→ Bk ∀k ∈ I (B-Red-Com)

B1
r→s:l−→ B2

B1 |B r→s:l−→ B2 |B
(B-Red-Par)

Fig. 8. Types Semantics

where, at any moment, there are at most two parties able to exchange a given
message.

In our running Example 2, the conversation which takes place in channel
chat is given by the type:

Buyer→ Seller{buy().Seller→ Buyer{price().
Seller→ Shipper{product().Shipper→ Buyer{details().end}}}}

Guided by the above requirements, in Fig. 9 we define a merge operation
intended to resolve and match communications. Given types B1 and B2,

B1 ! B2⇒B

means that B1 ! B2 resolves to B. And, either B comes from matching all
possible communications or by resolving to B1 |B2. For the sake of space we
omit the symmetric version of rules (PAR), (TAU), (SHF) and (BRK).

Returning to Example 2, the type of channel chat is obtained by first per-
forming the following reduction, where we apply (APT) and (TAU), using the
equivalence B | end ≡ B. (s = Seller and sh = Shipper)

end !!sh{details.end}⇒!sh{details.end}
!s{product.end} !!sh{product.?sh{details.end}}⇒ s→ sh{product.!sh{details.end}}

As usual, a type environment is a partial map Γ that assigns conversation
types to names, and we write Γ ' x : B to say that Γ assigns B to name x ∈ N .
By Γ, x : B we denote a type environment Γ ′ that (Γ ′ ' x : B) assigns B to x
and behaves as Γ on other names. In Fig. 10 we introduce the type system for
conversation types. In the rules we use Γ1 ! Γ2 to represent the environment
obtained by merging the behaviors associated to each name in Γ1 and Γ2. For
example, a : B1 ! a : B2 yields environment a : B provided that B1 ! B2 ⇒ B.
The merge of behavioral types is defined in Fig. 9,

In our Example 2, the merge example given above appears when typing the
subprocess Shipper "Seller shipService(chat).chat "Seller product.0

chat : end,Shipper : end * 0
T-END

chat :!s{product.end},Shipper : end * chat "Seller product.0 T-OUT

Shipper :!s{shipService(B).end}, chat :!s{product.end} ! B * . . .
T-OUT

9

B1 ! B2 ⇒B1 |B2 if B1#B2 (APT)

B2 ! B3 ⇒B′ B′ ! B1 ⇒B

(B1 |B2) ! B3 ⇒B
(PAR)

Bi ! B′
i ⇒B′′

i ∀i ∈ I

!r1{Mi.Bi}i∈I ! ?r2{Mi.B
′
i}i∈I ⇒ r1 → r2{Mi.B

′′
i }i∈I

(TAU)

Bi ! ρ1{Mj .B
′
j}j∈J ⇒B′′

i not(ρ1{Mi.end}i∈I#Bi) ∀i ∈ I

ρ2{Mi.Bi}i∈I ! ρ1{Mj .B
′
j}j∈J ⇒ ρ2{Mi.B

′′
i }i∈I

(SHF)

Bi ! B⇒B′ ρ{Mi.end}i∈I#B′ ∀i ∈ I

ρ{Mi.Bi}i∈I ! B⇒ ρ{Mi.end}i∈I |B′ (BRK)

Fig. 9. Merge operation

Now, from the typing of subprocess

Shipper #Shipper shipService(x).x #Shipper product.x "Shipper details.0,

we will infer that B is in fact !sh{product.?sh{details.end}}. Hence, in the above
derivation, the type of chat will be resolved to s→ sh{product.!sh{details.end}}.
Therefore, this fragment illustrates the use of the merge operation !, which step
by step matches the possible communications. In this case, by matching the
communication between Seller and Shipper with label product.

The semantics of conversations types can be extended to type environments.

Definition 1. We write Γ1
x:r→s:l−→ Γ2 to denote that

Γ1 = Γ, x : B1, Γ2 = Γ, x : B2 and B1
r→s:l−→ B2.

Finally, we state the type-preservation propriety for conversation processes
and types.

Theorem 1 (type preservation). Suppose Γ ' P and P
λ−→ P ′. Then,

– if λ = τ , then Γ ' P ′;
– if λ = x : r → s : l, then Γ ′ ' P ′ for some Γ ′ such that Γ

λ−→ Γ ′.

The type preservation if a safety result. We know that the typing system
yields conversation types of valid conversations. Therefore, the previous theorem
asserts that if a conversation process is typed, then it is simulated by a valid
type. Hence, assuring the correctness of the overall conversation.

10

x1 : end, . . . , xk : end * 0 (T-END)

∀i ∈ I Γ ! x : Bi, yi : B′
i * Pi

Γ, x : ?r{li(B′
i).Bi}i∈I * x #r {li(yi).Pi}i∈I

(T-IN)

k ∈ I Γ ! x : Bk * P

Γ ! x : !r{l(B′
i).Bi}i∈I ! y : B′

k * x "r l(y).P
(T-OUT)

Γ1 * P1 Γ2 * P2

Γ1 ! Γ2 * P1 |P2
(T-PAR)

Γ, x : B * P matched(B)

Γ * (new x)P
(T-NEW)

Fig. 10. Typing rules

4 Conclusion and Future Work

We have presented a type-based analysis which ensures that systems follow the
prescribed role-based protocol specifications. New to our approach are the no-
tions that a role may be implemented by several processes, and that a single
process may change its role at different stages of the protocol.

Our development builds on conversation types, a flexible type structure that
generalizes binary session types [5, 6] to address multiparty conversations, includ-
ing when conversations are dynamically established and have an unanticipated
number of participants. Conversation types were originally developed for the
Conversation Calculus [10], a specialization of the π-calculus for service-oriented
systems. In this paper, conversation types are used in a more canonical model,
that essentially consists in the π-calculus extended with labeled communication.
Our extension with role-based protocol specifications retains the simplicity of
the conversation type theory, and contrasts with related approaches in the dy-
namic and flexible nature of roles. In [1, 7, 11, 4] roles are structurally mapped
to processes in a way that roles and threads end up in a one to one relation.

We are already considering immediate further developments of this work. For
example, we will introduce recursion, in order to model some infinite behaviors.
We will also combine linear (race-free) interaction with shared (race allowed)
interaction, allowing to model service definitions that are globally available and
may have concurrent requests. Another interesting problem to be addressed is the
dynamic delegation of roles. In our current setting roles are statically annotated
in processes. Extending the language with role delegation would allow parties to
dynamically assume unforeseen roles at runtime.

11

Acknowledgments. This work was supported by FCT/MCTES via projects PTD-
C/EIA–CCO/105359/2008 and INTERFACES CMU–PT/NGN44–2009–12. Luís
Caires participated in the discussions that have led to this work.

References

1. E. Bonelli and A. Compagnoni. Multipoint Session Types for a Distributed Cal-
culus. In G. Barthe and C. Fournet, editors, TGC 2007, Third International Sym-
posium on Trustworthy Global Computing, Revised Selected Papers, volume 4912
of LNCS, pages 240–256. Springer, 2008.

2. L. Caires and H. Vieira. Conversation Types. In G. Castagna, editor, ESOP 2009,
18th European Symposium on Programming, Proceedings, volume 5502 of LNCS,
pages 285–300. Springer-Verlag, 2009.

3. L. Caires and H. Vieira. Conversation Types. Theoretical Computer Science,
411(51-52):4399–4440, 2010.

4. P.-M. Deniélou and N. Yoshida. Dynamic Multirole Session Types. In T. Ball and
M. Sagiv, editors, Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2011, pages 435–446. ACM, 2011.

5. K. Honda. Types for Dyadic Interaction. In E. Best, editor, CONCUR 1993,
4th International Conference on Concurrency Theory, Proceedings, volume 715 of
LNCS, pages 509–523. Springer, 1993.

6. K. Honda, V. Vasconcelos, and M. Kubo. Language Primitives and Type Disci-
pline for Structured Communication-Based Programming. In C. Hankin, editor,
ESOP 1998, 7th European Symposium on Programming, Proceedings, volume 1381
of LNCS, pages 122–138. Springer, 1998.

7. K. Honda, N. Yoshida, and M. Carbone. Multiparty Asynchronous Session Types.
In G. Necula and P. Wadler, editors, POPL 2008, 35th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, Proceedings, pages 273–284.
ACM Press, 2008.

8. D. Sangiorgi and D. Walker. The π-Calculus: A Theory of Mobile Processes. Cam-
bridge University Press, 2001.

9. V. T. Vasconcelos and M. Tokoro. A typing system for a calculus of objects. In 1st
International Symposium on Object Technologies for Advanced Software, volume
472 of LNCS, pages 460–474. Springer, Nov. 1993.

10. H. Vieira, L. Caires, and J. Seco. The Conversation Calculus: A Model of Service-
Oriented Computation. In S. Drossopoulou, editor, ESOP 2008, 17th European
Symposium on Programming, Proceedings, volume 4960 of LNCS, pages 269–283.
Springer, 2008.

11. N. Yoshida, P.-M. Deniélou, A. Bejleri, and R. Hu. Parameterised Multiparty Ses-
sion Types. In C.-H. L. Ong, editor, Foundations of Software Science and Compu-
tational Structures, 13th International Conference, FOSSACS 2010, Proceedings,
volume 6014 of LNCS, pages 128–145. Springer, 2010.

12

