
QAOOSE 2006 Proceedings

10th ECOOP Workshop on
Quantitative Approaches in Object-Oriented Software Engineering

3 July 2006 — Nantes, France

Edited by:

Michele Lanza, Fernando Brito e Abreu, Coral Calero, Yann-Gaël Guéhéneuc, Houari Sahraoui

Organizers

Fernando Brito e Abreu, Univ. of Lisbon, Portugal

Coral Calero, Univ. of Castilla, Spain

Yann-Gaël Guéhéneuc, Univ. of Montreal, Canada

Michele Lanza, Univ. of Lugano, Switzerland

Houari Sahraoui, Univ. of Montreal, Canada

Outline

QAOOSE 2006 is a direct continuation of nine successful workshops, held during previous editions
of ECOOP in Glasgow (2005), Oslo (2004), Darmstadt (2003), Malaga (2002), Budapest (2001),
Cannes (2000), Lisbon (1999), Brussels (1998) and Aarhus (1995).

The QAOOSE series of workshops has attracted participants from both academia and industry
that are involved/interested in the application of quantitative methods in object-oriented software
engineering research and practice. Quantitative approaches in the object-oriented field is a broad
and active research area that develops andor evaluates methods, practical guidelines, techniques,
and tools to improve the quality of software products and the efficiency and effectiveness of soft-
ware processes. The workshop is open to other technologies related to object-oriented such as
component-based systems, web-based systems, and agent-based systems.

This workshop provides a forum to discuss the current state of the art and the practice in the
field of quantitative approaches in the fields related to object-orientation. A blend of researchers
and practitioners from industry and academia is expected to share recent advances in the field-
success or failure stories, lessons learnedand seek to identify new fundamental problems arising in
the field.

Contents

Metrics, Components, Aspects

“Measuring the Complexity of Aspect-Oriented Programs with Multiparadigm Metric”
N. Pataki, A. Sipos, Z. Porkoláb . 1

“On the Influence of Practitioners’ Expertise in Component Based Software Reviews”
M. Goulão, F. Brito e Abreu . 11

“A substitution model for software components”
B. George, R. Fleurquin, S. Sadou . 21

Visualization, Evolution

“Towards Task-Oriented Modeling using UML”
C. F. J. Lange, M. A. M. Wijns, M. R. V. Chaudron . 31

“Animation Coherence in Representing Software Evolution”
G. Langelier, H. A. Sahraoui, and P. Poulin . 41

“Computing Ripple Effect for Object Oriented Software”
H. Bilal and S. Black . 51

“Using Coupling Metrics for Change Impact Analysis in Object-Oriented Systems”
M. K. Abdi, H. Lounis, and H. A. Sahraoui . 61

Quality Models, Metrics, Detection, Refactoring

“A maintainability analysis of the code produced by an EJBs automatic generator”
I. Garćıa, M. Polo, M. Piattini . 71

“Validation of a Standard- and Metric-Based Software Quality Model”
R. Lincke and W. Löwe . 81

“A Proposal of a Probabilistic Framework for Web-Based Applications Quality”
G. Malak, H. A. Sahraoui, L. Badri and M. Badri . 91

“Investigating Refactoring Impact through a Wider View of Software”
M. Lopez, N. Habra . 101

“Relative Thresholds: Case Study to Incorporate Metrics in the Detection of Bad Smells”
Y. Crespo, C. López, and R. Marticorena . 109

.

���������
	���
������������������������ �"!#�%$'&(���)��*+�-,-./	�����
�����0
12	��%�%	����3�546�7���8����� ���7�9�:	;�%0������ ������	;��* ?

<>=@?BADCE?GF�HJIKF IMLONQPSR�TSUMVXWYN[Z"=]\EP^IM_DT9`"=]abF UM_�H;=@?BL@=@acUMA

d�e fOg�hjilk:e mKiJnEoqp-hlnsrthGgEk:k:uvmwryx"gtmwrszwgErEe {�gtmO|~}�nEk:fwuv�veBhl{
���til���s{�xDnthG�Emw|���m]uv��eBhl{ju�iQ�K�]�Ogt� zw��iQ��nto-�Qm@ocnEhlk%g�iluv� {

p-�t� k%�EmK��p��BileBh+{j�BiG�tmM���7�s}����l�s�E���y��zw|wgtfYe {�i7�w��zwm]r�gthj�
�@�s���t�w�7�]�E�� K¡E�K �¢¤£�¥�¦�§7£��@�s K¡E�K -¢¨£�¥�¦~©@§tªK�s K¡E�K -¢¨£�¥

«�¬�­ ® ¯�°O±E®s²´³ {jfYe �Bij�µnEhluve mKile7|¶f@hlnsrthGgEk:k:uvmwr¶· ³+¸ p�¹Oub{"gJf]hlnsk:uv{juvmwrJm]eBº
{jnEo»ij�
º;gthle;|@e ��e �vnEfwk:e mKiSile �G¼wmwub½Kzwe-�B�[gtuvk:e7|¶iln+uvk:f@hlnt�se��BnM|]e�k:nM|]zw�bg�hlub� gtiluvnsm>gEmw|
il¼]eBhleBocnthleJhle7|]z]� eJ� nsk:f]�veB¾@uvi¿�>nEo^nsÀMÁ�e �Âij�¿nthluve mKile7|yf]hlnErEhGgtk:{ Ã���n7º�e ��eBh7�seB¾]gE�Bi
½KzOgtmKiluviGg�iluv��equbm]{jfYe �Biluvnsm]{�nsm�il¼]e�f@hlnsÀw�ve kÄ|]eÂiGgEuv�v{-gthle�{�iluv�b�Kz]mO|@eBhDº;g �KÃ7�Qm�il¼wuv{
fwgEfYeBhÅº;e¶|]e {j�BhluvÀYeÆgykÇzw��iluvfOg�hGgs|]uvrEk2{jnEo[iQºJg�hleÆk:eBijhluv��gEmw|�u�il{ÅeB¾Mile mw{juvnEm�iln
³ {jfYe �BiGÈ]Ã]É9e�zw{je¶il¼]e¶k:eBijhluv�¶iln´� nEk:fwz@ile¶{�ijhlzw�Bilz@hGgE�^� nsk:f]�veB¾@uvi¿��nEo�gE�v�^il¼we
nEÀ@ÁQe �Bij�µnEhluve mKile7|S��gt{jfYe �Bij�¤hle �bgtile7|ÇgEmw|>f@hlnK� e7|]z@hGgE�@� nsk:fYnEmwe mKil{DnEo ³+¸ p~� nM|]eEÃ
É�e�ile {�ile7|%nsz@hJk:eBijhluv�+nsm%iQº;n>ocz]mw�BiluvnsmwgE�v���%e7½KzOgt�Yubk:f]�ve k:e mKiGgtiluvnsm]{�ntoqÊ�n��
|@e {juvrsm%fOg�ijileBhlmw{�k%gs|@eJubm�gt{jfYe �Bij�µnEhluve mKile7|yº;g7�´gEmw|´ubm:f]z]hleÅnsÀMÁ�eB�Bij�µnEhluve mKile7|
{�i¿�]�veÆgtmO|��Bnsk:fOg�hle7|�il¼]e�hle {jz]�vil{ Ã

Ë ÌwÍ+ÎYÏSÐ�ÑÇÒ>Ó"ÎSÔlÐ+Í

ÕÖC�FB?ÂNc×t\�ZSacI�ØÙI@_ÚN»VÙZD=]?GF IM_wF�?B=@a»C>N»_�VÙ=YTYCt?B_
\Â=MÛ¨FlÜ¶IM?BCÆCt_^Ý@N»_SCtCE?ÂN»_SÝ^Þwß�Cs\lFBN[_^Ý^POASàSÝ@áSâOã
N[_SÝy×�=Kä]Ct?�I@_%N[_D×�?BCEI@\ÂN»_SÝÆZ"Ct? ×�Ct_wF IMÝ@C+=MÛYFÂå^C�\Â=MÛ¨FlÜ¶IM?BCÅa[N[Û¤CE×tØY×�a»C@Þsæj_�\Â=MÛ¨FlÜ¶IM?BCÅTYCE\ÂN[Ý]_:FÂå^C
Vç=w\lF+\ÂN»Ý@_SN[áD×tI@_wF;ZDIM?ÂF;=@ÛDFBåSCÆ×�=w\lFÅNc\Å\ÂZDCE_wFÅ=@_�FÂåSCÆV~I@N[_wFÂCE_^IM_D×�C¶=MÛ"FÂåSC�Z^?Â=YTYà^×�FEÞ@ß¶å^C
×�=]\GF�=@Û�\G=@Û¨FlÜ�I@?ÂC>VÙI@N[_wFBCt_^I@_^×�CÇåSN[Ý]åSa»ØÙ×t=@?B?ÂCEa»IMFÂCs\JÜ�NbFBå�FBåSCy\GFÂ?Bà^×�FÂàS? IMa"×�=@VÙZSa»C�âYN[FlØÙ=MÛ
FÂåSC�×t=YTYC@Þ^ß¶å^C%×�?BNbFBN»×EIMaqZ^I@?GF \�=MÛ�FÂå^C�\G=@Û¨FlÜ�I@?ÂC´×tI@_9ADC%NcTYCE_]FBNbáDCET9N»_
FBåSC%CsIM?Ba[ØÚ\GFBI@Ý@Cs\
=MÛ>FBåSCèTYCEä@Cta»=@Z"CtVÙCE_]F~ZS?B=Y×�Cs\Â\çÜ�N[FÂå'FÂåSCÖI@N»TÄ=MÛ:IéÝ]=O=OT'×�=]VÙZSa[CtâYNbFlØwã�VçCsI@\ÂàS?BCtVÙCt_wF
FÂ=O=@aQÞwê¶I]\GCsTÙ=@_�\Â=MÛ¨FlÜ¶IM?BCÆVÙC�FÂ?BNc×t\ÅÜ�CÇ×EIM_~Ý]N[ä]CÆ?ÂCs×�=]VçVÙCE_^TSIKFBN[=]_^\+I@_^T~TYCtá^_SCÇ×t=YTYN[_^Ý
×�=@_Oä]Ct_wFÂN»=@_^\�=]_
FBåSC%TYCEä@Cta»=@Z^VçCE_wFÆ=MÛJ\G=]àS_^T-PSV~I@_^IMÝ]CEIMA^a[C´IM_^T�åOØOÝ@N»Ct_SNc×´×�=YTYC]ÞSëÅä@CE_
FÂåS=]àSÝ@åìÝ@CE_SCt? IMaJ?BCE×t=@VÙVÙCt_^T^IKFÂN»=@_D\yÛ¤=@?�\ÂZ"CE×�N[Û¤ØON[_^Ýè\GCE_^\GN»ASa»C~VÙC�FÂ?BNc×t\:CtâONc\GFÚí î@ïKð�P-FÂå^C
×�=@_D×�?BC�FÂC´VÙCEI]\Gà^?ÂCEVçCE_wF�FB=w=]a»\�I@?ÂCyFlØOZSNc×tI@a[a»Ø�Z^I@?BI]TYN[Ý]VçãBPYIM_DTÚacIM_SÝ]à^IMÝ]C�ãjTYCtZ"Ct_DTYCt_wFEÞ

æj_�FÂå^C´\Â=MÛ¨FlÜ¶IM?BCÇTSCtä@CEa[=]ZSVÙCt_wF¶ZS?Â=Y×tCE\B\´ñ]ò7ó7ôQõÂñ@ötôQ÷µøKùSó´ZSacI�Ø�I�×tCt_wFÂ? IMa�?B=@a»C@ÞYúÆ_9IMASã
\lFB?BI]×7FÂN»=@_�Û¤=Y×�à^\ÂCE\Å=@_çFÂåSC�Cs\Â\ÂCt_D×�C�=MÛ-I´ZS?B=@ASa»CtVûIM_^TçC�âS×ta[à^TSCE\;FBåSC>\ÂZDCs×�NcIMaSTYCtFBIMN»ac\�í ü@ðQÞ
úÆA^\GFÂ? I@×�FÂN»=@_^\;TYCEZDCE_^Tç=@_çVÙI@_OØ:ÛµI@×�FÂ=@? \EýsàD\GCE?�?BCEþwàSN»?BCtVÙCt_wFB\EPsFÂCs× åS_SNc×tIMaYCE_OäwN»?B=@_SVÙCt_wFsP
IM_^T�FBåSC�L]CtØ9TYCE\ÂN[Ý]_èTYCE×tN»\ÂN»=@_^\EÞ^æj_é\Â=MÛ¨FlÜ¶IM?BC´FÂCs× åS_S=]a[=]Ý@Ø
IÙÿSñMõÂñ��M÷���� ?BCtZ^?ÂCs\GCE_]F \¶FÂå^C
TYN[?BCE×�FÂN»ä@Cs\�N»_ ×�?BCEIMFÂN»_SÝ I@A^\GFÂ? I@×7FBN[=]_^\EÞ�ß¶åSC9Z^I@?BI]TYN»Ý@V Nc\çFÂåSCÖZS?BN»_^×�N»ZSa»C�AOØ�Ü�åSNc× å I
ZS?Â=]ASa»CtV�×tI@_ A"C�×t=@VÙZS?BCtåSCE_^TYCsT IM_DT TYCs×�=@VÙZ"=]\ÂCET N[_wFÂ= V~IM_^I@Ý@CsIMASa»C
×t=@VÙZD=]_SCt_wF \
í��tðQÞJæj_'ZS? I@×7FBN»×tC@PJI Z^IM? I@TSN[Ý]V TSN[?BCE×�FB\Ùà^\ÙN»_ÄNcTYCE_]FBNbÛ¤ØON»_SÝ FÂåSCÖCEa[CEVÙCt_wFB\çN»_'Ü�å^N»× å'I
ZS?Â=]ASa»CtV5Ü�N[a»a�ADC´TYCs×�=@VÙZ"=]\ÂCET�I@_^T~ZS?B=��lCs×7FBCET-ÞOß¶åSCyZ^IM? I@TYN»Ý@V5\ÂC�FB\�àSZÚFÂåSCy?Âà^a[Cs\�I@_^T

? 	 z]fwfYnEhjile |�ÀK�çÊ�
 ¸ pq�
�@Ã �KÃ �KÃ ���������E�
���7���������s���MÃ �

1

ZS?Â=]ZDCE?GFBN[Cs\tPOASàSF>IMac\G=Ù=���Ct? \�FÂ=O=@ac\�Û¤=@?ÆTSCtä@CEa[=]ZSN»_SÝçI@ZSZSa»N»×EIKFBN[=]_^\tÞSß¶å^CE\ÂCyVÙCtFÂåS=YTS\�I@_^T
FÂ=O=@ac\�IM?BC´_S=MF�N»_^TYCtZ"Ct_DTYCt_wF>=@Û�FÂå^CtN»?ÆCt_OäON[?B=@_^VçCE_wF�N»_9Ü�åSN»× å
FÂå^CtØÚ=Y×E×�àS?sÞ

ß¶åSC¶a»I]\lF����yØ]CEIM? \�=MÛ�\G=@Û¨FlÜ�I@?ÂC¶TYCE\ÂN»Ý@_çå^I@\J\ÂCtCE_ç\ÂCtä]Ct? IMaOZS?B=@Ý@? IMVÙVÙN»_SÝ>Z^I@?BI]TYN»Ý@V~\
Û¤?Â=]V(ñ��Yôjø��~ñKô����¶ÿ�õÂø �MõÂñ��!�ç÷¨ù"�ÙI@_^TçFÂå^C$#&%(';ß)'ÆúÇ< a»I@_SÝ@à^I@Ý@C¶N»_ÙFÂåSCÆVÙNcTOãQáSÛ¨FÂN»CE\EPMFB=
ÿ"õÂøsö�� ���YõÂñ�*Eÿ�õÂø+�@õÂñ��!�ç÷¨ù"�yÜ�N[FÂå%\GFÂ?Bà^×7FBàS?BCET´N»VçZ"Ct? IKFBN[ä]CJa»I@_SÝ@àDIMÝ@Cs\-,µú/.102%(.+PtHJI@\B×tI@a43�P
FÂ=�FBåSCÖø@ò65��Bötô�7GøKõ7÷6�tù^ô�� �èZ^IM? I@TSN[Ý]VXÜ�N[FÂå)a»I@_SÝ@à^I@Ý@Cs\�a[N»L@CÙWOV~IMa»abF IMa»L�P98):;:ûIM_DT=<]I�äKI^Þ
>Æ=KÜ�Ctä@CE?EP�NbF9Nc\
N»VÙZD=]?GF IM_wF�FÂ= à^_^TYCt? \GFBIM_DT FÂåDIKF9_SCtÜ ZDIM? I@TYN»Ý@V~\Ú×EIM_S_^=MF9Ct_wFÂN»?ÂCEa[Ø
?ÂCEZSa»I]×�C´FBåSC�ZS?BCtäON»=@à^\Æ=@_SCs\tPDASàYFÇ? IKFBåSCt?ÆÛ¤=@?BV(I~_^CtÜ \lFB?ÂàD×7FÂà^?BI@a�acI�Ø@Ct?�=]_9FÂåSC�FÂ=]ZÖ=MÛ
FÂåSCEV�Þ?%ÇA?�lCE×�FGã�=@?BN[CE_wFBIKFBN[=]_�Nc\ÅI´_SCEÜ'Û¤=@?BV�=MÛ�C�âYZS?BCE\B\ÂN[_SÝ´?BCtacIKFBN[=]_^\JA"C�FlÜ�CtCt_~TSIMFBI:I@_^T
Û¤àS_^×7FBN[=]_^\EPså^=KÜ�CEä@Ct?sP�FBåSCE\ÂC�?ÂCEa»IMFÂN»=@_^\�N[VÙZSa»Nc×�N[FÂa»Ø%C�âYNc\lFBCET%N»_%FBåSC¶ZS?B=O×tCETYà^?BI@a@Z^I@?BI]TYN[Ý]V9Þ

ß¶åSC
_^CtCET Û¤=@?Ù_SCEÜ ZS?B=@Ý]?BI@VÙVçN»_SÝ)Z^IM? I@TYN»Ý@V~\�N»\ÙI)?ÂCs\Gà^abF~=MÛÇFÂåSC9CEä@Ct?Âã�Ý@?B=KÜ�N[_SÝ
×�=@VÙZSa»C�âYN[FlØ9=MÛ�\Â=MÛ¨FlÜ¶IM?BC@Þ9%ÇA?�lCE×�FGã�=@?BN[CE_]FBCET9ZS?B=@Ý]?BI@VÙVçN»_SÝ@,�%;%ÇHA3>N»\ÇÜ�N»TSCta»ØÖà^\GCsTèN»_
FÂåSC¶\G=@Û¨FlÜ�I@?ÂC+N[_^TSà^\lFB?ÂØyÛ¤=]?�V~IM_DIMÝ@N»_SÝÆacIM?BÝ@C+ZS?Â=��lCE×�FB\EPEASàSF�?BCE×tCt_wFÂa»Ø:\G=]VçC�=MÛYFBåSC�Ü�CEI@Lwã
_SCE\B\GCs\ÅCEVçCE?ÂÝ]CET-Þ]HÅ?B=@ASa»CtV~\�a[N»L@C>×t?Â=w\Â\Gãj×�àYFÂFÂN»_SÝ�×�=]_^×�CE?Â_D\tP]V�àSa[FÂN[ã�TSN[VÙCt_D\GN»=@_^I@aD\ÂCtZ^I@?BIMã
FÂN»=@_�=@Û^×�=]_^×�CE?Â_^\EP�\GØOVÙVÙC�FÂ?BNc×ÅC�âOFBCt_^\ÂN[=]_%=MÛ"I>×�acI@\B\�åSN[CE?BI@?B× åOØçí î]î�ðYIM?BCÅå^I@?BT´FB=ÇåDIM_^TYa»C@Þ
ÕÖ=YTYCt?B_9ZS?Â=]Ý@? IMVÙVÙN[_^Ý�acIM_SÝ]à^IMÝ]CE\¶å^I�ä]C´VÙI]TYC:Z"=]\B\GN»ASa»C´FÂåSC%A^N[?ÂFÂåÖ=@Û�_SCEÜ Z^?Â=]Ý@? IMVçã
VçN»_SÝ:Z^I@?BI]TYN»Ý@V~\;a[N»L@CCB�D�EFEHG´ô����ÆÿI*[ñKô��(�J�tôjñBÿ"õBø+�@õÂñ��K�ç÷¨ù"�L,µß�ÕÖH�3�íM��ð�PN�N�tùO�tõ7÷µö+ÿ"õBø�7
�MõÂñ��!�ç÷¨ù"�P,
0yH�3´í îMüMð�PSIM_^T�ñKó¿ÿQ� ö�ô�7GøKõ7÷6�tù^ô����yÿ�õÂø+�@õÂñ��!�ç÷¨ù"�R,µú$%ÇH�3yí��S��ð�Þ

WO=MÛ¨FlÜ¶IM?BCÇVÙCtFÂ?BN»×E\�å^I�ä@C´IMa»Ü¶I�ØO\�A"CtCE_è\lFB?Â=]_SÝ@a»Ø~?ÂCEa»IMFÂCsT�FB=ÙFÂåSC:Z^I@?BI]TYN»Ý@V6à^\ÂCET�N»_
FÂåSCÙ?BCE\ÂZDCs×7FÂN»ä@CçZ"Ct?BN[=YT-Þ-ß¶åSC~Õè×S8�IMA"CRDHT@ö�*[ø��~ñKôQ÷µö�öBø��ÆÿI*�� U@÷¨ô�TÖ_OàSV�A"Ct?Ùí�î�ðÅÜ¶I@\yTYC�ã
\GN»Ý@_SCsT~Û¤=]?�VÙCsI@\ÂàS?ÂN»_SÝ�FÂåSCyFBCE\GFÂN»_SÝ�C��"=]?GF \¶=MÛ�_^=@_Yãj\lFB?ÂàD×7FÂà^?BI@aO#H%('�ß)'>ú>< ZS?B=@Ý@? IMV~\EÞ
HÅN[Ü�=KÜ¶IM?BLO\ÂNSíV�SW�ðQP�>Æ=KÜ¶IKFGF;IM_^T:ê¶I@L@Ct?�í��N��ðwC�âOFÂCE_^TYCET:FÂåSC¶×�ØY×�a»=@V~IMFÂNc×Å×�=]VçZ^a[CtâON[FlØ´Ü�NbFBå
FÂåSC%_^=MFÂN»=@_Ö=@Û�ùO��ó ôQ÷¨ù"�X*���Y��Z*;N»_è=@? TYCt?¶FB=ÚTYCs\Â×t?ÂN»ADC�\lFB?Âà^×�FÂàS?BCET9Z^?Â=]Ý@? IMV~\�ADCtFGFÂCE?EÞ�ú�Û¨ã
FÂCt?çFBåSC
=]A?�lCE×�FGã�=@?BN[CE_wFÂCET Z^IM? I@TYN»Ý@V A"CE×tI@VÙC
Ü�NcTYCta»Ø I@×E×�CEZYFÂCsT IM_^T à^\ÂCET-P;A"=MFÂåÄFÂå^C
I@×tI]TYCtVÙNc×�Ü�=]?ÂacT-P@I@_^T�FÂåSC�ælß'N»_^TYà^\GFÂ?BØ%Û¤=Y×�àD\GCsT�=]_ÙVçCtFÂ?BN»×E\JA^I]\GCsT�=]_~\GZ"CE×tN»I@aS=@A?�lCs×7FÂã
=@?BN[CE_]FBCETìÛ¤CsIKFBàS?ÂCs\tP;a»N[L]C)ù[�?�Ùò��tõ�ø]\�ö�*[ñ�ó ó���ó P(���jÿ"ô_^ ø`\�÷¨ùa^Q��õ7÷¨ôjñKù�ö �Öô¿õ+���tP¶ùQ�?�~ò �tõ�ø]\
ö ^Y÷b*��Kõ+�tù'ö�*[ñKóBó���ó7PqC�F ×MÞJí ïKð�Þ�WOCtä]Ct? IMa�N[VÙZSa»CtVÙCt_wF IKFÂN»=@_D\´=MÛ�\Âà^× å VçCtFÂ?BN»×E\´IM?BCçI�äKIMN»acIMASa»C
Û¤=@?-FBåSCÅVÙ=]\GFqZD=]ZSàSacIM?qacIM_^Ý@à^I@Ý@CE\c,µa[N»L@C-<wI�äKISP�8)dÚPS8):;:F3�I@_^TyZSacIKFGÛ¤=]?ÂV~\-,µa[N»L@CJë�×�a»N[Z^\ÂC�3
í îN��ð�Þ

ÕÖ=]\GF:ZS?Â=]Ý@? IMV~\yIM?BC�Ü�?BNbFÂFÂCE_ AOØèàD\GN»_SÝÖVÙ=@?BC�ZDIM? I@TYN»Ý@V~\EÞe%ÇAf�lCE×7FÂãQ=]?ÂN»Ct_wFBCETèZ^?Â=@ã
Ý@? IMV~\�å^I�ä]C:a»I@?ÂÝ]C:ZS?Â=Y×tCETYàS? IMa�×�=@VÙZ"=@_SCE_wFB\ÆN»_èN»VÙZSa[CEVÙCt_wFBIMFÂN»=@_^\>=MÛJVÙC�FÂå^=OT^\tÞ�ú$%ÇH
N[VÙZSa»CtVÙCt_wF IKFÂN»=@_D\g,µI@Vç=]_SÝ:Ü�åSNc× åÙFÂåSC>Vç=w\lF�Ü�N»TYCEa[Øwã�à^\ÂCETçN»\+ú>\ÂZDCs×7F <a37PwåSN»Ý@åSa»Ø�?BCta»Ø�=]_
%;%ÇH ZS?BN[_^×tN[Z^a[Cs\tÞ-ú>\ÂZ"CE×7F�<�CE\B\GCE_]FBN»I@a[a»Ø�N[_wFÂCEÝ@? IKFBCE\>FÂ=O=@ac\ÆÛ¤=]?ÇVÙ=YTYàSacIM?BNVhtN»_SÝ
×t?Â=w\Â\B×�àYFÂã
FÂN»_SÝÚ×�=]_^×�CE?Â_D\�N[_wFB=�=@A?�lCs×7FÂãQ=]?ÂN»Ct_wFÂCsT�ZS?Â=]Ý@? IMV~\EÞSÕÖ=@?BCt=Kä]Ct?;�K�?*vô¿÷ ÿ^ñKõBñ��K÷���� ÿ"õBø+�@õÂñ���ó
í ü@ð�IMZSZ"CEI@?�N[_@8):;:�Pf<wI�ä�I^PO=@_
FÂåSC~Þ <Æë+ß ZSacIKFÂÛ¤=@?BV�PDIM_^T
=MFBåSCt? \tÞ

ÕÖC�FB?ÂNc×t\ÆI@ZSZSa»N[CsT
FÂ=ÚTYN���Ct?BCt_wFÆZ^IM? I@TSN[Ý]VÙ\�FBå^IM_9FBåSC%=]_SC´FÂåSCEØ
Ü�Ct?BC:TYCE\ÂN»Ý@_SCsT�Û¤=@?sP
VçN»Ý@åwF´?ÂCEZD=]?GFÇÛµIMac\GCç?BCE\ÂàSabF \�í�î?�tðQÞ-ß¶åSCE?ÂCtÛ¤=@?BC�IM_ I@TYCsþwà^IKFBC�VÙCEI]\GàS?BC�I@ZSZSa»N[CsTÖFB=
V�àSabã
FÂN»Z^IM? I@TYN»Ý@V ZS?Â=]Ý@? IMV~\y\GåS=]àSacT)_^=MF%A"C~A^I@\ÂCET)=@_�\ÂZDCs×�NcIMa;Û¤CEIMFÂàS?BCE\´=@Û�=]_Sa»Øé=@_^CçZ^?Â=@ã
Ý@? IMVÙVÙN[_SÝ´Z^I@?BI]TYN»Ý@V9ÞMú V�à^abFBN[Z^I@?BI]TYN»Ý@V VÙC�FB?ÂNc×¶å^I]\;FÂ=:A"CÆA^I]\GCsT�=]_ÙA^I@\ÂN»×¶acIM_^Ý@à^I@Ý@C
Cta»CtVÙCt_wFB\ÖI@_^T2×�=]_^\lFBà^×7FBN[=]_ ?BàSa»CE\ÖI@ZSZSa»N[CsT FB= TYN���Ct?BCt_wFèZ^I@?BI]TYN»Ý@V~\tÞ�ú Z^I@?BI]TYN»Ý@Vçã
N[_^TSCtZ"Ct_^TYCE_wF�\Â=MÛ¨FlÜ¶IM?BC�VÙCtFÂ?BN»×¶Nc\+I@ZSZSa»N»×EIMASa»C¶FÂ=%Z^?Â=]Ý@? IMV~\�à^\GN»_SÝ�TSN���Ct?BCt_wF+Z^I@?BI]TYN»Ý@V~\
=@?%N»_ I9V�àSa[FÂN»Z^I@?BI]TYN[Ý]V CE_wäON»?Â=]_SVÙCt_wFEÞqß¶å^C�Z^IM? I@TSN[Ý]V�ã�N»_^TYCtZ"Ct_DTYCt_wF%VÙC�FB?ÂNc×~\Gå^=@àSacT
ADC�ADI@\ÂCET =@_ìÝ@CE_SCt? IMaJZ^?Â=]Ý@? IMVÙVÙN[_SÝ9acIM_SÝ]à^IMÝ]C�Û¤CsIKFBàS?ÂCs\:Ü�åSNc× å IM?BCÙZ^IM? I@TYN»Ý@Vçã>I@_^T
a»I@_SÝ@à^I@Ý@CyN[_DTYCtZ"Ct_^TSCt_wFEÞ

2

>ÆCt?BC�Ü�C�Ý@N»ä@CÙFBåSC
\GFÂ?Bà^×�FÂàS?BC�=MÛ�FBåSC�Z^I@ZDCE?EÞ�æj_ \ÂCE×7FBN[=]_ î9Ü�CÚTYC�áD_SCÚ=]àS?�V�àSabFBNbã
Z^IM? I@TYN»Ý@V�VçCtFÂ?BN»×@PKFÂå^C/i2j176�MõBñBÿf^YÞ@ú�Û¨FBCt?JFBå^IKF�Ü�C�TYCtá^_SC�FBåSCÆ×�=]VçZ^a[CtâON[FlØ�=@ÛDFBåSCÆ×�acI@\B\EP
Ü�åSCt?BCy×ta»I]\Â\�Nc\�TSC�á^_SCsTÚI]\�I�\GCtF�=MÛ�TSIMFBIX,µIKFÂFÂ?BN[A^àYFÂCs\ 3�IM_DTÚ×�=]_wFÂ?B=@aD\GFÂ?Bà^×�FÂàS?BCE\F,¤VÙCEV�ã
ADCE?>Û¤àS_D×7FÂN»=@_D\tP�VÙC�FBåS=YTS\ 3>×tI@?Â?BØON[_SÝÚ=@àYFy=@Z"Ct? IKFÂN»=@_D\�=@_ÖFBåSCÙIKFGFB?ÂN»ASàYFBCE\EÞ"úÆÛ¨FÂCE?ÂÜ¶IM? TS\EP
N[_è\ÂCE×�FÂN»=@_Öü~Ü�C:C�âYZSacIMN»_ÖåS=KÜ =]àS?ÆVÙC�FB?ÂNc×%I@ZSZSa»N[Cs\¶FÂ=Úú$%ÇH _^=MFÂN»=@_D\ÆIM_^TÖ×t=@_^\GFÂ?Bà^×�FB\EÞ
WOCE×�FÂN»=@_R�
TYCs\Â×t?ÂN»ADCs\>=]àS?yFÂCs\lF´?ÂCs\Gà^abF \ÇÜ�å^Ct_)I@ZSZSa»ØON[_SÝÚFÂåSCÙVÙC�FB?ÂNc×�FÂ=
FÂåSCk%;%ÇH I@_^T
ú$%ÇH ä]Ct? \GN»=@_D\�=@ÛDFBåSC$0y=N#)TYCE\ÂN»Ý@_ÙZ^IKFÂFÂCE?Â_^\EÞ�l CÆC�âYZSacIMN»_�å^=KÜ'ú$%ÇH�I���CE×�FB\�FBåSC>×�=]Vçã
ZSa[CtâYNbFlØ)=MÛ¶FÂåSCs\GC~N»VÙZSa»CtVÙCt_wFBIMFÂN»=@_^\EP�I@_^T N[_�Ü�å^N»× å�×tI]\GCs\:ú$%ÇH ZS?B=KäwNcTYCsT)IÖ\ÂN[VÙZSa»Ct?
\G=]a[àYFBN[=]_qÞ

m npo Ò$qlÎYÔ]r$s;ÏfsJÑ>Ô]t�o ovu-ÎYÏ^ÔGÓ

ß¶åSC)Ü�Cta»a[ãQLO_S=KÜ�_ VÙCEI]\Gà^?ÂC)=MÛ�Õè×S8�IMA"C@P�FÂåSCì×�ØY×ta[=]VÙIMFÂNc×é×t=@VÙZSa»C�âYNbFlØ2í�î�ð:Nc\
ADI@\ÂCET
=@_Sa»ØÚ=]_
FBåSC%_OàSV�ADCE?Æ=MÛ;ZS?BCETYNc×tIMFÂCE\¶N»_èIÙZS?B=@Ý]?BI@V�ý

V (G) = p+ 1
Þ^ß¶åSC:N»_^I@TSCEþwà^I@×tØ

=MÛ+FBåSCçVçCsI@\ÂàS?BC�A"CE×t=@VÙCE\´×�a»CEI@?EP�N[Û�Ü�C�?BCEI@a[NVhtC�FÂå^IMF%×�ØY×�a»=@V~IKFBN»×ç×�=]VÙZSa[CtâYNbFlØÖN»Ý@_S=]?ÂCs\
FÂåSC:_SCs\lFBN[_^Ý~a[CEä@Cta-=@Û�FBåSC:ZS?BCETYNc×tIMFÂC´_S=YTYCs\tÞYæjVÙZS?B=Kä@CEVçCE_wFB\¶I@\�Ü�CtN»Ý@åwFBN[_SÝ�FÂå^C%×�=@_wFB?Â=]a
\lFB?Âà^×�FÂàS?BCçÜ�NbFBåèFÂå^Cç_^CE\GFÂN»_SÝ
a»Ctä]Cta�Ü�CE?ÂC�ZS?B=@Z"=]\ÂCETÖAOØ=>>I@?Â?BNc\G=]_éIM_^T)ÕèIMÝ]Cta�í����Kð�PDAOØ
HÅN[Ü�=KÜ¶IM? \GLON+íV�SW�ðÅIM_^T)AOØ=>Æ=KÜ¶IKFGF:IM_DTéê¶IML]Ct?çí��N��ð�Þ�ß¶å^C
ótö øBÿQ�Ù=@Û�I
ZS?ÂCsTYNc×tIKFBC�_^=OTSC
N»\~I \GCtF~=MÛy\GFBIMFÂCEVçCE_wFB\EPJÜ�åS=]\ÂC
CtâYCE×�àSFÂN»=@_ÄTSCtZ"Ct_^TS\�=@_ FBåSCÖTYCE×tN»\ÂN»=@_'VÙI]TYC�N[_'FÂå^C
ZS?ÂCsTYNc×tIKFBC
_^=OTSC@ÞÅß¶åSC9_SCs\lFBN[_SÝ a»Ctä@CEa�=MÛÇIì\GFBIMFÂCtVÙCE_]F~Nc\ÙTYC�á^_^CET'I@\�FÂåSCÖ_OàSV�ADCE?Ù=MÛ
ZS?ÂCsTYNc×tIKFBC´_S=YTYCE\¶Ü�åS=w\GC:\B×�=]ZDC:×�=]_wFBIMN»_^\�FBåSC%\lF IKFBCtVÙCt_wFEÞ

ß¶åSC´_SCE\GFÂN»_SÝÙa[CEä@CEa-_S=MF IKFÂN»=@_�?BCZw^Cs×7FB\�ZS?B=Y×�CsTYàS? IMa�ZS?B=@Ý@? IMV~\�N[_ÖI@_�I]TYCEþwà^IMFÂCyÜ�I�Ø]Þ
ú�FÅFÂåSCÆ\BIMVÙC¶FBN[VÙC@P]NbF�TY=OCE\J_S=@FJFBI@L@C�N»_]FB=%I@×E×�=@à^_]FÅTSIMFBI´å^I@_^TYa»N[_^Ý^PMÜ�åSNc× åÙå^I@\+×�Ct_wFB?BI@a
?Â=]a[C:N»_ÖVÙ=OTSCt?B_ÖZS?Â=]Ý@? IMVÙVÙN[_^ÝçacIM_^Ý@à^I@Ý@CE\EÞ?l C%å^I�ä@C´FB=~FBI@L@C´FBåSC�×�=]VÙZSa[CtâYNbFlØ�=MÛ;FÂå^C
TSIKF I�TYC�á^_^CET:IM_DT>FBåSC+×t=@VÙZSa»C�âYNbFlØÇ=MÛYTSIKF I¶å^IM_DTYa[N»_SÝ�N»_wFÂ=>×t=@_^\ÂN»TSCt? IKFÂN»=@_�Þ ú�×E×�=]?BTYN»_SÝ]a[Ø]P
FÂåSC!ixjÄö ø��>ÿO*V�+U]÷¨ô�T~=MÛJI�Z^?Â=]Ý@? IMV/Nc\�Iç\ÂàSVX=MÛ�FÂåS?BCtC:×�=]VÙZD=]_SCt_wFB\Eý
�@ÞJDÅøKù^ôQõÂø�*Jó7ô¿õy�^ötô
�Yõ ��ø`\Çÿ�õÂø+�@õÂñ��Jz�ÕÖ=]\GF%ZS?B=@Ý]?BI@VÙ\Çå^I�ä]C�FBåSC�\ÂI@VÙCÙ×t=@_wFÂ?B=@aÅ\GFBIMFÂCtã

VÙCt_wFB\�N[?B?BCE\ÂZDCs×7FÂN»ä@CEa[Ø)=MÛ¶FÂå^CÚZ^I@?BI]TYN[Ý]V à^\ÂCETqÞ�ß¶åSC�×�=@_wFB?Â=]a+\lFB?ÂàD×7FÂà^?ÂC�Nc\%?BCtZ^?ÂCtã
\GCE_wFÂCET�AOØ%IyÝ@? IMZSå�Ü�åSCt?BC�_^=OTSCE\JIM?BC¶\lF IKFÂCEVÙCt_wFB\;IM_DTX,¿TYN[?BCE×�FÂCsTQ3�CETYÝ]CE\�?ÂCEZS?BCE\ÂCt_wF
FÂåSC¶Z"=]\B\GN»ASa»C-w^=KÜ =MÛD×t=@_wFÂ?B=@aQÞs<>=YTYCE\�Ü�N[FÂåçVç=]?ÂC+FÂå^I@_�=]_SC�=]àYFÂZ^àYFJCETYÝ]C�IM?BC�×EIMa»a[CsT
ZS?BCETYNc×tIMFÂC´_S=YTYCE\EÞS<ÆCs\lFBN[_^Ý~a[CEä@Cta-Nc\¶à^\ÂCET�Ü�CtN»Ý@åwFÂN»_SÝ~\lF IKFBCtVÙCt_wF�_S=YTYCE\EÞ

îYÞJDÅø��>ÿO*�� U]÷¨ô
TÚø]\2�@ñKôjñ~ô�TBÿQ�7ó�zYæ�F�?BCZw^Cs×7F \+FBåSC:×�=]VçZ^a[CtâON[FlØ~=MÛ;TSIKF I�àD\GCsT@,¤a»N»L@C´N[_
FÂå^C
×tI]\GCÇ=MÛ�×ta»I]\Â\ÂCE\�37Þ"{ÇIMFBI�_S=YTYCE\�IM?BC>?BCtZS?BCE\ÂCt_wFBCET~I@\�TYN��"CE?ÂCE_wF�FlØOZ"CÇ=@Ûq_S=YTYCE\�N»_�FÂå^C
×�=]_]FB?Â=]a�Ý@? IMZSåqÞ

ïSÞJDÅø��>ÿO*�� U]÷¨ô
Téø]\k�@ñKôjñéñ]ö ö ��ó ó�z&8�=]_S_SCE×�FÂN»=@_)ADCtFlÜ�CECt_ì×�=@_wFB?Â=]a;\GFÂ?Bà^×�FÂàS?BC~IM_^T TSIKF I
N»\�?ÂCEZS?ÂCs\GCE_wFÂCETÄAOØ CsTYÝ@Cs\~ADCtFlÜ�CECt_'FÂå^CéTSIKF Iì_S=YTYCE\ÚIM_^T \GFBIKFBCtVÙCt_wF \ÙFÂå^IMF�à^\ÂC
FÂåSCEV9ÞSß¶åSCÇTYN»?BCE×7FBN[=]_Ú=@Û-FÂåSCs\GCyCETYÝ]CE\�?ÂC�w^CE×�F�FBåSC´TSIKF I;w^=KÜ|,¤Û¤=@?¶C�âSIMVÙZSa»C>N»_
×EI@\ÂC
=MÛ+?BCEI]TYN»_SÝÚTSIMFBIÚFÂåSCçCETYÝ]C�Nc\´TYN[?BCE×�FÂCsT9Û¤?Â=]V FÂåSCÙTSIMFBI�_^=OTSC�FB=ÚFBåSCç\GFBIMFÂCEVçCE_wF�37Þ
{ÇIMFBIÙCsTYÝ@Cs\�I@?ÂC´_SCs\lFBCET�AOØ~FÂå^C:_SCE\GFÂN»_SÝÙa[CEä@CEa-=MÛ�FÂåSCEN[?Æ\GFBIMFÂCtVÙCE_]FÆ_^=OTSC@Þ

úÆ_èN»VÙZD=]?GF IM_wF>Û¤CsIKFÂà^?ÂC%=@ÛÅ=@àS?ÇVÙC�FÂ?BNc×%Nc\ÆFBå^IKFyNbF:TY=OCE\>_S=MF´×�=@à^_]FÇFÂåSCç×�=]VçZ^a[CtâON[FlØ�=MÛ
TSIKF I:å^IM_DTYa[N»_SÝ�A^I@\ÂCETÙ=]_ÙFÂåSCÇZSa»I]×�CÇ=MÛ�FÂåSCyTYCE×ta»I@?BIMFÂN»=@_qÞwß¶åSC>VÙCtFÂ?BN»×�CE_^×�=]àS_wFÂCE?B\ÅFÂå^IMF
ä�I@a[à^CÇCtâYI]×7FBa[Ø~IKF�FÂå^CyZ"=@N»_wF�=@Û�TSIMFBI�å^IM_^TSa[N»_SÝ^ÞQ%>Û�×t=@àS? \ÂC@P]FÂåSCyVÙC�FÂ?BNc×ÇI@a»\Â=�VÙCEI]\Gà^?ÂCs\
FÂåSC9TYCE×ta»I@?BIMFÂN»=@_�N»_'I@_ N»VçZ^a[Nc×�N[FÂC�Ü�I�Ø�ý�a[=Y×EIMa�ä�I@?ÂNcIMA^a[Cs\�I@?ÂC�àD\GCsT =@_^a[ØìN»_ FÂå^C�a»=Y×tI@a
×�=YTYC:×�=]_]FBC�âOFx,¤N»_�FÂåSC%\ÂàSASZ^?Â=]Ý@? IMVk37Þ

3

ß¶åSCt?BC%Nc\yI@_è=MFBåSCt?yZ"=]\B\GN»ASa»C�Ü¶I�ØÚFB=ÚÝ@CtF>FBåSCE\ÂC�?BCE\ÂàSa[FB\EÞO.�C�Fyà^\´\GàSZ^ZD=w\GC�FÂå^IMFÇÜ�C
å^I�ä@C9_S= TSIMFBI _S=YTYCs\�IM_^T TSIMFBIìCsTYÝ@Cs\ÙN[_ =]àS?~Ý@? IMZSå�PJASàYFÚÜ�CÖ?ÂCEZSacI@×�C�FBåSCtV�Ü�åSN[F
\GZ"CE×tN»I@a�×�=]_wFÂ?B=@aÅ_S=YTYCs\týe}�?BCEI]TYCt?]~ÙI@_^T[�K=@?F}¨Ü�?ÂN[FÂCE?`~7Þ�ß¶åSCs\GC
×�=@_wFB?Â=]aÅ_S=YTYCE\�=@_Sa»Øì\GCE_^T
IM_^T'?BCE×�CEN[ä]C9N[_YÛ¤=]?ÂV~IMFÂN»=@_qÞ+ß¶å^CtØ Ü�N»a»a>A"CÖN[_^\ÂCt?ÂFÂCsTP�là^\lF
ADCtÛ¤=@?BCèIM_^T IKÛ¨FBCt?~FBåSCè?BCEI@a
×�=@_wFB?Â=]a"_^=OTSCE\¶Ü�åSNc× å9?ÂCsI@TÚI@_^T[�K=@?¶Ü�?ÂN[FÂC:TSIMFBI^ÞSß¶åSC´_SCE\GFÂN»_SÝ~TYCtZSFÂåÖIM_^T9×t=@VÙZSa»C�âYNbFlØ
ä�I@a[à^CÆÜ�C>Ý@C�F�Ü�NbFBåÙFÂåSNc\+VÙ=YTYCEa^Nc\JFÂå^C/�@\BIMVÙCÆI]\;FÂåSCÇ=@_SCÇ×tIMac×�à^a»IMFÂCETçÜ�N[FÂåÚú1� Ý]?BI@ZSå^\EÞ

l)C>×EIM_Ù_^IMFÂàS? IMa»a[Ø�C�âOFÂCE_^Tç=@àS?+Vç=YTYCEaSFB=%=@A?�lCs×7FÂãQ=]?ÂN»Ct_wFÂCsT�Z^?Â=]Ý@? IMV~\tÞKß¶åSCÇ×�Ct_wFB?BI@a
_S=MFBN[=]_é=MÛJFBåSCÙ=@A?�lCs×7FÂãQ=]?ÂN»Ct_wFÂCsT9Z^IM? I@TSN[Ý]VXNc\ÇFÂåSCÙ×�acI@\B\tÞ�ß¶åSCE?ÂCtÛ¤=@?BC�Ü�C�TYCs\Â×t?ÂN»ADCçåS=KÜ
Ü�C´VÙCEI]\GàS?BCyFÂåSC%×t=@VÙZSa»C�âYN[FlØ�=MÛJIÙ×�acI@\B\�á^?B\GFEÞI%Ç_ÚFBåSC:A^I@\ÂC´=MÛ�FÂåSC:Z^?ÂCEäwN»=@àD\�\GCs×7FÂN»=@_D\
Ü�CÖ×tI@_'\ÂCtC9FBåSCè×�acI@\B\ÙTYC�áD_SNbFBN[=]_ I@\~Iì\GCtF�=MÛJ,¤a»=O×EIMab3ÙTSIKF IìIM_^T'I�\GCtF~=MÛ´VçCtFÂåS=YTS\
I@×t×tCE\B\GN»_SÝ�FÂåSCEV9Þ

ß¶åSC�×t=@VÙZSa»C�âYNbFlØ´=@ÛDI>×ta»I]\Â\�N»\�FÂå^C�\ÂàSV =MÛ^FÂåSC¶×�=]VçZ^a[CtâON[FlØ´=MÛYFBåSC�VÙCtFÂåS=YTS\;IM_DT:FÂå^C
TSIKF I´VçCEV�A"Ct? \g,µIMFGFB?ÂN»ASàYFBCE\�37Þ]úÇ\JFBåSCÆ×�=]_]FB?Â=]aS_S=YTYCs\g,¤_S=YTYCs\JA"Cta»=@_SÝ]N[_SÝ´FB=:FÂå^CÆ×�=@_wFB?Â=]a
\lFB?Âà^×�FÂàS?BC:=MÛ;=@_^C%=MÛ�FÂåSC�VçCEV�A"Ct?ÆÝ]?BI@ZSå^\�3�Ü�CE?ÂC´àS_^N»þwàSC]PSFÂå^Ct?BC:N»\�_^=�Z^IKFBå�Û¤?Â=]V =@_^C
VçCEV�A"Ct?�Ý]?BI@ZSåÚFB=~IM_S=@FÂåSCE?�=@_SC]Þf>Æ=KÜ�Ctä@CE?EPwFBåSCt?BC:×�=@à^a»T
ADC%IMFGFB?ÂN»ASàYFBCE\2,¿TSIKF I�_^=OTSCE\�3
Ü�åSN»× åÄIM?BCÚà^\ÂCET�AOØìVÙ=@?BC�FBå^IM_ =]_SCÚVÙCEV�A"Ct?ÙÝ@? IMZSå�Þ�ß¶åSCs\GC�IKFGFB?ÂN»ASàYFBCE\�å^I�ä@C�TSIKF I
?ÂCtÛ¤Ct?BCt_^×tCyCsTYÝ@Cs\�FÂ=�TYN��"CE?ÂCE_wFÆVçCEV�A"Ct?�Ý]?BI@ZSå^\EÞ

ß¶åSN»\�N»\�I _^IKFBàS?BI@a�VÙ=OTSCta>=@Û´FÂåSCè×ta»I]\Â\EÞÅæ�FÚ?BCZw^Cs×7F \ÙFÂåSCèÛµI@×7F~FBå^IKF�I�×�acI@\B\~N»\ÚI
×�=@å^Ct?BCt_wFç\ÂC�F~=MÛyIKFGFB?ÂN»ASàYFBCE\�,µT^IKFBI"3�I@_^T FÂåSC�VÙC�FÂå^=OT^\ÙÜ�=]?ÂLON»_SÝè=@_ FÂåSCÖIMFGFÂ?BN»ASàYFÂCs\tÞ
>ÆCt?BCyFÂåSC��J�tôb^^ø��Kók,¤VÙCtV�ADCE?�Û¤àS_^×�FÂN»=@_^\�3¶IM?BC´ZS?Â=Y×tCETYàS?BCE\�?BCtZS?BCE\ÂCt_wFBCET
AwØÚN[_^TSN[äONcTYà^IMa
ú��ÄÝ@? IMZSå^\c,¤FÂåSC�VÙCtV�A"Ct?�Ý@? IMZSåD\ 3�Þ�ëÅä@CE?ÂØyVÙCtV�ADCE?�Ý@? IMZ^åyåDI@\-N[FB\�=KÜ�_:\lF IM?ÂF�_S=YTYC+I@_^T
FÂCt?BVÙN[_DIMa�_^=OTSC@PDI]\¶FÂå^CtØ9IM?BC:N[_^TSN[äONcTYà^IMa»a»Ø�×EIMa»a»I@ASa[C´Û¤à^_^×7FBN[=]_^\tÞOl å^IMF>V~IML@Cs\¶FÂå^N»\Ç\GCtF
=MÛ^ZS?B=Y×�CsTYàS?BCE\�Vç=]?ÂC�FÂåDIM_�I@_�=]?BTSN[_^I@?ÂØya»N[AS? IM?BØ´N»\�FBåSC�×�=@VÙVÙ=@_ç\GCtF�=@Û"IMFGFÂ?BN»ASàYFÂCs\�à^\GCsT
AwØ9FBåSCÙVÙCtV�A"Ct?:Z^?Â=Y×�CsTYàS?BCE\EÞO>>Ct?BC�FBåSC~IKFÂFÂ?BN[ASàSFÂCE\´I@?ÂCç_S=MF:a»=Y×tIMa�FB=
=]_SC�Z^?Â=Y×�CsTYàS?BC
ASàYFÆa»=O×EIMa�FB=ÙFÂåSC:=]A?�lCE×�FEPSIM_DT
×EIM_9ADC:I]×t×�Cs\Â\ÂCET
AOØÚ\ÂCtä@CE?BI@a�ZS?Â=Y×tCETYàS?BCE\EÞ

.qC�F¶à^\�×�=]_^\GNcTYCE?+FBå^IKF�FÂåSC´TYCtá^_SN[FÂN»=@_Ú=@ÛqFÂå^Cyú1�2Ý@? IMZSå~Z"Ct?BVÙNbF \+FBåSCyCtVÙZYFlØ�\ÂC�F¶=MÛ
×�=@_wFB?Â=]a-_S=YTYCE\EÞSæj_9FÂåDIKFÇ×EI@\ÂCyÜ�C:Ý@CtF>I~×�acI@\B\GNc×tI@aqTSIKF I~\lFB?ÂàD×7FÂà^?ÂC]Þ^ß¶åSC%×�=]VÙZSa[CtâYNbFlØ
=MÛ
I
×ta»I]\Â\ÂN»×EIMa�TSIKF I
\GFÂ?Bà^×7FBàS?BC�Nc\>FBåSCÙ\GàSV =@ÛÅFÂå^CçTSIMFBI
S=YTYCE\EÞ-ß¶åSCç=@ZSZ"=]\ÂNbFBC�\ÂNbFBà^IKFBN[=]
N»\�IMac\G=�ZD=w\Â\ÂN[A^a[C]ÞNl åSCE_ÚIF}l×�acI@\B\`~�×t=@_wFBI@N[_^\�TYNc_�làS_D×7F¶VçCtFÂåS=YTS\-��FBåSCt?BC>Nc\�_S=�×t=@VÙVÙ=@_
TSIKF I%\GåDIM?BCETçADCtFlÜ�CECt_~FBåSCtV���P@Ü�C>×�=]VçZ^àYFÂC�FBåSCÇ×t=@VÙZSa»C�âYN[FlØ�=@Û"FBåSCÇ×ta»I]\Â\+I@\JFBåSCÇ\ÂàSV
=MÛÅFBåSCç×t=@VÙZSa»C�âYN[FÂN»CE\Ç=MÛÅFBåSCçTSN»\6�làS_^×�FyÛ¤à^_^×7FBN[=]_^\tÞIl Cç×EIM_èNcTYCE_]FBNbÛ¤Ø9FBåSNc\:×�=@_D\lFB?Âà^×�FyI]\
IM_�=@? TYN[_DI�ØÙÛ¤àS_^×7FBN[=]_9a[N»AS? IM?BØ@Þ

ß¶åSCE\ÂCÖC�âSIMVÙZSa»CE\ÚIMac\G=ìZ"=@N»_]FÚFÂ=�FBåSCÖÛµI@×�F~FÂå^IMFÚÜ�Cèà^\ÂCÖZ^IM? I@TYN»Ý@Vçã�N[_DTYCtZ"Ct_^TSCt_wF
S=MFBN[=]^\tPJ\Â=éÜ�C�×EIM_'IMZSZSa»Ø�=@à^?çVÙCsI@\ÂàS?ÂCÚFÂ= ZS?B=O×tCETYà^?BI@a¿P�=@A?�lCs×7FÂãQ=]?ÂN»Ct_wFÂCsT-P�=@?ÙCtä]Ct_
VçN[âYCETOãj\GFlØwa»C´ZS?B=@Ý@? IMV~\EÞwß¶å^N»\�Ü¶I@\�=]àS?�Ý@=wIMaQÞ

� n��"r;u�Ó"Î"��� Ï^Ô]u�Í�Î?u�Ñ��éÏSÐ-t+Ïfscovo5ÔÂÍgt

ú>\ÂZDCs×7FGã�=@?BN»Ct_wFÂCsTÙZS?Â=]Ý@? IMVÙVÙN[_^ÝJ,¿ú$%ÇHA3JNc\�=@_SCÆ=@Û-FÂåSC>Vç=w\lF�ZS?B=@VÙN»\ÂN»_SÝ:_SCtÜ \Â=MÛ¨FlÜ¶IM?BC
TYCtä]Cta»=@ZSVÙCt_wF�FÂCE× å^_SN»þwàSCs\tÞ;ú$%ÇHûI@N»T^\�IéADCtFGFÂCE?Ùå^IM_^TSa[N»_SÝé=@ÛçötõÂø�ó ótöZ�YôQôQ÷¨ù"�ìö øKù"ö��tõ7ùSó
í���î�ð�P]I@\�×�=]VçZDIM?BCET�FÂ=�=@A?�lCs×7FGã�=@?BN»Ct_wFBIMFÂN»=@_qÞ@ß¶åOà^\�ú$%ÇH Nc\+I:Ý]Ct_SCE?BIMFÂN»ä@C�ZS?B=@Ý]?BI@VçVÙN»_SÝ
Z^IM? I@TYN»Ý@V FBå^IKF�I@N[V~\yFB=�å^Cta»Z N»_ Ü�?ÂN[FÂN»_SÝ9VÙ=@?BCçVÙ=YTYàSacIM?BNVhtCETqPqIM_^T)VÙ=@?BCçV~I@N[_wFBI@N[_Sã
IMASa»C~×�=YTYC@Þqß�=YTSI�ØI� \´ú$%ÇH2N»VçZ^a[CEVçCE_wFBIKFBN[=]_^\C,µI@VÙ=@_SÝ�Ü�åSNc× å)FBåSCÙVÙ=]\GF%Ü�N»TYCEa[Øwã�à^\ÂCET
N»\yú>\ÂZDCs×7F�<"3�P"VÙ=w\lFBa[Ø9?BCta»Ø�=]_R%;%ÇH;Þ"úÇ\GZ"CE×�F <�CE\B\ÂCt_wFÂNcIMa»a[Ø�N»_]FBCtÝ]?BIMFÂCE\ÆFÂ=O=@ac\>Û¤=@?yVç=YTOã

4

àSa»I@?ÂNVhtN»_SÝ�×t?Â=w\Â\B×�àYFÂFÂN»_SÝÚ×t=@_^×tCt?B_^\�N»_]FB=�=@Af�lCE×7FÂãQ=]?ÂN»Ct_wFBCET�ZS?B=@Ý@? IMV~\EÞ^ú$%ÇH TYCtá^_SCE\>FÂå^C
Û¤=@a»a[=KÜ�N»_SÝçN[VÙZ"=@?ÂFBIM_wF>×t=@_^\GFÂ?Bà^×7F \tPYI]\GNcTYCyFÂåSC!%;%ÇH _S=@FÂN»=@_^\Eý

�@Þ$��øK÷¨ùDô�ö��Yôg���
�ÅùD÷¨ô¿÷µøMùSó�I@?ÂC:V~I@TSC%àSZÖ=MÛJH;=@N»_wFB×tàYFÆFlØOZDC]P"I@_^T9H;=@N»_wFB×�àSFÇ\GN»Ý@_DIKFÂà^?ÂC]Þ
ß¶åSCèZ"=@N»_wFB×�àSF~FlØwZ"CéTYCs\Â×t?ÂN»A"CE\��1^^ñKô~å^I@ZSZDCE_^\EPÅC@Þ Ý^Þ)���?�a�ì\GFBIM_DTS\ÙÛ¤=@?�Û¤àS_^×7FBN[=]_
×tI@a[aQP-���f�Q�S�?�O�����)\GFBI@_^TS\�Û¤=@?çFÂåSC�C�âYCs×�àYFBN[=]_ =MÛyIÖÛ¤àS_^×�FÂN»=@_qÞÅß¶å^C�\ÂN[Ý]_^IKFBàS?BCÚTYC�ã
\Â×t?ÂN»A"CE\��1^O÷µö�^ LwN»_^T'=MÛyÛ¤àS_^×�FÂN»=@_^\ÚIM?BC�VÙ=]_SNbFB=@?BCETÄAOØ FÂå^CÖZD=]N[_wFB×tàYF
TYCtá^_SN[FÂN»=@_qÞ
�+� �[��� �a�����?�¢¡ ��£?¤"¤ VçCsIM_^\�IMa»aÅFBåSC~Û¤àS_^×�FÂN»=@_^\�Ü�N[FÂå�FBåSCÚ_^I@VÙC�¡^P�FÂåDIKF�å^I�ä]C
CtN[FÂåSCE?�I � �[����=]?�I@_@���?�ç?BC�FBàS?B_~FlØOZDC]PSIM_^TÚ?ÂCs×�CtN»ä@C>=@_SCyZ^IM? IMVÙCtFÂCt?�=MÛ�IM_OØçFlØwZ"C@Þ

îYÞ$��øK÷¨ùDô�ö��Yô¿ó�IM?BC%\GCtFB\Æ=@ÛJZD=]N[_wFB×tàYFyTSC�á^_SN[FÂN»=@_D\ÆA"=@àS_^T9AOØ�H;=@N»_]F ×�àYFÇ=@Z"Ct? IKFÂ=]?B\;,"�a�GP
¥a¥ 3�Þ�ú ù�ñ��C� �9ÿSøM÷¨ù^ôjöZ�YôÙNc\ÚIìZ"=@N»_wFB×�àSF�FÂå^IMFÚ×tI@_'A"Cè?BC�Û¤CE?Â?BCETÄFÂ=�AOØ'Iì_^IMVÙC@P
FÂåSCE?ÂCtÛ¤=@?BC´NbFÆNc\¶_S=MFÆ_^CE×�Cs\Â\BIM?BØÙFÂ=ÙA"C%TYC�áD_SCET�?BCtZ"CEIKFBCETYa»Ø@Þ
¦ �Q���?�O�S�a� ¦ ��¤¨§ ���?�a� �+� �[���©�a�����a�ª¡ �Z£?¤a¤ �a���N�f�Q���?�I����� ��£¬«-��¤a¤�­

ïSÞi��YE÷µö��>×�=@_D\lFB?Âà^×�FB\�\GZ"CE×tNbÛ¤Ø%FÂåSC�I@×�FÂN»=@_:FB=´ADC�FBI@L@CE_�IKFÅIy×�Ct?ÂFBI@N[_�ZD=]N[_wF ×�àYF),¤A"=@àS_DT
FÂ=ÖFBåSC
I]TYäON»×tC�3�Þ�ß¶åSCC®Q�"¡?�N¯?�SP&�"¡"�f��¯ IM_^T°�N¯f���a�?�èL@CtØOÜ�=@? TS\:TYCtá^_SC=�1^Q��ù'FÂå^C
AD=YTYØÚZ^IM?ÂF�=MÛ�FBåSC:I@TYäONc×�CyN»\¶CtâYCE×�àSFÂCET
Ü�N[FÂå9?ÂCs\GZ"CE×�F�FB=çFÂåSC´Z"=@N»_]F ×�àYFsÞO%>FÂå^Ct?BÜ�N»\ÂC
FÂåSC:A"=YTYØÚ=@Û�I@_9I]TYäON»×tC´N»\¶ä]Ct?BØÚ\GN»VÙN[acIM?�FB=ÙFÂåSC:A"=YTYØ�=MÛJIJ<]I�äKI�VÙC�FÂå^=OTqÞ

ü^Þg±7ùDô��tõy7jô
TBÿQ�)��� ö�*[ñKõBñKôQ÷µøKùSó�IMa»a[=KÜìIMVÙ=@_^Ý�=MFÂå^Ct? \qTYCE×ta»I@?ÂN»_SÝÆI]\GZ"CE×�F�ZS?BCE×�CsTYCt_D×�CE\EPE×tà^\Gã
FÂ=]VX×�=]VÙZSN[acIKFBN[=]_
CE?Â?B=@? \�=@?�Ü¶IM?B_SN[_^Ý]\EÞ

�YÞ$iyóQÿQ�Bötô¿ó�×�=]_wFBIMN»_�Z"=@N»_wFB×tàYFB\EPMI@TYäONc×�Cs\tPKIM_DT%N»_]FBCt?Âã¿FlØOZ"C�TSCE×�acIM? IKFBN[=]_^\EÞ�%Ç_�FÂåSC¶=@FÂåSCE?
å^IM_DT-PqFBåSCtØìIMac\G=ÖåDI�ä@C�IÖ×�acI@\B\GãQa»N[L]CÙADCEå^I�äON[=]?EP�I]\´FÂå^CtØì×tIM_�åDI�ä@CçFÂåSCEN[?�=KÜ�_�IKFGã
FÂ?BN[A^àYFÂCs\ÆIM_^T
VÙC�FBåS=YTS\tÞ

<Æ=KÜ¶I@TSI�ØY\+ú$%ÇH'Nc\¶Ü�N»TYCEa[Ø~àD\GCsTÚN»_
A"=MFBå�I]×tI]TYCtVÙNc×MPYIM_^TÚN[_DTYà^\GFÂ?BN»I@a-Ü�=]?ÂacT-ÞwHÅ?BI]×7FBN»×tC
\GåS=KÜÆ\+FÂåDIKF�ú$%ÇH ZS?B=@Ý@? IMV~\�IM?BCÆN[_
V~IM_OØ~×tI@\ÂCE\�\ÂåS=@?ÂFÂCE?EP]å^I�ä@CÇVç=]?ÂCÇVÙ=OTSàSa»I@?�\GFÂ?Bà^×�ã
FÂàS?BC�I@_^T�I@?ÂC�CEI]\GN»Ct?�FÂ=yàS_^TSCt? \lF IM_^T-ÞK<>àSVÙCt?B=@à^\�ZSàSASa»Nc×tIKFBN[=]_^\;TYNc\Â×tà^\Â\�FBåSC�I@TYäKIM_wF IMÝ@Cs\
=MÛ�ú$%ÇH TYCs\GN»Ý@_9IM_DTÚN»VÙZSa[CEVÙCt_wFBIMFÂN»=@_qÞf>>=KÜ�CEä@Ct?sPwÜ�C:\GFÂN»a[aqåDI�ä@Cy_S=MF¶Û¤=@à^_^T9IMZSZS?B=@Z^?ÂN[ã
IKFÂC�VÙC�FÂ?BNc×%FB=w=]a»\>FÂ=
ZS?BCE\ÂCt_wFyþwà^I@_]FBNbF IKFBN[ä]C�?BCE\ÂàSabF \>=]_ÖFÂå^Cç\GFÂ?Bà^×7FBàS? IMa;×�=@VÙZSa»C�âYN[FlØ9=MÛ
ú$%ÇH'Z^?Â=]Ý@? IMV~\tÞ

%Ç_SC9ZD=w\Â\ÂN[A^a[C9?BCEI@\Â=@_ÄVÙN[Ý]å]F~A"C9FÂåSCÖacI@× L =MÛÇV�àSa[FÂN»Z^IM? I@TYN»Ý@V VçCtFÂ?BN»×E\çFÂå^IMFÚIM?BC
ä�I@a[NcTÖ=]_èAD=@FÂå)=@A?�lCs×7FGã�=@?BN»Ct_wFÂCsTÖIM_^TÖÝ]Ct_SCE?BIMFÂN»ä@C%ZDIM? I@TYN»Ý@V9ÞDß¶å^Ct?BC�IM?BC�ZS?B=@Z"=]\BIMac\¶FB=
VçCsI@\ÂàS?BC�\GZ"CE×tNbáD×�Û¤CEIMFÂàS?BCE\�=MÛÆú$%ÇH ZS?B=@Ý]?BI@VÙ\Ùí ²SP ³Kð�PqASàYFÙ=@à^?�IMZSZ^?Â=wI@× åìN»\%FÂå^IMF�N»_
ZS?BI]×7FBN»×tC)IÄVç=]?ÂCì\ÂàSNbF IMASa»C VçCtFÂ?BN»×)å^I]\�FB=ÄA"C�IMASa»CéFB=ÄVÙCsI@\ÂàS?ÂC \G=]àS_^TYa»Ø N[_ VÙ=@?BC
Z^IM? I@TYN»Ý@V~\´IKF:=]_^×�C]Þqß¶åSC~×�=@VÙZSa»C�âYN[FlØè=MÛ�IM_ìú$%ÇH ZS?Â=]Ý@? IMV TYCEZDCE_^TS\´=]_)FBåSC�%;%ÇH
×�=@VÙZ"=@_SCE_wFB\çIM_^T FÂåSCÖú$%ÇHJãj\GZ"CE×tNbá"×
×t=@_^\GFÂ?Bà^×7F \tÞ;ß¶åSCE?ÂCtÛ¤=@?BC~FÂåSCÖ×t=@VÙZSa»C�âYNbFlØ�×t=@àSacT
ADC�\B×tIMFGFÂCE?ÂCsTèA"C�FlÜ�CtCE_éFBåSC�ú$%ÇHJãj\GZ"CE×tNbáD×çZ^I@?GF \J,¶N[_ìZ"=@N»_]F ×�àYFÂã�TSC�á^_SN[FÂN»=@_D\tPqI]TYäON»×tCE\EP
C�FB×@Þ 3�PSFBåSC%=@Af�lCE×7FÂãQ=]?ÂN»Ct_wFBCET�×�=@_D\lFB?Âà^×�FB\2,¿×�acI@\B\GCs\tP^N[_Så^Ct?BNbF IM_^×tC@PSCtFB×MÞM37P"IM_^T9CEä@CE_�N»_9FÂå^C
ZS?Â=Y×tCETYàS? IMa[ãj\lFlØOa»CyN»VÙZSa»CtVÙCt_wFBIMFÂN»=@_9=MÛ;FBåSC%VÙC�FBåS=YTS\tÞO>ÆCE_^×�C%N»_Ö=@à^?Æ=@ZSN»_SN»=@_ÖÜ�C:_SCtCsT
FÂ=~IMZSZ^a[Ø�I�VÙCtFÂ?BN»×ÇFÂåDIKFÆVÙCEI]\GàS?BCE\�Ü�Cta»aqVÙ=@?BCÇZDIM? I@TYN»Ý@V~\¶IKF�FBåSC%\ÂI@VÙCÇFBN[VÙC]Þ

ëJâYZDCE?ÂN»Ct_^×tCE\%\ÂåS=KÜûFÂå^IMFçú$%ÇH ZS?B=KäON»TSCE\:IÖA"C�FÂFÂCt?ç\G=]a[àSFÂN»=@_ìÛ¤=@?�Iè×�CE?GF IMN»_ì\ÂC�F�=MÛ
ZS?Â=]ASa»CtV~\�,¤C@Þ Ý^ÞJa»=@Ý]Ý@N»_SÝ^P;TYCEASàSÝ@Ý]N[_^Ý^P;C�F ×MÞM37ÞÅæj_ÄFÂåSNc\ÙZ^I@ZDCE?~Ü�C9N»_wä]CE\GFÂN»Ý]IMFÂCÚÜ�åDIKF~N»\
×�=@VÙVÙ=@_ÚN[_ÚFÂåSCs\GCÇZS?Â=]ASa»CtV5Ý@?B=@àSZD\JFÂåDIKF¶?ÂCE_^TYCt? \JFBåSC´ú$%ÇHÄ\Â=@a»àYFÂN»=@_�N»_wFÂàSN[FÂN»ä@CEa[ØÙCsI@\Gã
N[CE?EÞ?8�IM_�Ü�C�á^_^TÚZS?B=@ASa»CtV5\GCtFB\+N[_�Ü�å^N»× åÚú$%ÇH ZS?Â=KäONcTYCE\+I%A"C�FGFBCt?¶\G=]a[àSFÂN»=@_[´$l åOØÙTS=
Ü�C¶\GCEC�=]_SC�\G=]a[àSFÂN»=@_�CsI@\ÂN[CE?�à^_^TYCt? \GFBIM_DTSIMASa»C�FÂå^I@_%FÂå^C�=@FÂåSCE?;NbÛDFÂåSCEØ�IM?BC�N»VÙZSa»CtVÙCt_wFÂCsT
à^\GN»_SÝyTYN���Ct?BCt_wF;Z^IM? I@TSN[Ý]VÙ\�´A>Æ=KÜ ×tI@_%Ü�C+ZS?B=Kä@CJFBå^IKF�Û¤=@?�FÂå^=]\ÂC�IKÛ¤=]?ÂCEVÙCt_wFÂN»=@_SCsT:ú$%ÇH
ZS?Â=]ASa»CtV~\´FÂå^C
\Â=@a»àYFÂN»=@_^\�IM?BC~_S=MF�=]_Sa»Ø)N»_wFÂàSN[FÂN»ä@CEa[Ø ASàYF�I@a»\Â=Ö=@Af�lCE×7FBN[ä]Cta»ØéA"C�FÂFÂCt?y´
æj_

5

=@? TYCt?+FÂ=�I@_^\ÂÜ�CE?ÅFÂå^CE\ÂCÇþwàSCE\GFÂN»=@_D\tP]Ü�CyIMN»VûFB=�I@_^IMa»ØahtCÆFBåSC(0´I@_SÝMã�=MÛ¨ã�#S=]àS?$,�0y=N#c3�{ÇC�ã
\GN»Ý@_�ZDIKFGFBCt?B_^\ÇíMW�ð"IM_DTÙFÂåSCEN[?¶N»VÙZSa[CEVÙCt_wFBIMFÂN»=@_^\�N[_ÚZSàS?BC/<wI�ä�I�IM_^T�I@_Úú$%ÇH ä]Ct? \GN»=@_~N»_
ú>\ÂZDCs×7F <èí��EüMð�Þ

µ ¶L·¶Î?u�Í>ÑÇÔGÍgtûÎf¸gu¹ovu-ÎYÏ^ÔGÓ

ëJâOFÂCt_DTYN[_^Ý)FBåSC�VçCtFÂ?BN»×
?BCEþwàSN»?ÂCs\%FBåSC
NcTYCE_]FBNbá"×tIKFBN[=]_ =@ÛÇú$%ÇHJãj\GZ"CE×tNbáD×ÚZS?B=@Ý@? IMV Cta»C�ã
VçCE_wFB\EPwI@_^TÙFÂå^CtN»?�V~IMZ^ZSN[_^Ý%FÂ=çIM_Úú1�Æã�Ý@? IMZ^åqÞ@æj_Ú\ÂCE×�FÂN»=@_Úï�Ü�C>å^I�ä@CÆCE_OàSVÙCt? IKFÂCsTÙFÂå^C
Vç=w\lFÅN»VÙZD=]?GF IM_wF+ú>\ÂZ"CE×7F�<%×�=]_^\GFÂ?Bà^×7FBN[=]_^\tP@_S=KÜ Ü�C�C�âSIMVÙN»_SC�åS=KÜ'=@àS?JV�àSa[FÂN»Z^IM? I@TYN»Ý@V
VçCtFÂ?BN»×ÇIMZSZ^a[N»CE\+FÂ=:FBåSCtV9ÞOæj_�=]?BTYCE?ÅFB=�VÙCEI]\GàS?BCÆZS?B=@Ý]?BI@V~\tPKÜ�CÇI@a»\Â=%_SCECETYCsTÙFÂ=�C�âOFÂCE_^T
FÂåSC:VÙCEI]\Gà^?ÂCEVçCE_wF�FB=O=@aQÞ
�@Þ$��øK÷¨ùDô�ö��Yôg���
�ÅùD÷¨ô¿÷µøMùSó�º¶ñMùO�:ÿSøM÷¨ù^ôjöZ�Yô¿ó�zDúÇ\GZ"CE×�FGã�=@?BN[CE_wFÂCET9Z^?Â=]Ý@? IMVÙVÙN[_SÝçNc\>I~LON»_^T

=MÛ;VÙC�FBI@ZS?B=@Ý@? IMVÙVÙN»_SÝ^Þal N[FÂå9FÂå^C%åSCta»ZÖ=MÛ;Z"=@N»_]F ×�àYFyTYC�á^_^NbFBN[=]_^\�Ü�C%TYCE\B×�?BN[A"C:_S=@ã
FÂN»=@_^\ÇFB=�×t=@_wFÂ?B=@a�FÂåSCÙ×�=]VçZ^N[acIKFBN[=]_)IM_DTÖÜ�CsI�äON[_SÝÚZS?Â=Y×tCE\B\tÞ�ú�Z"=@N»_wFB×tàYF%TYC�á^_^CE\yI
×�=]_^TYN[FÂN»=@_ÖÜ�åSNc× å9FÂ?BN[Ý]Ý@CE?B\�FBåSC%Z"=]\B\GN»ASa»C:C�âYCE×tàYFÂN»=@_Ö=@ÛJI~×t=YTYC�TYCtá^_SCET9N»_9FÂå^C�IMZSã
ZS?B=@ZS?BN»IMFÂC%I]TYäON»×tC@Þ^æj_9FBå^IKFy\GCE_^\GC�I~ZD=]N[_wF ×�àYFÇTSC�á^_SN[FÂN»=@_éN»\ÇI~VÙC�FBI@ZS?B=@Ý@? IMVX×�=@_Sã
TYN[FÂN»=@_^I@a�\GFBIKFBCtVÙCt_wFsÞ"ß¶åSCE?ÂCtÛ¤=@?BC:Ü�C�VÙI@ZÖZD=]N[_wF ×�àYF´TYC�á^_^NbFBN[=]_^\�FB=~FÂåSCçú��>ãQÝ]?BI@ZSå
I@\¶ZS?BCETSN»×EIKFÂCy_S=YTYCs\tPSI@_^TÚN[FB\�×t=@_^\GFÂN[FÂàSFÂCE\;,¤FÂåSC´Z"=@N»_wFB×�àSF�FlØwZ"C:IM_^TÚFÂå^C´\ÂN»Ý@_^IMFÂàS?BC
I@\~N»_SZSàSF�_S=YTYCE\�37Þ+úÇ\~N»_ FÂåSCè×EI@\ÂC�=@Ûy?BàS_YãQFÂN»VÙCÖZS?B=@Ý@? IMV~\EP;Ü�åSCt?BCÖIìZS?ÂCsTYNc×tIKFBC
_S=YTYC%VÙN»Ý@åwFÆà^\ÂC%×�=@VÙZSa»C�â�C�âYZS?BCE\B\GN»=@_D\tPSIÙZ"=@N»_wFB×�àSFÇTYC�áD_SNbFBN[=]_Ö×tIM_9à^\ÂC%Z"=@N»_wFB×�àSF
=@Z"Ct? IKFB=@? \+FB=ÙC�âYZS?BCE\B\�×t=@VÙZSa»C�â9×�=@_DTYNbFBN[=]_^\EÞ
l)C9VÙCEI]\Gà^?ÂC�Z"=@N»_wFB×tàYF�TYC�á^_^NbFBN[=]_^\çAwØ�\ÂàSVÙVÙN[_SÝ àSZÄFÂåSC�äKIMa»àSC¬,`��AwØ�TYCtÛµIMàSa[F�3
I@\B\GN»Ý@_^CET~FB=�FBåSC:TYC�áD_SNbFBN[=]_e� \�FlØwZ"CC,����?�a�YPQ�N�f�Q���?�I�����SPYC�FB×�3�IM_^TÚFÂåSC:×t=@VÙZSa»C�âYNbFlØ
=MÛJFBåSCç\ÂN»Ý@_^IMFÂàS?BC@Þ"ß¶åSC�×t=@VÙZSa»C�âYNbFlØ9=@ÛÅZD=]N[_wFB×tàYFB\ÇNc\ÆFBåSCç\ÂàSV =MÛJFBåSCÙTYC�á^_^NbFBN[=]_^\��
×�=]VçZ^a[CtâON[FÂN»CE\EÞÅß¶åSCè\ÂN[Ý]_^IKFBàS?BC9×EIM_'ADCÖCtâYZS?ÂCs\Â\ÂCETÄI@\~Iì?BCtÝ]àSa»I@?�CtâYZS?ÂCs\Â\ÂN»=@_qP;Û¤=]?
Ü�åSNc× å
VÙC�FB?ÂNc×t\�I@a[?BCEI]TYØ~C�âYNc\lF%íV��»MðQÞal C:å^I�ä@C´TYCs×�NcTYCET
FÂ=~I]TST
IÙ×t=@_^\GFBI@_]F;�:×�=]Vçã
ZSa»C�âYNbFlØ�FB=
CsI@× åÖFB=@L@CE_Ö=Y×t×�à^?ÂN»_SÝÚN»_èFBåSCçC�âYZS?BCE\B\GN»=@_qÞ"ú FB=@L@CE_èNc\yI
\lFB?ÂN»_SÝ
a[N[FÂCE?BI@a
,¤a»N[L]C@ý)¡?�a�N3�P¶IÄL@CEØOÜ�=]?BT¼,µa[N»L@C]ý(���?�?37P¶=@?9I ?BCtÝ]àSacIM?ÚCtâYZS?ÂCs\Â\ÂN»=@_ VÙC�F I@× å^I@?BI]×7FÂCE?
,¤a»N[L]C@ý £ 3�ÞJß¶åSC�? IKFÂN»=@_DIMa»C�ADCEåSN»_^TìFÂå^C
TYCtá^_SN[FÂN»=@_ Nc\%FBåSC�Û¤=]a[a»=KÜ�N»_SÝ^Þ�æ�F�FBI@L@Cs\:FÂå^C
\ÂI@VÙC~CZ��=@?ÂF:FÂ=èàS_DTYCt? \lF IM_^T)FBå^IKF�IÖ\ÂN»Ý@_^IMFÂàS?BC�IMZSZ^a[N»CE\´FB=èIMa»aÅÛ¤àS_D×7FÂN»=@_D\k,¤N»_�FÂå^C
Û¤=@?BV9ý £¢£e��£?¤ 3~=@?
FÂ=ÄC�âSI@×�FÂa»Ø =@_SC½, � �[�S�¾¡a�a� � ���a� ¤ �"¿?¯?��ÀIÁÃÂ�Ä�Å"�O��� ¦ �O�����N37Þ
>Æ=KÜ�Ctä]Ct?sPYVç=]?ÂC:×t=@VÙZSa»C�â
ZDIKFGFBCt?B_^\Æ×EIMà^\ÂC%TYCE×tN»\ÂN»=@_^\¶å^I@?BTSCt?¶FÂ=~à^_^TYCt? \GFBIM_DT-PSa»N[L]C
N[_ � �[���Ã¡ £ �a� � ���a��Æ £?¤ �"¿?¯f��ÀOÁ £ Þ

îYÞgÇ�ñ��J���ÆÿSøM÷¨ù^ôjöZ�Yô¿ó7Þ@ß¶åSC>×t=@VÙZSa»C�âYN[FlØ�=MÛ�_^I@VçCsTÙZD=]N[_wF ×�àYF \ÅNc\;FÂåSCÇ\GàSV =MÛ�FBåSC>×�=]Vçã
ZSa»C�âYNbFlØ =MÛyFÂåSCEN[?~_^I@VÙCE\�,`�ÖAOØ TSC�ÛµIMà^abFy3ÙIM_^TÄFÂå^C�Z"=@N»_wFB×tàYF�NbF \GCEabÛlÞ�ß¶åwàD\~NbÛyFÂå^C
ZS?B=@Ý@? IMVÙVÙCt?ÆTSC�á^_SCs\>I~×tCt?ÂFBIMN»_ÖZ"=@N»_]F ×�àYFsPD_DIMVÙCE\�N[FEP�IM_DT9N[_^\GFÂCsI@T9=@Û;?BCtZ"CEIMFÂCsTYa[Ø
TYC�áD_SN[_^ÝÖNbF�I@Ý]I@N[_ ?ÂCtÛ¤Ct? \yFÂ=9FBåSC~ZD=]N[_wF ×�àYF�AOØ)NbF \:_^IMVÙC]P-FÂåSC�×t=@VÙZSa»C�âYN[FlØé=MÛ�FÂå^C
×�=YTYC%×EIM_9ADC�?ÂCsTYà^×�CsT-ÞSæj_è\ÂCE×�FÂN»=@_èîçÜ�C:åDI�ä@C:\GCECt_qPSFÂå^IMF�FÂåSC%àD\ÂI@Ý@C´=MÛ;Û¤àS_^×�FÂN»=@_^\
TYCE×t?ÂCsI@\ÂCE\�FBåSCÆ×�=]VçZ^a[CtâON[FlØ@P@ADCs×tIMàD\GC�AOØ%V~IMLON»_SÝ%IyÛ¤àS_^×�FÂN»=@_~×tI@a[aQPKFBåSC>I@T^TYCETÙ×�=]Vçã
ZSa»C�âYNbFlØÙNc\+=]_Sa»Ø�FBåSCÇÛ¤àS_^×7FBN[=]_e� \+_^I@VÙC@POIM_^T~N[FB\�Z^I@?BI@VçCtFÂCE?B\EÞ]ß¶åSCÇà^\BIMÝ@C>=MÛq_^I@VçCsT
ZD=]N[_wF ×�àYF \�N»\�I@_^IMa»=@Ý]=@à^\�FB=�FBå^IKFÆZ^?Â=Y×�CsTYàS?BC@Þ

ïSÞi��YE÷µö���ó7P�Û¤?B=@V =]àS?�VÙC�FB?ÂNc×�� \�ZD=]N[_wF�=@Û>äON[CEÜ/IM?BCÚASàSN»a[FçàSZ Û¤?Â=]V FlÜ�=èZ^I@?GF \tý�FÂå^C
Û¤àS_^×�FÂN»=@_9Z^IM?ÂFEPSI@_^T
FÂåSC:Z"=@N»_wFB×tàYFÆZ^IM?ÂFEÞ
È ß¶åSCÇVçCtFÂåS=YTÙÛ¤=]?+VÙCEI]\Gà^?ÂN»_SÝ:FBåSC>Z"=@N»_wFB×�àSF�Z^I@?GF+åDI@\+I@a[?BCEI]TYØ�A"CtCE_ÚTYCs\Â×t?ÂN»ADCsT

N»_
FBåSC:N[FÂCtVÉ�@Þ

6

È ß¶åSC
ZSàS?BCta»ØéÛ¤àS_D×7FÂN»=@_ Z^IM?ÂF�Nc\�I@\%Û¤=@a»a[=KÜÆ\EÞ�ú>_ I@TSäwNc×�CN� \�åSCEI]TYCt?�N»\�a[N»L@C�FÂå^IMF
=MÛ+IÚ\GZ"CE×tN»I@a�Û¤àS_D×7FÂN»=@_�� \EPDÜ�N[FÂåèFÂåSC�L@CtØOÜ�=@? TS\Ê®Q�"¡?��¯f�OP9�"¡"�?�N¯DPD=]?/�N¯?���a�f�ÚI]\
FÂå^Cè_^IMVÙC]PJÛ¤=@a»a[=KÜ�CET'AOØ FBåSCÖ?BCtÝ@à^a»I@?~Z^IM? IMVÙC�FBCt?~a»N»\GFEÞ�ß¶åSCÌË7_DIMVÙC"Ë
VÙN[Ý]åwF
A"C
ZS?BCE×tCtCsTYCETìAOØ�Iè?BC�FBàS?Â_ FlØwZ"C@Þ;ß¶åSC
AD=YTYØ�=@Û>IM_ I]TYäON»×tCÚTY=OCE\�_S=MFÙ\GCECtV
TYN��"CE?ÂCE_wFyÛ¤=]?´FÂåSCÙZS?B=@Ý]?BI@VÙVçCE?>FBå^IM_)FÂå^C~AD=YTYØè=@Û�I
Û¤àS_^×�FÂN»=@_ Ü�=]àSacT-Þ-ëÅä@CE_
N»_
IM_��N¯?���a�f��I]TYäON»×tC@P]FÂåSCyL@CEØOÜ�=]?BT ¦ ¯f�Q���a�"��TS=wCs\�_S=MF�\GCECtV/TYN��"CE?ÂCE_wF�Û¤?B=@V
IM_ =]?BTYN»_^I@?ÂØìÛ¤àS_D×7FÂN»=@_ ×EIMa»a¿ÞÅß¶åSCE?ÂCtÛ¤=@?BC�FÂåSC9Û¤àS_D×7FÂN»=@_ Z^I@?GF�� \~×t=@VÙZSa»C�âYN[FlØ N»\
VÙCEI]\GàS?BCETÚFÂå^C%\ÂI@VçC´Ü¶I�Ø�I@\)<wI�äKI�VÙC�FBåS=YTS\EÞ

ß¶åSCÚZ"=@N»_wFB×tàYFçTYCs×�NcTYCE\�Ü�åSCt_ Ié×�Ct?ÂFBI@N[_ I]TYäON»×tC�� \%A"=YTYØ)ZDIM?ÂF�N»\�C�âYCs×�àYFBCET-Þ�ß¶åSN»\
N»\yI@\>NbÛJFBåSC�A"=YTYØ9Z^IM?ÂFÇ=@Û;FÂåSCÙI@TYäONc×�C%Ü�=@à^a»T9A"C�N»_ÖFÂå^C�ótö øBÿQ�ç=MÛJFÂå^C�ZS?BCETYNc×tIMFÂCs\
TYC�áD_SCET AOØÄFÂåSCèZ"=@N»_wFB×tàYFEÞ)8�=@VÙZSa»C�âÄZ"=@N»_wFB×tàYF
TYCtá^_SN[FÂN»=@_^\ÚADCEå^I�ä@CÖa»N[L]CÖ_SCE\GFÂCsT
ZS?BCETYNc×tIMFÂCE\EÞqß¶åOà^\´FBåSC�×�=]VçZ^a[CtâON[FlØè=@Û¶I@_ I]TYäON»×tCçNc\´FBåSC�×�=]VçZ^a[CtâON[FlØè=@Û¶I]TYäON»×tC�� \
AD=YTYØ
V�àSa[FÂN»ZSa»N[CsT�AwØÚFÂåSC:×t=@VÙZSa»C�âYNbFlØÚ=MÛ;NbF \�ZD=]N[_wF ×�àYFsÞ

ü^Þ$iyóQÿQ�Bötô¿ó)IM_^T ×�acI@\B\GCs\�å^I�ä]C)I a»=MF�N[_ ×�=]VçVÙ=]_ Û¤?Â=]V�FÂåSCì×�=]VçZ^a[CtâON[FlØ'ZD=]N[_wF9=MÛ
äON[CEÜ:Þ�ê�=@FÂåéV~I�Ø9N»_^×�a»à^TYC~TSIMFBISP�IM_DTèVÙCtV�ADCE?ÇÛ¤à^_^×7FBN[=]_^\tÞqß¶åOà^\>FÂå^CE\ÂC�VÙCtV�ADCE?B\
=MÛSI@\ÂZ"CE×7F \q×tI@_´ADC�VçCsI@\ÂàS?BCET>FÂåSC+\BIMVÙCÅÜ¶I�Ø>I]\-NbÛOFBåSCtØyÜ�CE?ÂCJN»_%×�acI@\B\ÂCE\EP Û¤=@?qFBåSNc\-FÂå^C
VÙC�FÂå^=OTéN»\´TYCs\Â×t?ÂN»A"CETèN»_ îSÞ"úÇ\GZ"CE×�FB\´V~I�ØÖIMac\G=Úå^I�ä@C�VçCEV�A"Ct? \>=@Û�ú$%ÇHJãj\GZ"CE×tNbá"×
×�=]_^\lFB?ÂàD×7FB\EÞ?l C:å^I�ä@C´×�acI@\B\GN[á^CsT�FBåSCE\ÂC%×�=]_^\lFB?ÂàD×7FB\�N»_wFÂ=ÙFlÜ�=�Ý]?Â=]àSZ^\EÞ
È ß¶åSCç×�=@VÙZSa»C�âYN[FlØ
=@ÛÇñ���YE÷µö���ó PqI@_^Tìù"ñ��J����ÿ^øK÷¨ùDô�ö��Yôµó%Nc\>FBIML]Ct_ÖN»_wFÂ=Ú×t=@_^\ÂN»TSCt?Âã

IKFBN[=]_ Ü�åSCE_ VÙCEI]\GàS?BN»_SÝÖFÂå^C�I]\GZ"CE×�FEÞJß¶åSCE\ÂC
×t=@_^\GFÂ?Bà^×�FB\çTYN[?BCE×�FÂa»Ø�I���CE×7FçFÂå^C
Ü¶I�Ø%FÂå^CÆZS?B=@Ý@? IMVÙVÙCt?J\ÂCtCs\JFÂå^C>×�=YTYC]Þ]WOåSCÆ_^CtCET^\JFÂ=�àS_^TYCE?B\GFBI@_^T�FÂåSCs\GCÆVÙCEV�ã
A"Ct? \>FB=ÚA"CçI@ASa»C%FÂ=9×�=]VÙZS?ÂCEåSCt_DT9FÂåSCÙ×�=]VÙZSa[Ctâè×�=@_D\lFB?Âà^×�FyTYCs\Â×t?ÂN»A"CETÖAOØ9FÂå^C
ZS?B=@Ý]?BI@V�Þ

È ú>\�=@Û%_S=KÜ N[_wFÂCE?GãQFlØOZDC TYCE×ta»I@?BIMFÂN»=@_^\Úa[N»L@C½��� öZ*»ñKõ+�
ÿ^ñKõ ��ùDôµó7P;��� öZ*»ñKõ+�°�tõ7õÂøMõ ó P
��� ö�*[ñKõ �x�+ñMõ7ù^÷¨ùa�MP^I@_^T
=MFÂå^Ct? \�IM?BCÇ_S=@F¶FBIML]Ct_�N[_wFB=ÙI]×t×t=@àS_wF�Ü�åSCt_�VÙCEI]\GàS?BN»_SÝ
×�=]VÙZSa[CtâYNbFlØ]Þ?l)C%×t=@_^\ÂN»TSCt?�FÂåSCs\GC:I@àYâYN[a»N»I@?ÂØ�×t=@_^\GFÂ?Bà^×�FB\�N[_ÖúÇ\GZ"CE×�F <ÙÜ�åSNc× å�TS=
S=@F�TYN[?BCE×�FÂa»Ø)I��"Cs×7F:FÂå^CÚ×�=]VçZ^a[CtâON[FlØé\ÂCtCE AOØéFÂåSC~ZS?B=@Ý]?BI@VÙVçCE?EP"ASàYF�?BIMFÂåSCE?
I@\�FB=O=@ac\�FÂ=~CEI]\GN»Ct?¶CtâOZ^?ÂCs\Â\¶×�CE?GF IMN»_
_^=MFÂN»=@_D\tÞ

ß¶åSCE\ÂC�×t=@VÙZSa»C�âYNbFlØ�äKIMa»àSCE\>IM?BC�\Gà^VçVÙCsT9àSZèÜ�N[FÂå9FÂå^C�×�=]VÙZSa[CtâYNbFBN[Cs\Æ=MÛ;FBåSC�TSIMFBISP
IM_^T
FBåSC:VÙCtV�A"Ct?¶Û¤à^_^×7FBN[=]_^\�=MÛ�FÂåSC%I]\GZ"CE×�FB\EÞ

l)CÆåDI�ä@CÆ\ÂCtCt_~N»_�\ÂCE×7FBN[=]_�îyFÂå^IMFÅFÂå^CÆäON»\ÂN[A^N[a»NbFlØç=MÛq×ta»I]\Â\ÂCE\EPMIM_^TÙN[FB\+VÙCtV�A"Ct? \+TS=wCs\J_S=@F
N[_?wDàSCt_^×tCÙFÂåSCEN[?%×t=@VÙZSa»C�âYN[FlØ@Þe#S=]?´FÂåSC�\BIMVÙCç?ÂCsI@\Â=@_^\yÜ�C~TY=9_S=MF:F IML@C�FÂå^N»\%IMFGFB?ÂN»ASàYFBC
N[_wFÂ=~×t=@_^\ÂN»TSCt? IKFÂN»=@_
N[_�FBåSC%×tI]\GC´=MÛ;I@\ÂZDCs×7F \tPSI@_^T�NbF \�VÙCtV�A"Ct? \¶CtN[FÂå^Ct?sÞ

Í ÎÏu��OÒ$qlÎf�

ß�=)ä�I@a[NcTSIMFÂCÚ=]àS?çVçCtFÂ?BN»×ÚÜ�C�å^I�ä]CÚ× åS=]\ÂCt_ìFBåSC�0y=N#¼{ÇCE\ÂN[Ý]_ HJIKFGFBCt?B_^\���,GíMW�ðb3�N[VÙZSa»C�ã
VçCE_wFBIKFBN[=]_^\J,líV�tü@ðb3>Û¤=@?´VÙCEI]\Gà^?ÂN»_SÝ^Þ�%Ç_SCç=MÛ�FÂåSCÙ?BCEI]\G=]_^\>Ü¶I@\ÇFBå^IKF:N»_ÄíV�tü@ð;Ü�C�á^_^T I
Û¤àS_^×7FBN[=]_^IMa»a»Ø CsþwàSN[äKI@a[CE_]F�N[VÙZSa»CtVÙCt_wF IKFÂN»=@_ =MÛÆCEI]× å�Z^IKFÂFÂCE?Â_ N»_ ú$%ÇH�I@_^TÐ%;%ÇH;Þ;ú�F
FÂåSC´\ÂI@VÙCÆFÂN»VÙC@P]FÂåSCy?BCt_S=KÜ�_SCsT~IMàYFBåS=@? \�ADCEåSN[_DT~FÂå^CÇN»VÙZSa[CEVÙCt_wFBIMFÂN»=@_^\�a[CtF�à^\¶I]\Â\ÂàSVÙC
FÂå^IMF�FBåSC
I]\GZ"CE×�FGã�=@?BN[CE_]FBCET FBCE× åS_SNcþwàSCE\�Ü�Ct?BCÚå^I@_^TYa»CET ×t=@?B?ÂCs×7FÂa»Ø@Þ1l)C9IMac\Â=é\Gà^ZSZD=w\GCsT
FÂå^IMF�{ÇH+\¶IM?BC�_SCtàYFB?BI@a^FB=�×�?B=]\B\B×�àYFÂFÂN»_SÝ�×�=]_^×�CE?Â_D\tÞ�l CÇTSN»TÚ_S=MF�× å^=w=w\GC>C�âSIMVÙZSa»CE\ÅFÂå^IMF
IM?BCÇÜ�Cta»abã�LO_S=KÜ�_
×t?Â=w\Â\B×�àSFGFÂN»_SÝçZS?B=@ASa»CtV~\F,¤C]Þ ÝDÞYa[=]Ý@Ý@N»_SÝDP@FB?BI]×�N»_SÝ^POC�F ×�3�PSASàYFÆVÙ=@?BCyÝ@Ct_Sã
Ct? IMa-=@_^CE\EPOFÂå^IMFF�ç÷��S^Oô�A"CyN»_�FÂåSNc\�ZS?B=@A^a[CEV \GCtFEÞ

7

ÕèIM_OØÚZ"Ct=]ZSa»C´FÂåSN»_SLÖú$%ÇH ?ÂCsTYà^×�Cs\¶FÂå^C�×�=]VÙZSa[CtâYNbFlØ
=MÛ�FÂåSC�TSCE\ÂN[Ý]_ÖZ^IKFÂFÂCt?B_^\��SN»V�ã
ZSa[CEVÙCt_wFBIMFÂN»=@_^\>ADCs×tIMàD\GC�=MÛJFÂå^C�Z^IMFGFÂCE?Â_D\���×�?B=]\B\Â×tàYFGFBN[_^Ý�IMZSZS?B=]I]× åSCE\EÞO%ÇAOäON[=]à^\Âa[Ø]PSFÂå^C
TYCE\ÂN[Ý]_ìZ^IKFÂFÂCt?B_^\�å^I�ä@C~A"CtCE_ ×�?BCEIKFBCETìI@\�\G=]a[àYFBN[=]_^\´Û¤=]?%FÂå^C�_S=@_Sã¿FB?ÂN»äON»I@aÅZS?B=@ASa»CtV~\:N»_
%;%ÇH�Þ�ß¶åSCÙIMZSZ^?Â=wI@× å9=MÛ�ú$%ÇH ×tIM_)TYCE\B×�?BN[A"C%FBåSCE\ÂCÙ\G=]a[àYFBN[=]_^\ÆCsI@\ÂN[CE?ÇAOØÖú$%ÇHg� \>_^CtÜ
a»I@_SÝ@à^I@Ý@C´×�=]_^\lFB?ÂàD×7FB\EÞ

ß¶åSCé\GFÂ?Bà^×7FBàS?ÂCÖ=@Û´FÂåSCs\GCèN»VÙZSa»CtVÙCt_wFBIMFÂN»=@_^\ÚN»\
I@\ÙÛ¤=]a[a»=KÜÆ\EÞÅë+I@× å ZDIKFGFBCt?B_ å^I@\ÚI
<]I�äKIèI@_^T IM_Äú>\ÂZDCs×7F <)N»VçZ^a[CEVçCE_wFBIKFBN[=]_qÞ;ß¶åSC
úÇ\GZ"CE×�F < N[VÙZSa»CtVÙCE_]F IKFBN[=]_^\�I@a»\Â=èàYFBNbã
a[NVhtCÖI ×�=@VÙVÙ=@_Äa[N»AS? IM?BØ@P�=MFBåSCt?BÜ�N»\ÂC�N[_^TSCtZ"Ct_^TYCE_wFÙ=@Û>FBåSC9Z^IKFÂFÂCt?B_^\EÞJú>\ç=MÛy_S=KÜ6=@à^?
VçCsI@\ÂàS?BCtVÙCt_wF�FÂ=O=]aqN»\>IMASa»C´FÂ=�ZDIM? \GC:IM_DT
VÙCsI@\ÂàS?ÂCC�EüÙ=@àYF>=@ÛJî@ï~TYCE\ÂN»Ý@_9Z^IKFÂFÂCE?Â_9N»V�ã
ZSa[CEVÙCt_wFBIMFÂN»=@_^\EÞ^ß¶åSC:F IMASa»C�\ÂåS=KÜÆ\¶FBåSC�ú1�Æã�VçCtFÂ?BN»×´äKI@a[àSCs\tP"IM_^T
FBåSC�C��"Cs×7FÂN»ä@C:a»N»_SCE\>=MÛ
×�=YTYCC,¤ë�.H%;8Ê3�ZDCE?ÆZ^IMFGFÂCE?Â_D\tÞ

{ÇCE\ÂN[Ý]_9H;IMFGFBCt?B_ æjVçZ^a[CEVçCE_wFBIKFBN[=]_ ú���8�=]VçZ^a[CtâON[FlØ ë-�"Cs×7FÂN»ä@C2.H%;8
�"�?� ¦ �?�N¯ �GI�äKI WNW îNW

ú$%ÇH �f� î@î
®?¯O��� « � �GI�äKI î@ïN� W��

ú$%ÇH î@ï"W W�³
®a�9���N�a�N¯ �GI�äKI îf��³ ���

ú$%ÇH î��f� ²�²
�?�f���N¯f�N�?�N¯ �GI�äKI ³Q� ïMü

ú$%ÇH ³]ï î��
¡?�Q���f��¯aÑaÒf�N�N¿Q�"� �GI�äKI �N�Eï �Kü

ú$%ÇH ��î�³ ²"W
¡f��Ñ"ÀQ�[� « ¿?� �GI�äKI î�³�³ ²�²

ú$%ÇH î�»�² Wa�
���?�?�N¯ ¦ ¯f���f�N¯ �GI�äKI ��²"W �����

ú$%ÇH ��²"W ���Eï
Ó � Ó ���a�f� �GI�äKI ³N³ ï@ï

ú$%ÇH ��»�² üaW
��®IÁ���¯ � �N¯ �GI�äKI ïaW�ü ³@ï

ú$%ÇH ïN�N� »"W
¦ ¯?�N�f�N�aÑ ¦ � �GI�äKI ��»"W �Mï

ú$%ÇH î��Mü ��²
Á��f�N�?� �GI�äKI îN��³ ³"W

ú$%ÇH ��W�³ ���@ï
Á��a¯f���f� « Ñ �GI�äKI î�²N� ��²

ú$%ÇH WMï]î ²�»
�f� Óf¦ �"�N�f��Òf�N�"¿Q�N� �GI�äKI �S��» ü]ï

ú$%ÇH �S��» ü"�
� �"Á?�S�?�N¯ �GI�äKI ïN��� »@ï

ú$%ÇH ïN²]î »N�

8

ú/×�=@VÙZ^I@?ÂNc\Â=@_èA"C�FlÜ�CtCE_éFBåSC~N[VÙZSa»CtVÙCE_]F IKFBN[=]_)=@Û�FBåSC~TYCE\ÂN[Ý]_)ZDIKFGFBCt?B_^\´N»_)FBåSC�%;%ÇH
IM_^T ú$%ÇH5Ü�I�ØÄ×tIM_ A"CÖÛ¤=@à^_^T N[_2íV�tüDP���²MðQÞÅß¶å^CE\ÂC�ZDIMZ"Ct? \~C�âYZSacIMN»_'FÂå^IMF=�SW)=@àSF�=MÛ
îMï�Z^IKFÂFÂCE?Â_^\%å^I@T)C�âYåSN»ASN[FÂCET�\Â=@VÙC~TYCEÝ@?BCtCÙ=MÛ�×�?B=]\B\Â×tàYFGFBN[_^Ý^Þ-ß¶åSCtØ IMac\G=ÖTYCs×�acIM?BCçFÂå^IMF
N[VÙZSa»CtVÙCt_wFBN[_SÝéFÂåSC�Z^IMFGFÂCE?Â_D\�N»_ ú$%ÇH�åDI@\%V~I@_wØìA"Ct_SCtáSFB\EPJIMVÙ=@_^ÝÖFÂåSCEV FÂåSC
VÙ=]\GF
N[VÙZ"=@?ÂFBIM_wF>A"CtN»_SÝÚFÂåSC�I@ASN»a[N[FlØ�FÂ=�a»=Y×tIMa»NVhtC:FBåSC�×�=YTYC�Û¤=@?yI~Ý@N»ä@CE_�ZDIKFGFBCt?B_qÞ�ÕèIM_OØÚZDIKFGã
FÂCt?B_^\�×EIM_'ADCéN[VÙZSa»CtVÙCt_wFBCET I@\�Iì\ÂN[_^Ý@a»CèI@\ÂZDCs×7FEP+=@?�I@\�îì×ta[=w\GCEa[Ø ?ÂCEa»IMFÂCET'I@\ÂZ"CE×7F \tÞ
%ÇàS?ÇVÙCtFÂ?BN»×�CE\ÂZDCs×�NcIMa»a[Ø9?BCtÜ¶IM? TS\>×t=OTSC�a»=O×EIMa»N�hsIKFBN[=]_qÞDß¶åSCk%;%ÇH ä]Ct? \GN»=@_^\Ç×tI@_è_S=MF´A"C
I@\:Ü�Cta»abãj\GFÂ?Bà^×7FBàS?ÂCsT)I]\yFÂåSC
ú$%ÇH ä]Ct? \GN»=@_D\tP�Ü�åSCE?ÂCÙFBåSC�×�=YTYC~Nc\:VÙ=@?BC~V~IMN»_]F IMN»_^IMA^a[C]P
IM_^T~×t=@VÙZS?BCtåSCE_^\GN»ASa»C@Þ@ú>_S=MFBåSCt?�N[VÙZ"=@?ÂFBI@_]F�ADCE_SC�áSF�N»\ÅFÂåSCy×�=YTYC�� \J=]ASa[N»äON[=]à^\Â_SCE\B\tÞ]ß¶åSN»\
ADCE_SC�áSF~?BCE\ÂàSa[FB\ÙTYN»?ÂCs×7FÂa»ØìÛ¤?B=@V a»=O×EIMa»N�hsIKFBN[=]_qý�I]\�FÂåSC�Z^IKFÂFÂCE?Â_'N»\ça»=Y×tIMa»NVhtCET N[_ IM_'I@\Gã
ZDCs×7FEPwN[F�TY=OCE\+_S=MF�N[_OäKI@TYC>NbF \ÅZ^I@?GFBN»×tN[Z^I@_wFB\EÞ�>ÆCE_S_SCtV~I@_ÚIM_^TCÔ´Nc×ZhsIMa»CE\Å\GFBIMFÂCsTçFÂå^IMF+FÂå^C
ú$%ÇH�ä@Ct? \ÂN[=]_^\;IM?BC�Vç=]?ÂC�VÙ=YTYàSacIM?+AwØCW�ü?Õ�P]IM_^TçVÙ=@?BC�?ÂCEà^\ÂCEIMA^a[C¶AOØJ�]îNÕÚÞMú�×t×t=@? TYN»_SÝ
FÂ= í��EüMðJ\G=]VçCçZ^IMFGFÂCE?Â_D\���N»VçZ^a[CEVçCE_wFBIKFBN[=]_éV~I�ØÖTYNc\ÂI@ZSZDCsIM?yN[_wFB=ÚFBåSCç×t=YTYC�A"CE×EIMà^\ÂCç=MÛ
ú$%ÇHg� \�×t=@_^\GFÂ?Bà^×�FB\F,¤C]Þ ÝDÞOFÂåSC:TYCs×�=@? IKFB=@?�Z^IKFÂFÂCE?Â_[3�ÞSß¶åSNc\�×tIM_�IMac\G=ça»CEI@TÚFÂ=~×t=@VÙZSa»C�âYNbFlØ
TYCE×t?ÂCsI@\ÂC@Þ

æj_ \G=]VÙC
×tI]\GCs\%Ü�C
×EIM_Ä\ÂCtCÚFÂå^IMF�FBåSC�ú$%ÇHûN[VÙZSa»CtVÙCE_]F IKFBN[=]_ Ü�I]\�a»CE\B\ç×�=@VÙZSa»C�â
AwØ
=@àS?�VÙCtFÂ?BN»×´CEä@Ct_�N[Û�FBåSC:ë�.H%;8 _OàSV�ADCE?ÆÜ�I]\¶Ý@?BCEIMFÂCt?sÞYß¶åSCE\ÂC%IM?BCyFÂåSC%×EI@\ÂCE\¶Ü�åSCE_
à^\GN»_SÝ´ú$%ÇH)Ü¶I@\;I]TYCEþwà^IMFÂC@PsFBåSCE\ÂC�IM?BC+FBåSCg�N�?� ¦ �f��¯^PS®"�9���N�?��¯^P���®IÁ��N¯ � �N¯YPMI@_^TkÁ��f�N�f�
Z^IKFÂFÂCt?B_^\EÞ�>Æ=KÜ�Ctä@CE?EPsÜ�C�×EIM_Ù\GCEC�IÇ_OàSV�A"Ct?J=@Û^Z^IKFÂFÂCE?Â_^\�Ü�åSCE?ÂC�FBåSC�ú$%ÇHéN»VçZ^a[CEVçCE_wFBIKã
FÂN»=@_^\JÜ�Ct?BCÆIKFÅa»CEI]\lF+I]\Å×�=]VÙZSa[CtâçI]\;FÂåSCEN[?�<]I�äKI´×�=]àS_wFÂCE?ÂZ^I@?GF \tÞKHJIMFGFÂCE?Â_D\Ja[N»L@C Ó � Ó ���a�f�OP
� �"Á?�S�f��¯~I@_^TÚVÙ=w\lF¶FlØOZSNc×tIMa»a»Ø=Á��a¯?�N�f� « Ñ�A"Cta»=@_SÝÙåSCE?ÂC]ÞSß¶åSNc\�\GåS=KÜÆ\�FBå^IKFÆN»_^I@TSCEþwà^IKFBC
à^\GC´=@Û;ú$%ÇH ×tI@_
CEä@CE_
A"C%TYNc\ÂI]TYäKIM_wFBI@Ý@Ct=]à^\EÞ

Ö ×)Ð�Í>Ó9qGÒ/�OÔlÐ+ÍØsJÍ>Ñ©Ù7Ò�ÎSÒ>Ïfu¾ÚìÐÅÏfÛ

æj_ FBåSN»\9ZDIMZ"Ct?9Ü�C�TYCs\Â×t?ÂN»A"CET I'V�àSabFBN[ZDIM? I@TYN»Ý@V3VÙC�FB?ÂNc× Ü�åSN»× å Ü¶I@\�C�âOFÂCE_^TYCsT Û¤=]?
I@\ÂZDCs×7FGã�=@?BN»Ct_wFÂCsT:ZS?B=@Ý@? IMV~\EÞEß¶åSC�VÙC�FB?ÂNc×¶×tIM_�VçCsI@\ÂàS?BC+FBåSC�×t=@VÙZSa»C�âYN[FlØ:=MÛ^ZS?B=Y×�CsTYàS? IMaQP
=@A?�lCs×7FGã�=@?BN»Ct_wFÂCsT-P^IM_DTèI@\ÂZDCs×7FÂãQ?BCtacIKFBCET�Z^IM?ÂFB\>=MÛJZS?B=@Ý]?BI@VÙ\ÆN[VÙZSa»CtVÙCt_wFBCETÖN»_éú>\ÂZ"CE×7F�<^Þ
l)C´FBCE\GFÂCET9=]àS?�VÙC�FB?ÂNc×´=@_�FlÜ�=�Û¤à^_^×7FBN[=]_^IMa»a[Ø
CEþwà^I@aqN[VÙZSa»CtVÙCE_]F IKFBN[=]_^\¶=MÛ�0y=N#ÄTYCE\ÂN»Ý@_
Z^IKFÂFÂCt?B_^\Eý�=]_SC�=MÛ¶FBåSCtV Nc\%Ü�?BNbFÂFÂCt_�N»_ ZSà^?ÂC�<wI�äKISP-FBåSC�=@FÂåSCE?�Nc\%A^I]\GCsTì=@_ ú>\ÂZ"CE×7F�<^Þ
ß¶åSC¶VçCtFÂ?BN»×�?BCtä@CsIMa»CET%FÂå^IMFJI]\GZ"CE×�FGã�=@?BN[CE_wFBIKFBN[=]_%TY=OCE\;_S=@F�_^CE×�Cs\Â\BIM?BN»a[Ø´?BCETYà^×tC�FÂåSC�×�=]Vçã
ZSa[CtâYNbFlØ'=@_ N[FB\�=KÜ�_Ð� FBåSCèÝ]I@N[_ åSN»Ý@å^a[Ø TYCtZ"Ct_DTS\�=]_ÄFBåSCéI]×7FÂàDIMa>Z^?Â=]ASa[CEV9Þ�#SàYFBàS?BC
N[_Oä@Cs\lFBN[ÝwIKFBN[=]_^\¶IM?BCÇ_SCECETYCsT
FÂ=~×�acIM?BNbÛ¤Ø�FÂåSC%TYCtFBI@N[ac\tÞ

Î½u�Ù u�Ïfu�Í>ÓIu1�

�sÃ>};g�hG|]e �v�vu¨�-xqÃb�^É9eBrsmweÂh7�"p�ÃÝÜ ¸ m���mw|]eBhl{�iGgtmO|@ubm]rKÞq�@fYe { �"d¶gtiGg ³ Àw{�ijhGgt�BiluvnsmD�"gEmw|�p�nE�v�M�
k:nthlfw¼]ub{jkÙ� ³ }cß6}�nsk:f]z]iluvmwr 	 z@hl��eB�@{����M·b�K¹Â�wfwfDÃ����M�B�������M�"�yà�á��

�MÃ$ßç�7};gEÀYes��Þ�Ã È]Ãv� ³ }�nsk:f]�veB¾@uvi¿�gßçe7gt{jz]hles���Q�����CÞDhGgtmw{ Ã 	 nEo»i¿ºJg�hle;�qmwrsuvm]e eBhluvmwr@� 	 �-���M·b�K¹Â�
f]fDÃN����át�
�S���@����à���â

�@Ã>}�¼]ub|wgEkÇÀYeBh 	 Ã ã>Ãv�fä�e k:eBhleÂh7�D}�Ã ��Ãv� ³ k:eBijhluv� {¶{jzwu�i¶o»nEhÆnEÀ@ÁQe �BiÆnEhluve mKile7|
|]e {juvrEmD�S�������
Þ^hGgEmw{ Ã 	 nto»i¿ºJgthle>�qmwrEe mwe eÂhlubm]r]�]��ns�¨Ã ���M�Yfwf^Ã �K��â��6�Sà�áM��·���à�à���¹ÂÃ

�]Ã>}�nEfw�vuve mD�OÈ]Ã ¸ ÃÝÜ?ßçz]�vilu��¿p-gthGgE|]uvrsk d¶eB{jubrEmçocnth�}cå)åÇ� ³ |w|@ub{jnEm]�¤É9eB{j�beÂ�K�Y�yà�à�á
�MÃ>}�� gthlmweB��æMu[ä´Ãv�w��uv{je m]e �+æseBh7�w�>Ã É ÃÝÜYÊ�e m]eBhGgtiluv��eÆp-hlnsrthGgEk:k:uvmwr@� ³ |]|]uv{jnsm@�µÉ�e {j�veB�K�N�������

9

â@ÃÆ��uvrEzwe u�hle7|@n]�>�JÃb�ÇÊ¶g�hl� ubg@� ³ Ãv� 	 gEmKiyç ³ m]mOgM�>}�Ãv�gä�zw�ve {j�7gM�Æ�ÇÃv�>xDz]� e mOgM�>}�ÃÝÜ ³ {j{je {j{��
uvm]r ³ {jfYe �Âij� ¸ hluve mKile7| ³ hjilu�o¨gt�Bil{l|QÜaÞ"n7ºJgthG|@{�g;ÞDnKns��� 	 zwf]fYnEhjile7|kè�zwgEmKilu�iGgtiluv��egßçeÂil¼wnM|^�
è ³+¸�¸ 	 �ÖÉ�nEh`æM{j¼wnEfD�]��} ¸�¸ p-�OÊ��bgE{jrEn�º��OfwfDÃ"��át�
â�àM�Q�����S�

�MÃ>Ê¶gtk:k%g@�^�JÃv�"��e �vkÙ�fã>Ãv�DÈsns¼]mw{jnEmD�[ã>Ãv�Q
��vuv{j{jub|]e { �"È]ÃÝÜ"d�e {juvrsm9p-g�ijileBhlmw{�é����ve k:e mKil{¶nto
ã+e z]{lgEÀw�ve ¸ ÀMÁ�eB�Bi ¸ hlubeBmMile | 	 nto»i¿ºJgthleE� ³ |w|@ub{jnEm]�¤É9eB{j�beÂ�K�^��à�à��

á@Ã>Ê�hGgE|]e �]æMu¨�OÈ]Ã dyÃv�OxDe {juve �]æMu¤�NêÇÃÝÜaßÙgE{�ileBhluvm]r ³ {jfYe �BiGÈ@�]É�uv�veB�K�a�������
à@ÃÆÈEe7gEm@�6ë���e {�Ê�z@�Knsk%g�hl��ç ¼D��ë�gEm]m]�QÊ¶gEeB�OÊ�z]� ¼w� m]e zw��Ü ¸ m´il¼weJ�¿k:fOgt�Bi�nEo ³ {jfYe �Âij� ¸ hluve mKile7|

p-hlnsrthGgEk:k:uvmwr~nEm ¸ À@ÁQe �Bij� ¸ hluve mKile7|=ßçeBijhluv� { �1è ³+¸�¸ 	 �ÄÉ�nEh`æM{j¼wnEfD����} ¸�¸ p���Ê��bgE{��
rEn7º��Ofwf^Ã������6���M�f�������

���@Ã���gthjhluv{jnsm^�EÉ'Ã ³ Ãv�SßÙgtrse �¨��ä´Ã �GÃv� ³ }�nsk:f]�beÂ¾]u�i¿�/ßçe7gE{jz@hleÅ�;gE{je7|>nsm/ê�e {�iluvmwr�xDe �se �¨� ³ }cß
	 uvrsfw�bgtmJê�ntilub�Be { �v�yâ]·_�s¹Â�Of]fDÃ â

�E�sÃ���n7ºJgtiji7�EÈ]Ã É Ãv�s�;g�æseBh7� ³ Ã x�ÃÝÜ�ã�uvrsnthlnsz]{�d�e ìOm]uviluvnEmygtmO| ³ mOgt�v�@{juv{-nEoYpqhlnErEhGgEk }�nEk:fw�veB¾M�
u�i¿�Xßçe7gE{jz@hle {�Ü ³ m��-¾]gEk:fw�ve´��{juvmwrKê�e {�iluvmwr@�IÞ;¼]e:Èsnsz@hlmOgt��nto 	 �@{�ile k:{�gtmO| 	 nEo[iQº;gthle
���@�]fwf^Ãb����à��G�y���M���yà�á�à

�y�MÃ)ä�uv� � gE�ve { �MÊÇÃv�sx"gtk:fwuvmwr@�sÈ@Ãb�Sßçe mw|]¼we æsg�h7� ³ Ãv��ßÙgte7|wgM�M}�Ãv��
�ub|]e u�hGg¶x^nsfYe { ��}�Ãv��x^nsuvmwrtilubeÂh7�
ÈEe7gEm@��ßÙg�hl�s�]�¿hjºÅuvmD�wÈ]ÃÝÜ ³ {jfYe �Bij� ¸ hluve mKile7|�p-hlnsrthGgEk:k:uvmwr@�]��} ¸�¸ p��w��ubm]�bgEmO|S� 	 f]hluvm]rseBhj�

�eBhl�bgEm]r´xQê�} 	 ��nE�¨ÃD�y���]�E�Of]fDÃ"�����t�����S�M����à�à��

���@Ã)ä�uv� � gE�ve { �]ÊÇÃv�M��uv�v{l|wgt�beE�w�JÃv�K��z]rsz]mwuvmD�MÈ@Ãb��ä�eÂhl{�ile mD��ß
Ãv�@p-gt�bkÙ�KÈ]Ãv�]Ê�hlub{�º�ns�b|^�MÉ Ã ÊÇÃÝÜ ³ m
¸ �seBhl�MubeÂº nEo ³ {jfYe �BiGÈ]�Ox[ê�} 	 ��ns�¨Ãa���s���M�wfwf^Ãa���s���
�����M�?�����@�

� �]Ã)ä�uv� � gE�ve {�ÊÇÃv�w��e m]mwe k%gtmD�wÈ]ÃÝÜYd¶e {juvrsm�p-g�ijileBhlmÙ�¿k:fw�ve k:e mKiGgtiluvnEmçuvm�È�g7�sg:gtmO| ³ {jfYe �BiGÈ]�
¸�¸ p 	 x ³ �Mf]fDÃ^�yâ@�Â�l�����M�Q�����S�

�y�MÃ)ä�uv� � gE�ve { �MÊÇÃÝÜ ³ {jfYe �Âij� ¸ hluve mKile7|ÇpqhlnErEhGgtk:k:ubm]r]� ³+¸ p�}�nEk:fwz]iluvm]r�{jz@hl��eB�@{���á@·¨e {G¹Â�w�y���E�
f^�S�yà�à�â

��â@ÃÆx^e {juve �]æ@u¨� êÇÃÝÜ �qmw¼wgEmw�Be |@e {juvrsm fwgtijileBhlm]{ ºÅu�il¼ ³ {jfYe �BiGÈ]� ���cß
£K���E�1í�î�î�ïSïSï�¢µªK �ðK K¡s���@ �ñ@§D¢¤�@ s��îE �ò��K �ñt�]�K¡Sî�ó�ôSõ

�7�MÃÆpqu�º;n7ºJg�hl{�æMu¤��ãÆÃ �ÅÃÝÜ ³ ê�e {�iluvm]r�x^e ��e �Å}�nEk:fw�veB¾@u�iQ�@ßçe gE{jz]hleE� ³ }cß 	 uvrsf]�[gtmPê�nEiluv� e { �
�7�@·_às¹Â�wf]fDÃ ���t�����@�D�yà�á��

��á@ÃÆÈsgEk:e {y��Ãqp�n7º;eBh7�q��hlu[gtm ³ ÃeßÙgt�b�vn7�fÜ ³ k:eBijhluv� {Ç{jz]u�ile�o»nEh´rthGgEk:k%g�hj�¿ÀwgE{je7|9{jnto»i¿ºJgthleEÃ
ÈEnsz]hlmwgE�^nEo 	 nEo»i¿ºJg�hle$ßÙgEuvmKile mOgtmw� e´��â]·_â�¹+Ü"�S�����6����â�·6�������K¹

��à@ÃÆp�nth`æ�ns�b�tÀD�fö�Ãv� 	 uv�b���KeE�a÷ÆÃ�Ü"Þ"n7ºJg�hG|]{�gykyz]��ilubfwgthGgE|]uvrsk � nEk:fw�veB¾@u�iQ��k:e7gt{jz]hles�"è ³+¸�¸ 	 �
É�nEh`æM{j¼wnEfD�]��} ¸�¸ p-�OÊ��bgE{jrEn�º��OfwfDÃv�����E�l� ���M�f�������

���@Ã 	 �Â¼]k:ub|]k:e uveBh7� ³ Ãv���¶gEm]e mMÀYeBhlr 	 Ãv����mw�bgtmO|^��ãÆÃÝÜq�Qk:fw�ve k:eBmMiluvm]r�ä�m]n7ºÅmì}�nEmw� e f@il{:uvm
³ {jfYe �BiGÈ]�a�������

�K�sÃ>Ê�hl�BrsnEhj� 	 eÂhlnsmKi7�OßçubrEzwe ��xDnEfYe �s�[
�gt�b�Âhlube�p-gtzw�vzw{ �[ê¶g7Á�u��¶gtÀ]hGg�Ü ¸ m
il¼]eFã+e �bgtiluvnsm]{j¼wuvf
ÀYeÂiQº;eBe mÙ}��@� �vnEk%gtiluv�Æ}�nsk:f]�veB¾@uvi¿��gEmw|%il¼]e�d¶e rthle e¶nto ¸ À@ÁQe �Bi ¸ hluve mKiGg�ilubnEmD�"è ³+¸�¸ 	 �
É�nEh`æM{j¼wnEfD�]��} ¸�¸ p-�OÊ��bgE{jrEn�º��OfwfDÃS����àt�l�E���

���MÃ¶É9gs|@�beÂh7��p�ÃÝÜ9Þ;¼]e:eB¾@f]hle {j{juvnsm�f]hlnsÀ]�ve kÙ��p�nE{�ile7|�nEm�il¼we%È�g7�Eg~Ê�e m]eBhluv� u�iQ�
k%gEuv�vubm]r~�vub{�i7�
��à�à�á

���@Ã¶É�eB�@z"æ�eÂh7���JÃ È]ÃÝÜ����EgE�vzOg�iluvmwrÚ{jnEo»i¿ºJg�hleç� nEk:fw�veB¾@u�iQ�
k:e7gE{jz@hle { �-��������ÞDhGgEm]{ Ã 	 nEo[iQº;gthle
�qmwrEuvmwe eBhluvm]r]�O�sns�¨Ãv���]�wfwf^Ãb���S�E���l�y��âS�M�"�yà�á�á

�Z�]ÃÆÈsg��Eg��sÃ �K� £M���E�1í�îSîSøs��ð��-¢j§7¥���¢�ùs��úaîtªK �ðK K¡s���@ �ñ�ît�K �ù7£��w��ùs�K¡�ûSñK�@��ùs¡s @§�î�ñ� K¡� ��M§E @§�îSøSüK§s "ýyþ
���MÃÆ�q� �vuvfw{jesÃ nthlr´ocnEhlk%g�iluvnsmD� £M���E��í�îSî�ïSï�ï�¢Q �ùs¡��7�w§E -¢Q��ñ�©�î���ñ�©�îK�7�KªK Sòq¢¤£M��úw¡

10

On the Influence of Practitioners’ Expertise in
Component Based Software Reviews

Miguel Goulão1, Fernando Brito e Abreu1

1 QUASAR Research Group, Centro de Informática e Tecnologias de Informação
Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Portugal

{miguel.goulao, fba}@di.fct.unl.pt
 http://ctp.di.fct.unl.pt/QUASAR/

Abstract. Objective: To assess the influence of practitioners’ expertise in code
inspection of software components. Method: Subjects expertise was determined
based on their independently assessed academic record. Inspection outcome was
represented by the diversity of defects found at two levels of abstraction. Re-
sults: Statistically significant correlations among expertise and inspection out-
comes were found in several cases . Conclusion: The effect of expertise is ob-
servable in the inspection outcome and thus can be used in for software quality
management purposes.

1 Introduction

Software development team members’ expertise is an essential factor to the success of
a software project. Skilled developers are likely to produce better software than less
skilled ones. Good code reviewers are likely to detect more defects than bad ones. In
this paper, we assess the impact of practitioners’ skills in the context of code reviews
performed on component-based (CB) software. The reported results are part of a wider
experiment, briefly described in the following section, where we assess pract itioner’s
performances in the development, quality control and integration of software comp o-
nents, and compare them with an independent assessment of their skills .

A code review is a peer review of source code intended to detect defects before the
testing phase begins , thus improving overall code quality. There are a number of code
review processes being used in industry. Fagan inspections [1, 2] are considered semi-
nal in this area. Other processes have emerged since then, that try to lower the costs
involved in code inspections without sacrificing their benefits. Examples include con-
ducting inspections offline, thus skipping the inspection meeting [3], or performing
phased inspections, where the inspectors focus on a specific class of defects [4],
although the latter technique has been criticized for being more costly than conven-
tional inspections [5].

Understanding what drives inspections’ success has been a long time concern in
the software community. Based on data collected from over 6000 inspections, Weller

11

studied the impact of the inspection process on software quality [6]. Among several
other remarks, he pointed to the familiarity of the inspection team with the artifact
being inspected as a key factor in inspection success. We may regard this as kind of
domain expertise. Siy observed that while structural changes were largely ineffective in
improving the results of inspections, the inputs for those inspections (the reviewers
and code being inspected) were far more influential in the inspection outcome [7].
These findings were further explored in [8], to conclude that better inspection tech-
niques, rather than processes, were the key to improving inspection effectiveness.
Biffl and Halling combined reviewers’ expertise measures (software development skills,
experience and an inspection capability pre-test) with different code inspection tech-
niques [9]. While they could not find significant relationships between development
skills and experience and inspectors performance, they found the inspection capability
pre -test useful to optimize the inspection outcome by selecting ideal inspection teams.
They also identified performance differences related to alternative code reading tech-
niques , a result that is consistent with the findings of Laitenberger and DeBaud, in
their systematic review on code inspections reading techniques [10]. Sauer et al. iden-
tified individual’s task expertise as the primary driver of review performance [11].

In a totally different context (social psychology), Kruger and Dunning observed
that the skill of a person in performing a task is closely related to the required skill to
assess his own performance in the same task [12]. If we instantiate this insight into
code production and code reviewing, we would expect the best programmers to also
be the most effective code reviewers.

2 Problem statement

Our global goal is to analyze the outcome of a CB development process, for evalu ation
purposes , with respect to the impact of practitioner’s expertise on defect introduction
and detection, from the point of view of a project manager (in this case, the research
team), in the context of an academic simulation of a component marketplace.

In this paper we are concerned with the impact of practitioners’ expertise in the out-
come of CB software code reviews performed at the component level. We are seeking
evidence on possible causal relationships between the expertise of practitioners in-
volved in the code inspections and the diversity of defects reported during those
inspections (Fig. 1). All inspections were carried out by a review team (RT) which
included the development team (DT) and a peer team (PT). PTs consisted of develo p-
ers of a different component, participating as independent code reviewers. The remain-
ing process and product inputs are fairly similar for all code inspections, to minimize
possible confounding effects.

We consider four potential causal relationships. The expert ise of the development
team (1) may have a negative effect on the diversity of defects found. The rationale is
that expert developers tend to introduce fewer defects on their code. Conversely, peer
reviewers expertise may have a positive effect on the defects diversity (2). A similar
rationale leads to the possible causal effect between the expertise of the review teams

12

as a whole (3) and defect diversity. Finally, we consider the difference of expertise
between the developer team and the peer team (4) as a negative effect on defect diver-
sity. If the expertise of the developers is higher than that of their peers, defect diver-
sity is expected to be smaller than when the opposite occurs.

Review Team (RT)

Development Team (DT)

Peer Team (PT)

Defect Diversity

(3) RT Expertise [+]

(1) DT Expertise [-]

(2) PT Expertise [+]

(4) DT Expertise - PT Expertise [-]

Fig. 1. Exploring the impact of practitioner’s expertise in the outcome of a review process.

3 Experiment planning

3.1 Context selection

This experiment occurred in the context of a Software Engineering course held at the
Universidade Nova de Lisboa, during the Spring semester of 2005. This course is of-
fered on the 8th semester of their 5-years informatics degree. According to the new
harmonized academic curricula adopted in Europe (Bologna model), these are 2nd cycle
degree (MSc) graduate students . The course’s project consisted in developing a CB
elevator system simulator from requirements definition to final product delivery. The
programming language was Java, well-known to all subjects in the experiment.

Among other activities, the development process included a Fagan inspection per-
formed on all the developed components . While PT members were knowledgeable in
the inspected code basic requirements, they were not developing an alternative imple-
mentation of that same component, to avoid biasing their review, besides better repro-
ducing industry practice.

Standard Fagan inspection roles were assigned to the four RT members. The DT
members got the moderator and author roles and the PT members the remaining ones
(reader and recorder). An extensive checklist of common defects in Java programs was
distributed (and its contents explained) to all RTs before code inspections took place.
This paper focuses on the analysis of the outcome of these inspections.

3.2 Hypothesis formulation

The observations on the problem statement section lead us to testing four different
basic hypotheses, to assess the effect of practitioners’ expertise on the outcome of the
code inspection, in terms of the inspected defects diversity. We identify the hypothe-

13

ses as HA, HB, HC, and HD. For each of them, we formulate both a null and an alterna-
tive hypothesis (e.g. HA0 and HA1).

As we shall see in the next section, we will break down each of these hypotheses
into several specialized versions, to try out different expertise assessment metrics.

HA0: Developer skill has no effect on the inspected defect diversity.
HA1: Developer skill has an effect on the inspected defect diversity.
HB0: Peer skill has no effect on the inspected defect diversity.
HB1: Peer skill has an effect on the inspected defect diversity.
HC0: Reviewer expertise has no effect on the inspected defect diversity.
HC1: Reviewer expertise has an effect on the inspected defect diversity.
HD0: The gap of expertise between developer and peer has no effect on the in-

spected defect diversity.
HD1: The gap of expertise between developer and peer has an effect on the in-

spected defect diversity.

3.3 Variables selection

Independent variables. The basic independent variable of this experiment is the sub-
jects’ expertise. We use two measures of our subject’s expertise: their Average Grade
(AG) throughout their academic path, based on the independent evaluation our sub-
jects received in over 30 different courses, and the number of semesters (NSem) it took
them to complete those courses. We assume that there is a higher merit in obtaining a
given AG in the recommended number of semesters (RSem), than in a higher NSem.
The Simple Weighted Average Grade (SWAG) and the Complex Weighted Average
Grade (CWAG) expertise metrics, defined below, follow this rationale. Note that
SWAG causes a bigger penalty than CWAG, as NSem increases.

),(NSemRSemMax
RSemAGSWAG ×=

),(NSemRSemMax
RSem

AGCWAG ×=

For each of the RTs, concerning expertise, we use the best subject, the worst sub-
ject, and the average within the team. Finally, we also consider the difference between
the expertise of the DT and that of the PT as an independent variable. In summary, we
have 3 alternative rating schemes for grades, and 3 ways of combining grades within
teams. This implies that we have 9 different ways for quantifying our independent
variable (the expertise). These alternatives are used for each hypothesis under test.

Dependent variables. The dependent variables used in this experiment represent the
diversity of defects found during code inspection. A defect classification checklist
was distributed to all participants. The checklist contained 16 different defect classes,
which were then subdivided into a total of 81 different defect codes. In summary, our
dependent variables are:

• NDDClass: the number of different defect classes reported in the inspection;
• NDDCode: the number of different defect codes reported in the inspection.

14

At first, NDDClass may seem unnecessary, given the usage of a finer grained meas-
ure (NDDCode). However, if two code inspections report a similar number of different
defect codes, but one of them uses a lot less defect classes than the other, it may be
the case that this reflects a lower coverage of the kinds of problems to be found during
the inspection. We used NDDClass to detect this kind of problem, should it occur.

3.4 Selection of subjects

The 87 subjects participating in this experiment are a convenient, but also representa-
tive sample of the informatics students which annually graduate from our university
(the numerus clausus for the informatics degree is 160, and the number of students
graduating each year is around 60).

3.5 Experimental design

Regarding the experiment instrumentation, the calculation of subjects’ expertise was
done upon the data available from the university’s academic database. The informa-
tion concerning code inspections was collected from the normalized inspection reports
submitted by subjects after they performed the Fagan inspections. Potential threats to
validity [13], and how they were dealt with, are identified throughout the paper.

4 Data Collection

Preparation. The subjects were not aware of the aspects being researched, at the time
they participated in the experiment, as this could jeopardize the validity of the results .
They were only aware of our intention to use the data collected during the project.

Prior to the implementation of the components that were later inspected, subjects
received a Java coding style guide, along with the set of standard public APIs for the
components (specified as Java interfaces). Concerning code inspections, besides the
referred checklist, subjects received a report template, so that they would perform the
inspection and write down the report in a standardized fas hion. They also received
training on how to perform Fagan inspections, prior to actually start ing them.

Execution. The experimental process was not allowed to disturb in any way the sub-
jects’ activities in the projects . Subjects performed their normal tasks while developing
this project, from requirements specification down to project delivery. Code inspection
data was collected from the project’s deliverables, which was checked-in in a contents
management system made available to students.

Data validation. In the beginning of the semester, there were 93 students enrolled in
the course. Five of them dropped out befo re the experiment started, and one also gave
up before turning in the first implementation of his group’s component. The remaining
87 students completed the project and are the subjects of this experiment. They were
paired into 44 DTs . 43 of those DTs produced components that were inspected. The
deliverables of these 43 inspections were used to collect the dependent variables.

15

5 Data analysis

We summarize the most relevant findings of our hypotheses tests . Further details are
available at http://ctp.di.fct.unl.pt/QUASAR/Projects/CBSE/CodeInspections/.

5.1 Data set reduction

Outlier and extreme values can change
our view on the relations between de-
pendent and independent variables. For
each dependent variable, we conducted
a linear regression analysis using the
average, best and worst cases of the
independent variables. We repeated this
analysis for each of our hypotheses and
flagged as outliers those cases where
the standard residual is greater than 1.5
times the standard deviation. This re-
sulted in the removal of four cases in
our analysis, with each of the depend-
ent variables. The outlier removal proc-
ess is illustrated in Fig. 2, where cases
15, 19, 25, and 38 are removed.

12,00 13,00 14,00 15,00 16,00 17,00

Peer Team Student's degree classification (best)

0

10

20

N
u

m
b

er
 o

f
d

iv
er

se
 s

p
ec

if
ic

 b
u

g
 c

o
d

es
A

A

A
A

A
A

A

A

AA

AA
A

A

A

A

A

A

A

A A

A

A

A

A

A
A

A

A

A

A

A

A

A
A

A

A

A

A
A

A
A

A

1

2

4
5

6
7

8

9

1011

1213
14

15

16

17

18

19

20

21 22

23

24

25

26

27
28

29

30

31

32

33

34

35
36

37

38

39

41
42

42
43

44

Fig. 2. Number of diverse specific bug
codes, by PT expertise, including outliers.

5.2 Normality tests

We used the Kolmogorov-Smirnov (with the Lilliefors correction) to check normality.
Using a confidence interval of 99% (test significance = 0.01), we can not reject the
normality hypothesis, both for the independent and dependent variables. Therefore,
we can use parame tric tests, such as the Pearson correlation coefficient.

5.3 Hypothesis testing

We started by performing correlation analysis, using the Pearson coefficient, among
each of the independent and the dependent variables, to determine whether or not a
relationship exists. These correlations were not significant with the predictors of hy-
potheses HA and HC. As such, neither the influence of the DT skill, nor the influence
of the overall RT skill in the outcome of the reviews, in terms of the diversity of the
defect codes and classes , was confirmed.

From Table 1 we can observe significant correlations between our independent and
dependent variables for hypotheses HB and HD. Most of the candidate predictors for
HB have a significant positive correlation of above 40%. This relationship is observed
both with NDDCode and NDDClass. The predictors for HD have a significant nega-
tive correlation with the dependent variables. These correlations are stronger with
SWAG and CWAG than with AG. Again, the same effect is observable both with
NDDCode and NDDClass.

16

Table 1. Pearson correlations for the variables in hypotheses HB and HD, considering 39 cases
(the outlier values referred in section 5.1 were removed, before the correlation analysis).

 HB HD
 PT Diff_DT_PT
 AG sig. SWAG sig. CWAG sig. AG sig. SWAG sig. CWAG sig.

Avg. .469 .003 .429 .006 .462 .003 -.402 .011 -.454 .004 -.471 .002
Best .419 .008 .385 .016 .413 .009 -.409 .010 -.393 .013 -.419 .008

NDD Code

Worst .479 .002 .441 .005 .470 .003 -.350 .029 -.470 .003 -.468 .003
Avg. .416 .009 .378 .018 .407 .010 -.356 .026 -.433 .006 -.443 .005
Best .394 .013 .315 .051 .353 .028 -.376 .018 -.370 .020 -.395 .013

NDD Class

Worst .392 .013 .413 .009 .430 .006 -.293 .070 -.451 .004 -.451 .004

We further explored the HB and HD hypotheses, to check for significant differences
observed in different groups of code reviews , using the ANOVA test. We started by
computing the quartile values for the independent variables, and a ssigned the reviews
to the respective quartile group. For each test, we had four groups with a growing
expertise of the PT (in hypothesis HB), or with a growing difference between the exper-
tise of the DT and the expertise of the PT (in hypothesis HD). The latter ranges from a
negative value (DT has less expertise than PT) to a positive one (DT has a higher
expertise than PT). Table 2 shows an example of this means comparison test, for hy-
pothesis HD.

Concerning HB, we observed a variation among the different review groups that al-
ways followed the same pattern. The reviews on the 4th quartile (the ones with the
most expert peer teams) were always the ones with the highest NDDCode and
NDDClass. Except when using predictors based on the worse PT element, or the aver-
age value of SWAG, these differences were statistically signific ant. NDDCode and
NDDClass showed an increase ranging from 36% to 111%. This trend is not visible in
the first three quartiles, for some of the used metrics. The scatterplot presented on Fig.
2 is an example of a typical distribution of defect diversity vs. PT expertise. In sum-
mary, we can reject the null hypothesis HB 0. We were able to find several measures of
the expertise within the PT which can be used as predictors of the diversity of the
reported defects .

With respect to HD, we observe the opposite pattern. With the expertise functions
being used, the average number of different reported bug codes and classes decreased
between 19% and 49%, when comparing the first with the last quartiles . In other
words, the number of diverse defect codes and classes decreases as we move from
DTs with lower expertise than their PTs to the opposite case. As such, we can reject
the null hypothesis HD0. We found several measures of the difference between the
expertise of the members of DT and PT which can be used as predictors of the diver-
sity of the reported defects.

17

Table 2. Mean number of diverse defect codes found during code inspections. The difference
between average AG of the DTs and PTs metric is used to place the PTs into the respective
quartiles. Note that on the 1st quartile, DT has a much lower expertise than PT, while on the
4th, PT has a much lower expertise than DT.

Quartile Mean Diverse Defects N Std. Dev .

1st 7.00 10 2.828

2nd 5.40 10 3.688

3rd 6.10 10 2.558

4th 4.78 9 2.819

Total 5.85 39 3.005

6 Discussion

HA. We expected the best developers to produce components with fewer defects, but
this was not confirmed. This result may be explainable in different ways. We did not
use any information concerning neither the relative severity of the defects found in
this analysis, nor their expected impact on maintenance. Moreover, we used defect
code and class diversity, but not the actual number of reported defects in this analy-
sis. Therefore, it may be the case that our dependent variable is too simplistic. It may
also be the case that, because PTs were also part of the RTs, their expertise countered
the effect of a lower variety of problems with that of a higher efficiency in finding
them. A way to circumvent this would be to have several inspections being performed
on the same artifacts by different teams , but this was not feasible in our context.

HB. As expected, we observed that the expertise of the PT does have a positive effect
on the variety of problems uncovered during code inspections. We also note that the
average and higher element expertise within the PT have stronger correlations with the
outcome of the review than the expertise of the “weaker” element of the PT. Along
with the significant boost of results with the PTs on the best quartile, this increases
our confidence on the positive effect of expert peer reviewers in the reviewer team and
also points to a small effect of “leadership” within those teams.

HC. The expertise of the whole review team did not show a significant relationship
with the outcome of the review. The considerations concerning a possible over-
simplification of our dependent variable, combined with the cancellation effect also
described with respect to HA may be responsible for this discrepancy between the
expected result and the outcome of this experiment.

HD. As expected, when PTs of low expertise analyze the work of DTs with a higher
expertise, the outcome of the code review shows a lower variety of defects found.
Conversely, more defects are found in inspections where the PTs have a higher exper-
tise than the one of the DTs. A potential leadership effect of a reviewer over the others
is not visible from the data analyzed while testing this hypothesis.

With the experiment design of this last hypothesis , we have an alternative perspec-
tive on the inspection group dynamics, when compared to hypothesis HC. On HC we
had no indication of how the expertise was distributed within the group, thus being

18

vulnerable to the cancellat ion effect occurring when (i) having good experts examining
their own code and not finding many problems with it, because they were not there, or
(ii) weaker programmers examining their own code and not realizing the problems in it.
Both situations lead to a cancellation effect that might explain the unexpected results
with hypothesis HC.

There is a curious effect in the evolution of the variety of defects found between
the second and third quartiles of HD (the second quartile has DTs with a lower exper-
tise than their PTs, while the third inverts this relationship). One could expect the
variety of defects to be lower on the third quartile, following the tendency found from
the first to the forth quartiles. However, the expertise level is very close, within groups
2 and 3. Therefore, it may be the case that it is the domain level expertise that domi-
nates the outcome of the inspection. With a better knowledge of the deliverables b e-
ing inspected, allied with a slightly better expertise than their peers, the authors may
be responsible for this locally increased benefit of the code review. As the gap of
expertise between DT and PT members widens, this effect would be mitigated by the
dominating effect of the higher code quality and lower external reviewer expertise.

7 Conclusions

We described an exp eriment carried out to help understanding the effect of practitio-
ner’s expertise in the deliverables produced in the context of CB development.

We focused our attention on the outcome of code inspections, and, in particular, on
the variety of problems reported during those inspections. We confirmed the expected
positive effect of the expertise of the peer review teams in the outcome of the reviews,
observable through the increased variety of defects found when peer experts were
available. We also confirmed that having expert peers collaborating in the inspection
of components developed by less skilled peers has a positive impact on the outcome
of the review. Moreover, there is also a learning effect, not studied here but vastly
commented on the literature, when combining experts with non-experts. This is also
expected for the opposite case, where non-experts participate on the review of code
developed by experts. However, in this case, a lower variety of defects is found, both
because the code is likely to have a higher quality, and because the external reviewers
have less capacity to detect its problems. Given the main goal of inspections (maximiz-
ing defect detection), the results are poorer.

When observed in isolation, the expertise of the DTs did not show a significant re-
lationship with the variety of problems found. The expertise of the RTs was also not
shown to be a good indicator of the outcome of the inspection. Further research is
required to determine whether these were the results of cancellation effects of exper-
tise, or if more sophisticated review outcome metrics should have been used here.

As future work, we expect to expand on this experiment by exploring this interpreta-
tion of why two of our hypotheses were not confirmed. The deliverables of the project
that served as a basis for this experiment include some details that were not explored in
this paper, such as code complexity metrics, and the practitioners’ assessment of the
potential impact of the problems reported. We plan to further explore these data to

19

strengthen the conclusions reported here and to explore other related hypotheses on
the effect of expertise throughout the development process.

Acknowledgments

This work is sponsored by the FCT STACOS project (POSI/CHS/48875/2002).

References

1. Fagan, M.E., Design and Code Inspections to Reduce Errors in Program Development.
IBM Systems Journal, 1976. 15(3): p. 182-211.

2. Fagan, M.E., Advances in Software Inspections. IEEE Transactions on Software Engineer-
ing., 1986. 12(7): p. 744-753.

3. Parnas, D.L. and Weiss, D.M., Active Design Reviews: Principles and Practices. Journal of
Systems and Software, 1987. 4(7): p. 259-265.

4. Knight, J.C. and Myers, E.A., An Improved Inspection Technique. Communications of the
ACM, 1993. 36(11): p. 51-61.

5. Porter, A. and Votta, L., What Makes Inspections Work? IEEE Software, 1997. 14(6): p.
99-102.

6. Weller, E.F., Lessons from Three Years of Inspection Data. IEEE Software, 1993. 10(5): p.
38-45.

7. Siy, H., Identifying the Mechanisms to Improve Code Inspection Costs and Benefits , PhD
Thesis, University of Maryland, USA. 1996.

8. Porter, A., Siy, H., Mockus, A., and Votta, L., Understanding the sources of variation in
software inspections. ACM Transactions on Software Engineering and Methodology, 1998.
7(1): p. 41-79.

9. Biffl, S. and Halling, M. Investigating the Influence of Inspector Capability Factors with
Four Inspection Techniques on Inspection Performance . in Eighth IEEE International Sym-
posium on Software Metrics (Metrics'02). 2002.

10. Laitenberger, O. and DeBaud, J.-M., An Encompassing Life-Cycle Centric Survey on Soft-
ware Inspection. Journal for Systems and Software, 2000. 50(1): p. 5-31.

11. Sauer, C., Jeffery, R., Land, L., and Yetton, P., The Effectiveness of Software Development
Technical Reviews: A Behaviorally Motivated Program of Research. IEEE Transactions on
Software Engineering, 2000. 26(1): p. 1-14.

12. Kruger, J. and Dunning, D., Unskilled and Unaware of It: How Difficulties in Recognizing
One's Own Incompetence Lead to Inflated Self-Assessments. Journal of Personality and So-
cial Psycology, 1999. 77(6): p. 1121-1134.

13. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., and Wesslén, A., Experi-
mentation in Software Engineering: An Introduction . Vol. 6. 1999, Boston, EUA: Kluwer
Academic Publishers. 224 pages.

20

A Substitution Model for Software Components

Bart George, Régis Fleurquin, and Salah Sadou

VALORIA Lab., University of South Brittany, France
{Bart.George,Regis.Fleurquin,Salah.Sadou}@univ-ubs.fr

Abstract. One of Software Engineering’s main goals is to build com-
plex applications in a simple way. For that, software components must
be described by its functional and non-functional properties. Then, the
problem is to know which component satisfies a specific need in a spe-
cific composition context, during software conception or maintenance.
We state that this is a substitution problem in any of the two cases.
From this statement, we propose a need-aware substitution model that
takes into account functional and non-functional properties.

1 Introduction

Component-oriented programming should allow us to build a software like a
puzzle whose parts would be units ”subjects to composition by a third party”
[13]. Examples of such units are COTS (Components-Off-The-Shelf), which are
commercial products from several constructors and origins. When one develops
and maintains a component-based software, some problems occur, and we will
notice two main ones: how to select, during conception of such a software, the
most suitable component in order to satisfy an identified need ? And during a
maintenance, if this need evolves, will the chosen component remain suitable, or
shall we replace it ?

We think that these problems are related to a substitution problem. In fact,
when one conceives or maintains an application, some needs appear. And to
describe them, the designer or the maintainer can imagine ideal components.
These are virtual components representing the best ones satisfying these specific
needs. Then the problem is to find the concrete components which are the closest
to the ideal ones. In other words, trying to compose or maintain components
means trying to make concrete components substitute ideal ones.

However, composition doesn’t concern only the functional aspect. Most com-
ponents are ”black boxes” which must describe not only functional, but also non-
functional properties. As every software needs a certain quality, one can’t think
about composing components whose non-functional properties are unknown, and
at the same time hope having its quality requirements satisfied anyway. This is
why substitution must take functional and non-functional properties into ac-
count.

So, how to substitute ? Some may say we just have to use subtyping, as some
object-oriented languages made it a general way of substitution. However, an
ideal component describes more than general needs: it describes the application’s

21

context, a notion that is absent from objects. Let us explain what we mean by
”context”. If we take a need, modeled by an ideal component, we will try to find a
concrete one to substitute it. Now, let us suppose that we already found a suitable
component. We may need to check if there isn’t another one better than the first
one. However, trying to substitute the old candidate by a new one would be a
mistake, because the key notion isn’t the candidate, but the need it is supposed
to satisfy. Plus, if this need changes, a former candidate may no longer remain
suitable. So substitution of an ideal component by a concrete one is performed
only into the context of the need modeled by the ideal component. This is why
a candidate component can replace another one without any subtyping relation
between them, as every candidate is compared only to the ideal component.

In this paper, we consider a generic component model and a quality model,
and into this framework we define (section 2) a component-oriented substitution
model, including a distance from a candidate component to an ideal one. In
order to illustrate the possibilities of such a model, we describe the different
substitution cases during the life cycle using a short application example (section
3). Then, before concluding, we describe some related works (section 4).

2 Our substitution model

Definitions given in this paper are placed in the following framework: one compo-
nent model, holding a type system such as Java for EJB, and one quality model
such as ISO 9126 standard [11]. In this framework, we suppose the existence of
metrics to measure non-functional properties, so that our contribution will focus
only on the substitution model definition.

Here, we will present only the basic concepts of this model. A more detailed
description is available in [7]. Note that in this version of our work, we perform
substitution at the individual component level.

2.1 Component and quality generic models

Our goal is not to give yet another definition of what a component is, or what
non-functional properties are. It is to define a component-oriented substitution
that we can apply on many existing component and quality models. That is
why we prefer to give generic models, on which we can apply our substitution
concepts.

The generic component model includes component artifacts, representing
the component’s architectural elements, which are common to most existing com-
ponent models, and which have non-functional properties. As shown in figure 1,
we chose to keep three kinds of component artifacts: components themselves, in-
terfaces, and operations. A component contains provided and required interfaces,
and interfaces contain operations. In the remaining of the paper, we refer to can-

didate component and substitutable component when the first one tries to
substitute the second one. Their elements are called respectively candidate el-

ements and substitutable elements. When we find the best candidate for the

22

Fig. 1. Our generic model

substitution, we say the substitutable component or element can be replaced

by this candidate.

Beside the component model, we define a generic quality model, on which
the quality properties of the component model’s elements are based. Elements of
the quality model are quality characteristics (such as those from ISO 9126 [11]),
and metrics. We use existing metrics to evaluate and compare non-functional
properties (see [8] for a survey). But why metrics ? In the literature, several
methods for defining and evaluating non-functional properties already exist (see
[1] for a survey). But such methods usually focus on one specific property, or
family of properties, for example quality of service, which is only a part of the
whole software quality. Metrics may be applied to many families of properties,
and allow comparisons. This is why we think that in our case, metrics represent
the best method for comparing different non-functional properties.

2.2 Non-functional specifications

Elements of the component model are linked to elements of the quality model
using a non-functional specification (noted NFS). An artifact may be related
to several quality elements, so several NFSs belong to only one artifact. An
NFS describes the effect of a quality characteristic on the artifact it belongs to,
and uses the metric applied on the latter. Several NFSs of a same component
artifact may share the same metric, but not the same characteristic. The set of
an artifact’s NFSs is called a quality field.

In Figure 1, the resultValue attribute of an NFS is given by the metric’s
measurement on the artifact. In the case of an ideal component, this attribute
value is given by the application’s designer.

23

2.3 Comparability of elements

We can try to compare two NFSs only if we can compare the artifacts they
belong to. And we can try to compare artifacts of the same kind only. Two
NFSs of comparable artifacts are comparable only if they measure the same
characteristic (which means they use the same metric too, as one characteristic
is measured by only one metric). Two NFSs are equal if they are comparable
and their resultValue attributes are equal.

Two operations are comparable if their signatures are comparable. Two op-
erations are equal if their signatures are equal modulo the renaming of the type
names, and if their quality fields are equal.

A candidate provided interface PI1 is comparable to a substitutable provided
interface PI0 if for each operation of PI0 there exists a comparable operation
in PI1. A candidate required interface RI1 is comparable to a substitutable
required interface RI0 if for each operation of RI1, there exists a comparable
operation in RI0. Two interfaces (provided or required) are equal if their quality
fields are equal and if, for each operation of one interface, there exists an equal
operation in the other interface, and vice versa.

A candidate component C1 is comparable to a substitutable component C0

if for each provided interface of C0 there exists a comparable provided interface
of C1, and for each required interface of C1, there exists a comparable required
interface of C0. If C1 is not comparable to C0, it can not pretend to substitute
C0.

2.4 Weights and penalties

For each NFS, the ideal component’s designer attaches a weight (or comparison
weight) and a penalty. These two (absolute) values define the NFS’s importance
for the artifact it belongs to, the importance that the designer gives to it. The
higher these two values are, the more important this NFS is, in the whole sub-
stitutable component. If a substitutable artifact owns an NFS and a candidate
artifact owns a comparable one with a superior value, the candidate’s chances
increase proportionally with the comparison weight. Else, the penalty will be
used to sanction this lack. A candidate component may also bring his own new
NFSs that the substitutable component doesn’t have. These new elements will
be evaluated by the ideal component designer, who will choose a value for each
one of them.

2.5 Substitution distance

The substitution distance, or distance, is defined using these weights, penal-
ties, and NFS’ resultValues. This distance will inform on the substitutability of
an NFS or an artifact. The best candidate for substitution is the one with the
lowest distance. If the distance is negative, the candidate element can be con-
sidered as ”better” (in terms of quality) than the substitutable one, according
to the current context. If the distance is positive, then the candidate is worse. If

24

the distance equals to 0, then the two compared elements are ”equivalent” each
to the other, but it doesn’t mean that they are equal.

Substitution distance between components is obtained with the sum of all
the distances of each one of their comparable sub-elements. A more precise de-
scription of formulas is available in [7].

For each component, there is a maximal distance for substitution, fixed by
its designer. Let us consider a component C1, a candidate for the substitution of
another component C0. If the substitution distance between C1 and C0 is bigger
than the maximal distance associated to C0, then C1 will be rejected.

3 Substitution in practice

Now let us take the example of an application that requires a Digital Video
(”DV”) camera component, with an interface for video stream and another one
for camera control. It must also conform to the DV standard. This video camera
example is taken from [3].

3.1 Modeling an ideal component

Fig. 2. Example of quality model.

The above requirements could be expressed by an ideal component called
videoCamera. The latter contains a provided interface videoStream (with an
operation outputV ideoF low), a provided interface cameraControl (with basic
operations such as on, record and eject1), and a required interface DV Format
(with an operation inputDV F low that asks for a DV tape).

The needs are not just about functional part, but also about non-functional
properties and their respective importance. For example, we suppose that a high
level of reliability for record and eject operations is required (so that the camera
does not crash while recording, nor refuse to eject a video tape). We also assume
that a high image quality, such as a 1 million pixels (1 MPixels) screen resolution,

1 For simplicity and brevity reasons, we limit this provided interface to only three
operations.

25

Fig. 3. Example of ideal component: videoCamera.

is required for videoStream interface. According to the quality model of Fig-
ure 2, we use the following characteristics: reliability and imageQuality. Their
respective metrics are: MeanT imeToFailure (MTTF) and screenResolution.
Then we attach to the ideal component several NFSs. To each operation of
the cameraControl interface, we attach an NFS using reliability characteris-
tic (onReliability for on operation, recordReliability for record operation, and
ejectReliability for eject operation). To videoStream interface, we attach the
NFS cameraResolution, using the characteristic imageQuality.

Finally, the designer fixes expected resultV alues, weights and penalties for
each NFS, and also fixes a maximal distance for the ideal component videoCamera.
On Figure 3, we see that the expected value for cameraResolution is 1 mil-
lion pixels, and the expected values for NFSs using reliability characteristic
vary from operation to operation. The values required for recordReliability and
ejectReliability are higher than those for onReliability. The penalties attached
to cameraResolution, recordReliability and ejectReliability are very high in or-
der to enforce candidate components to contain these NFSs. cameraResolution
has a low comparison weight, which means that a big difference on the image
quality is not very important. However, recordReliability and ejectReliability
have higher weights, which means that a big difference on the reliability measure-
ments of record and eject is very important. The maximal distance is fixed at a
low level, so that the lack of one of these three NFSs in a candidate component
will hardly be accepted.

3.2 Component lifecycle and substitution cases

Now that our ideal component is modeled, we can look for the best concrete
candidate one to substitute it. Here are the different substitution cases:

26

Fig. 4. Example of rejected candidate: fluidCamera.

First composition. Trying to plug a component into an application (in order
to satisfy a given need) means trying to make this concrete component substitute
the ideal one (corresponding to this need). Let us take the video camera example.
Now that we modeled an ideal camera component, we have to check which
concrete camera is the best candidate to substitute it.

First, according to our substitution model, a candidate must meet all the
functional requirements, i.e. it must have all the ideal component’s provided
services (interfaces and operations), and must not bring more required ones.
Else, it will be rejected even if it has a higher quality. For example, let us
consider a V HSCamera component meeting all functional requirements, but
one (it requires VHS tapes instead of DV ones). No matter its quality, we need a
camera that requires only DV tapes, and this candidate adds a required interface,
so it is rejected.

Then, a candidate, like the fluidCamera component on Figure 4, may add
new NFSs unanticipated by the ideal component designer. For example video
flow’s number of frames per second. That corresponds to the metric FPS (for
Frames Per Second), which measures flowPerformance and flowQuality char-
acteristics (all of them are shown in Figure 2). It may be interesting to have a
new NFS using flowQuality characteristic on the outputV ideoF low operation,
but the candidate (fluidCamera) lacks an important NFS. The penalty is so
high that it is rejected.

We can also have candidates providing at the same time some lower qualities,
and other higher ones, than ideal component. In this case, a candidate component
would rather have good ”scores” in the most important NFSs. For example, let
us take a candidate goodImageCamera which has an excellent image quality (2
million pixels instead of 1 million) and an average reliability (2.5 days instead
of 3 for operations record and eject), while candidate reliableCamera shown in

27

Fig. 5. Example of accepted : reliableCamera.

Figure 5 has an average image quality and an excellent reliability. We are not
directly comparing them to find which one is ”better” than the other. We are
comparing each one of them, separately, with the ideal component, in order to
find if it is an acceptable candidate. If we consider this ideal component, and
the distance obtained for each one of the candidates, we can say that both are
acceptable (distance with candidate goodImageCamera would equal to +15),
but the reliableCamera is the best one.

Maintenance. The application now has its camera component, but it could
have a ”better” one. If the needs are the same, the ideal component that models
them is exactly the same, but we can have new candidates. So we have to com-
pare each one of them to this ideal component, ignoring the previous candidate.
Otherwise, if the needs change, so does the ideal component. So this time, we
must compare each candidate (including previous accepted one) with the new
ideal component, providing ”evolving needs” may mean several different things.
For example, it can be the need for a new service, whether it is functional (a
new artifact) or non-functional (a new NFS). Or it can simply be the need for
re-evaluated qualities, which means a modification of the ideal component’s ex-
pected values for its NFSs and/or a modification of its weights and penalties. In
any case, we are brought back to the first composition scheme.

4 Related work

We said in introduction that substitutability was a well-known problem in object-
oriented languages which include typing [5] and subtyping [12]. It is also an
industrial problem, as referred in [14], who asks how to make sure that changes

28

on a component won’t affect existing applications of a component, and try to
answer by setting rules based on subtyping. It was tempting for us, in order
to substitute components, to base our work on subtyping too. But as it was
criticized [13] and accused of being too rigid and restrictive for componentware,
and unable to deal with context, we preferred to try a more flexible approach.

Premysl Brada explored the notion of contextual substitutability [4], which
consists in comparing a candidate component with a sub-component containing
the ”old” component’s used part of its services (provided and required services
that are bound to other components). Brada’s substituability is ”architecture-
aware” and his context depends on its deployment in global architecture, whereas
our approach is rather ”need-aware”, and our context considers an ideal compo-
nent (modeling a need) and a concrete one which could substitute it.

Our substitution model was inspired by Zaremski and Wing’s specification
and signature matching for library components [16, 17]. We went further, by tak-
ing context and non-functional properties into account, and applying our sub-
stitution rules on generic component models. Also, our notion of weights can be
compared to Scott Henninger’s approach [9], that creates library ”components”
from keywords and places them into a valued network. However, our approach
is at a different level, because we search and select candidates from components’
structure instead of keywords. It can be used in such retrieval mechanisms in
order to refine component search, and create more trustable libraries.

For our quality generic model, we were inspired by quality standards like
ISO-9126 [11] and metrics standards like IEEE-1061 [10]. Example of existing
metrics that could be used with our model can be found in [8, 2, 15]. But the
quality part of our model can also be used with quality of service contracts
languages, such as Jan Aagedal’s CQML language [1]. In particular, our con-
cern about substituting non-functional properties can be compared to CQML’s
substitutability of QoS ”profiles”. However, contrary to CQML, which, like most
QoS languages, doesn’t take functional aspects into account, our model combines
functional and non-functional ones. And while Aagedal separates primitive com-
ponent substitutability and composite component one, we deal with contextual
substitutability of two components, no matter their internal structure.

5 Conclusion and future work

We proposed a substitution model including several elements: i) a generic qual-
ity model, able to use existing quality metrics in order to specify non-functional
properties. ii) a generic component model, able to use existing research and in-
dustrial approaches. iii) a substitution distance, able measure the substitutability
of a candidate component. We also introduced the notion of ideal component,
that models functional and non-functional conceptual needs and takes the con-
text of these needs into account. Right now, our substitution model is at the
individual component level. A possible area of research is to bring it at architec-
ture level.

29

In our current framework, we chose to consider one component model using
existing quality characteristics and metrics from one quality model, because in
the actual research and industrial schemes, composition concerns mainly com-
ponents that come from a same component model. Other choices we made might
change in the future. For example, the ideal component’s current designer fixes
and redistributes all the values, weights and penalties, which can lead to ar-
bitrary decisions. This is why we are working right now on a normalization of
metrics comparisons (considering values and units) instead of letting the designer
assume everything in a risky way.

Right now, we have a tool [6] that allows us to check if a component can
substitute another one according to our substitution distance measurement. This
tool aims to help designers to find the best candidates for their needs.

References

1. J. Aagedal. Quality of Service Support in Development of Distributed Systems.
PhD thesis, University of Oslo, 2001.

2. M. Bertoa and A. Vallecillo. Quality attributes for cots components. In Proceedings
of the ECOOP Workshop on QaOOSE, June 2002.

3. G. Blair and J.-B. Stefani. Open Distributed Processing and Multimedia. Addison-
Wesley, 1997.

4. P. Brada. Specification-Based Component Substituability and Revision Identifica-
tion. PhD thesis, Charles University in Pragues, 2003.

5. L. Cardelli. Type systems. In A. B. Tucker, editor, The Computer Science and
Engineering Handbook, chapter 97. CRC Press, 2004.

6. B. George. Substitute tool. http://www-valoria.univ-ubs.fr/SE/Substitute/, 2006.
7. B. George, R. Fleurquin, and S. Sadou. A component-oriented substitution model.

In To appear in : 9th International Conference on Software Reuse, June 2006.
8. M. Goulao and F. B. e Abreu. Software components evaluation : an overview. In

CAPSI 2004, November 2004.
9. S. Henninger. Constructing effective software reuse repositories. In ACM TOSEM

1997, 1997.
10. IEEE. IEEE Std. 1061-1998 : IEEE Standard for a Software Quality Metrics

Methodology, ieee computer society press edition, 1998.
11. ISO Int. Standards Organisation, Geneva, Switzerland. ISO/IEC 9126-1:2001 Soft-

ware Engineering - Product Quality - Part I : Quality model, 2001.
12. B. Liskov and J. Wing. A behavioral notion of subtyping. In ACM Transactions

on Programming Languages and Systems 1994, 1994.
13. C. Szyperski. Component Software : Beyond Object-Oriented Programming.

Addison-Wesley / ACM Press, second edition, 2002.
14. R. Van Ommering. Software reuse in product populations. IEEE Transactions on

Software Engineering, 31 (7):537–550, july 2005.
15. H. Washizaki, H. Yamamoto, and Y. Fukazawa. A metrics suite for measuring

reusability of software components. In Metrics 2003, 2003.
16. A. Zaremski and J. Wing. Signature matching : a tool for using software libraries.

In ACM TOSEM 1995, 1995.
17. A. M. Zaremski and J. Wing. Specification matching of software components. In

ACM TOSEM 1997, 1997.

30

Towards Task-Oriented Modeling using UML

Christian F.J. Lange, Martijn A.M. Wijns, and Michel R.V. Chaudron

Department of Mathematics and Computer Science, Technische Universiteit
Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands,

C.F.J.Lange@tue.nl, MartijnWijns@gmail.com, M.R.V.Chaudron@tue.nl

Abstract. The Unified Modeling Language (UML) is a collection of 13
diagram notations to describe different views of a software system. The
existing diagram types display UML model elements and their relations.
This information is sufficient for the description of software systems.
However, software engineering is becoming more and more model-centric,
such that software engineers start using UML models for more tasks than
just describing the system. Tasks such as analysis or prediction of system
properties require additional information such as metrics of the UML
model or from external sources, e.g. a version control system. In this
position paper we identify tasks of model-centric software engineering
and information that is required to fulfill these tasks. We present views
to visualize the information to support fulfilling the tasks. This paper
reports on industrial case studies and a light-weight user experiment to
validate the usefulness of the proposed views that are implemented in
our MetricView Evolution tool.

1 Introduction

The Unified Modeling Language (UML) is the de facto standard for modeling
object-oriented systems. The building blocks of UML models are model elements,
which are specified in the UML meta model [10]. These elements represent con-
cepts of software programs or relations between them. Classes, methods, objects
and messages are examples of UML model elements. The UML has 13 diagram
types to visualize UML models. Each diagram type views a projection of a UML
model from a certain perspective. Besides the model itself, today considerable
amounts of related data are often available such as metrics [3], evolution data,
documentation and problem reports.

Similar to the position taken in [9] we argue that in model-centric software
engineering, views on the available data must be aligned with the tasks in which
the views are used. The purpose of this paper is to identify available data, typi-
cal tasks and by proposing new views and visualization techniques, to improve
the use of UML models for practitioners with respect to fulfilling these tasks.
Furthermore, we report on industrial case studies and a light-weight user exper-
iment to validate the usefulness of the proposed views that are implemented in
our MetricView Evolution tool.

31

2 Task Oriented Modeling Framework

In this section the three underlying concepts of our proposed Task Oriented
Modeling (TOM) framework and their relations are described. These concepts
are: Properties, Views and Tasks and their relations are illustrated in figure 1. As
a first step we create an initial overview of model element properties. Properties
are in this case defined as characteristics of UML model elements. Then we
define views and visualization techniques for the identified properties. After that
a collection of tasks common to model-centric software engineering is presented.
We don’t claim that the examples given for each concept are complete, we rather
present them to illustrate our approach and provoke discussion about the topic.

Fig. 1. The three underlying concepts and their relations

2.1 Properties

The UML meta model defines the model elements which UML models are con-
structed of. For each model element type, such as class, association, classifier
instantiation, etc. a number of properties of the element are defined. We identify
three different types of properties for model elements:
Direct Internal. Those properties of an element that are solely and directly
based on information that is present in the model. General examples of this kind
of property are the name of an element or the owner. Example properties for a
class are its operations, its attributes and its relations to other classes.
Indirect Internal. Besides the information that is directly present within the
model, we identify properties (or information) associated with model elements
that can be derived based on the model. General examples of this kind of prop-
erty are metrics and history data. For a class specific examples are the number
of methods, the number of instantiations of the class or the complexity of the
class (for example based on an associated state diagram).
External. A third type of property is based on information from outside the
model. General examples of this kind of property include documentation, code
facts, evolution data (e.g. obtained from a version control system like CVS ,

32

problem reports, change requests, and (empirical) data about characteristics of
an element like its reliability. Specific examples for a class include: the number
of lines of code of the implemented class, the number of times the class has been
changed, or the name of the engineer who designed the class.

2.2 Views

Typically, UML models are visually represented in diagrams. The UML meta
model defines a variety of diagram types as views on a model from a certain
perspective. This specification is only concerned with internal properties and not
even all of these properties are viewable in UML diagrams. The relations between
model elements in different diagram types are often not intuitively presented
by UML. It is, for example, often difficult and tedious to find out on which
places a class is instantiated in the model, because this relation is not explicitly
present in the views. We argue that in the design of the UML the choice of which
properties can be viewed in UML diagrams and the visualization techniques used
to represent them are not optimal for common tasks in software engineering.

Views offer visual representations of a model by by creating a mapping from
properties of the model to visual attributes. Examples of these visual attributes
are: Position (Layout), Size (Width, Height, Depth), Color (Hue, Saturation,
Luminance), Shape and Orientation. In [8] several mappings from properties to
visual attributes, called polymetric views, are explored. The main difference to
our work is that polymetric views are general software visualizations targeted
at reverse-engineering, while our work consists of UML model visualizations
targeted at various model-centric software engineering tasks.

2.3 Tasks

Out of the set of UML model related tasks performed during the software en-
gineering process, we have chosen the following six to form the basis for the
implementation of the proposed views in our tooling and validation thereof:
Program understanding. Examples of activities related to this task are: iden-
tifying key classes, which classes implement which functionality, related classes
and identifying complex interactions.
Model development. Creation of models is often an incremental and iterative
process including many changes. Examples of activities employed in this type of
task are: adding, changing, removing elements or diagrams.
Testing. An often used technique to improve the quality of a software system
is testing. A testing task common in model-centric software development is the
(automatic) generation of test cases from sequence diagrams.
Model maintenance. Changes made to a model to match changes in the re-
quirements are called model maintenance. Some activities in which UML models
are involved include: extension of a system, bug fixing, handling change requests
and performing impact analysis before making a change.
Quality Evaluation. Another type of task in which UML models can be of help
is quality evaluation. The evaluation of the quality of a model can take place

33

at several abstraction levels, e.g. separate elements, diagrams or the system as
a whole. Besides evaluating a single version of a model one can also investigate
multiple versions at once, to detect trends.
Completeness / Maturity Evaluation. Related to quality evaluation is the
evaluation of the completeness of a model. In general this task consists of ap-
plying specific metrics to measure these properties and analyzing the results.

3 Proposed Views

In this section ideas for visualizing the aforementioned properties of UML model
elements are listed. Some of these visualizations have existing UML diagrams as
a basis, others are totally independent. The initial set of ideas was stated in
[5]. Since then, it has been extended during the MetricView and MetricView
Evolution [11] projects. Most of the ideas are implemented in our tool [1].

3.1 Context View

The context of a model element consists of all model elements it relates to. The
model elements of a model are typically scattered over several diagrams. UML
diagrams are projections of the entire model, they typically do not contain all
model elements. Accordingly, it often occurs that only a limited context of model
elements is viewed in one diagram. To fully understand a model element it might
be necessary to know its entire context. Therefore we propose the context view
comprising a single diagram (Figure 2). The model element whose context is
viewed is centered in the diagram. All model elements that are directly related
to the particular model element are viewed on a circle around this model ele-
ment. The example in the figure is a class where the metric ‘number of children’
is 28 (for explanations of common object oriented system metrics see [2]). It
would be tedious to analyze this outlier by browsing through all diagrams where
inheritance relations of the class are viewed.

3.2 Quality Tree

Quality models provide a structure to relate metrics to quality properties such as
maintainability. The most common approach to create such models is used in so
called decompositional quality models. At the lowest level, at the leafs of the tree,
are metrics. These metrics can be applied to a UML model and the results be used
to calculate values for each of the attributes in the model. For this calculation
a definition is needed for the nature of the relation between attributes. These
definitions are functions, and although not currently implemented, would allow
the rule based learning quality model as suggested in [4]. The quality tree offers
a framework in which a reference model can be tailored to represent several
quality models, such as our proposed quality model for UML [6]. This tailoring
is possible in several ways: by changing the structure of the tree, by changing its
connecting functions and by changing the metrics in the leafs.

34

Fig. 2. Context Diagram (left) showing all the children of a single class, compared with
regular class diagram (right)

3.3 MetaDiagram

Figure 3 shows a metadiagram in which inter-diagram relations are visualized.
The purpose of this is as follows.

The main problem that exists in conventional views is that each of the dia-
grams is shown separately, obscuring the relation between different diagrams and
model elements. Our proposed solution to these problems is the metadiagram.
Its purpose is to give an overview of the diagrams that describe the model and
makes it possible to show the relations between (elements at) different diagrams.
This last feature allows tracing through the different abstraction levels that the
different types of diagrams offer.

Figure 3 shows the four types of elements that take part in this example. A
use case, an object that occurs in the sequence diagram describing the use case,
the object’s class, and the state diagram describing the class.

The metadiagram can be applied in program understanding and maintenance
tasks. Browsing through a model for instance is a program understanding task
that is actively supported by this view. Another example is impact prediction
for which the visualization of inter-diagram relations can be useful.

3.4 MetricView

Figure 4 shows an example of the proposed metricview visualization on the right
in which three different metrics are visualized on a regular class diagram. This
is the basis of the metricview idea, combining the visualization of metrics and
UML models using a set of techniques adopted from visualizing geographical
information systems (GIS) [5]. Applying metrics to a UML model can generate

35

Fig. 3. MetaDiagram: Tracing through different diagrams

an overwhelming amount of data, even for small models. Traditional methods to
process and visualize this data like statistical analysis and various kind of charts
work well to summarize data and to find outliers but lack the direct connection
to the model the metrics are calculated over. This makes it harder for the creator
or maintainer of a model to relate the results of this kind of metric analysis to
the artifact. Metricview helps to solve this problem by integrating the model
and metric visualization. Visualization techniques include but are not limited
to color, size and/or shape. The tasks supported by this view are: program un-
derstanding, quality evaluation and maturity/completeness evaluation. Metrics
such as coupling, complexity, or the number of changes can be visualized, such
that the reader can intuitively identify clusters of classes in the model.

3.5 UML-City View

The left part of figure 4 shows an example UML-city view. This view combines
the concepts of the metadiagram and metricview. As metric visualization the ‘3D-
heightbar’ is used, this visualization shows a box on top of the model element
where the height and the color of the box indicate the value of the metric. Low
metric values are depicted by flat green boxes while high values are depicted by
tall red boxes.

3.6 Search and Highlight

In any UML model, but especially in large ones, it can be hard to find a specific
piece of information. This problem is caused by the large amount of informa-

36

Fig. 4. UML-City View and MetricView: Combining UML and Metrics Visualization

tion and this information being spread over multiple diagrams. Our solution for
tackling these causes uses the metadiagram, which gives an overview of all dia-
grams. By adding string search functionality and highlighting the results in the
metadiagram the user can quickly identify the diagrams in which relevant infor-
mation is present. Combined with the navigation capabilities that are present
in the metadiagram this supports fast searching. When highlighting all elements
that are related to a specific keyword the tool also shows implicit (not modelled)
relations between these elements themselves.

3.7 Evolution View

Figure 5 shows the evolution view, in which the two familiar concepts graph and
calendar are combined to identify trends. The reason for using a graph is that it
is an effective way to visualize the evolution of metric data. The purpose of the
evolution view is to enable users to spot trends in the values of quality attributes
and/or metrics at multiple abstraction levels. At system level such a graph can
be used to give an overview on changes in aggregated data. By combining it
with the concept of a calendar, i.e. mapping time on the horizontal axis and
values of the vertical axis, and adding color to indicate whether a given value is
considered good or bad it becomes a compact and intuitive way to enable the
evaluation of the evolution of quality data. The same technique can be applied
at diagram and element level to allow for different analysis granularity.

4 Validation

4.1 Case Studies

Characteristics. Our five case studies stem from different industrial application
domains. The size of the models ranges from 36 to 606 classes, the size of the
view from 16 to 606 diagrams.

37

Fig. 5. Evolution View: Combining Calendar and Graph

Approach. First, an analysis is performed of the model using MetricView
Evolution and tools that provide external data. The tool is then used to demon-
strate a visualization of a selection of the results of the analysis. This happens at
the partner site from which the model originates. During and after the demon-
stration there is discussion about the findings in the model and the visualization.

Findings. The visualizations received positive feedback during the discus-
sions and were regarded as a promising direction for future research. The first
large case used to validate MetricView Evolution revealed some scalability is-
sues. For large cases with many diagrams there is little space available for each
individual diagram. Space efficient layouting helps to some extent to reduce the
effects of this problem. Additionally, we implemented zooming functionality in
the tool to allow users to have both a bird’s eye view and a closer view. It also
turned out to be hard to find information about a specific model element if only
(part of) the name was known but not the diagrams it occurs in. To assist with
this task the search and highlight functionality proved to be very helpful.

Furthermore, we found that human expertise remains necessary. This follows
the position taken in [7]. The tool alone should not make a judgement about
the quality of a UML model. Instead, it helps the user to apply his expertise to
come to a good judgement by providing him with an appropriate view on the
properties of the model.

4.2 User Experiment

Design. During the experiment 13 subjects have evaluated the tool. The sub-
jects were researchers and PhD students in the area of software engineering or
visualization and, hence, they had relevant experience to evaluate the tool. To
make the participants familiar with the tool, first a demonstration was given
of its features and intended usage. Then the participants were asked to per-
form specific tasks. These tasks were put in the form of answering a number
of questions, such as “Which class plays the major role in the implementation
of the ‘Initialization’ Use Case?” The idea behind these questions is to let the
participants explore the tool. During the evaluation the ‘speak-aloud-protocol’
was followed, meaning that the subjects were encouraged to ask questions and
make remarks about what they are trying to do and how they feel about the

38

tool. Additionally, the subjects had to fill in a questionnaire concerning their
evaluative findings about the tool and their background.

Results. The background questionnaire shows that the participants have
sufficient knowledge in the areas relevant to the experiment.

An interesting suggestion we received is related to the evolution view. We re-
ceived the remark that this view shows great potential and should be the starting
point from which to explore the quality of a model. For this to work better it
should be possible to show trends of multiple metrics or quality attributes to-
gether in different colors. Also showing the actual values in the evolution view
together with the graph is a suggestion we got from multiple users.

The highest rated features with respect to usefulness both for correctly and
efficiently performing tasks are: metadiagram, search and highlight and context
view. The histograms in figure 6 show an overview of the results: for each task
type what percentage of the users found a particular feature useful. The his-
tograms show the cumulated answers to yes/no questions (e.g. “Is view X useful
to perform task Y correctly?”)

Fig. 6. ‘P.U.’: Program Understanding, ‘Dev.’: Development, ‘Test.’: Testing, ‘Maint.’:
Maintenance, ‘Q. Eval.’: Quality Evaluation, ‘M./C. Eval.’: Maturity/Completeness
Evaluation

The evaluation of the understandability of the tasks shows that the quality
tree was the easiest to understand. Of the four main views, the context view was
hardest to understand. Observations made during the experiment reveal that
most users had problems activating the context view, because it involves actions
in multiple windows that have to be performed in the right order. These obser-
vations also made clear that once the context view was activated participants
had little problems using it.

39

5 Conclusions

In this paper we state the problem that for some common model-centric software
engineering tasks representations of UML models are not sufficient. We propose
an initial Task Oriented Modeling framework consisting of UML model elements,
properties of these elements from various sources, and software engineering tasks,
that form a basis to develop new views that are aligned with the tasks. Based on
this framework we propose seven views to support different tasks. The views are
implemented in our MetricView Evolution tool. In industrial case studies and a
light-weight user experiment the proposed views were evaluated and we received
positive feedback from the users.

In future work software engineering tasks should be analyzed in more detail to
refine our proposed framework. We expect that this will lead to the development
of more specific views. Our proposed views and future views should be validated
empirically. Another point is the integration of the tool in the daily-build system
at the site of an industrial partner. Doing this would allow us to automatically
gather the data needed to study the evolution of quality of UML models. Another
item of future work is adding a filtering mechanism to the views, which should
make it easier to locate and analyze specific information.

References

1. MetricView and MetricView Evolution. Available on:
http://www.win.tue.nl/empanada/metricview/.

2. S. R. Chidamber and C. F. Kemerer. A metrics suite for object-oriented design.
IEEE Transactions on Software Engineering, 20(6):476–493, 1994.

3. Norman E. Fenton and Shari Lawrence Pfleeger. Software Metrics, A Rigorous
and Practical Approach. Thomson Computer Press, second edition, 1996.

4. Khashayar Khosravi and Yann-Gaël Guéhéneuc. Open issues with quality models.
In proceedings of the 9th QAOOSE workshop(ECOOP), July 2005.

5. Christian F. J. Lange and Michel R. V. Chaudron. Combining metrics data and
the structure of UML models using GIS visualization approaches. In Proceedings
of the ITCC 2005, April 2005.

6. Christian F. J. Lange and Michel R. V. Chaudron. Managing model quality in
UML-based software development. In Proceedings of STEP05, 2005.

7. Guillaume Langelier, Houari Sahraoui, and Pierre Poulin. Visualization-based anal-
ysis of quality for large-scale software systems. In Proc. of ASE ’05, 2005.

8. Michele Lanza and Stéphane Ducasse. Polymetric views-a lightweight visual ap-
proach to reverse engineering. IEEE Trans. Softw. Eng., 29(9):782–795, 2003.

9. Gail C. Murphy, Mik Kersten, Martin P. Robillard, and Davor Čubranić. The
emergent structure of development tasks. In ECOOP 2005, July 2005.

10. Object Management Group. Unified Modeling Language, Adopted Final Specifica-
tion, Version 2.0, ptc/03-09-15 edition, December 2003.

11. Martijn A. M. Wijns. MetricView Evolution: Monitoring Architectural Quality.
MSc thesis, Technische Universiteit Eindhoven, The Netherlands, March 2006.

40

Animation Coherence in Representing Software

Evolution

Guillaume Langelier, Houari A. Sahraoui, and Pierre Poulin

{langelig, sahraouh, poulin}@iro.umontreal.ca

Abstract. Software evolution study is crucial to the understanding of
software in general and software quality in particular. However, the study
of software evolution requires the analysis of large amounts of data, i.e.,
source code information for every single version of a program. Consider-
ing the size, manual analysis of this information is virtually impossible.
Automatic analysis is quick, but requires strong assumptions on data
which is hard to establish in our domain. We propose a semi-automatic
approach based on visualization to represent software versions. We use
animation to represent the transitions between versions. We exploit the
coherence between two successive versions and we transform it into visual
coherence that can be perceived by the user. Our solution is interesting
because the movement in the graphical representation can be aligned
naturally with the code modifications. It also reduces the required space
in 3D by using a fourth dimension which is time.

Note: Most figures of this paper should be viewed in color to better under-
stand their perceptual values. Figures and animated sequences about the pro-
posed techniques, can be found in http://www.iro.umontreal.ca/˜labgelo/qaoose06.

1 Introduction

Nowadays, programs are becoming more and more large and complex, which
makes the maintenance tasks costly and time-consuming. Moreover, while in the
past, small teams were building programs that meet functional needs with the
concern of optimizing computer resources, the focus has shifted today to the op-
timization of financial resources. In this context, it is important to understand
the factors that influence software quality for anticipating potential problems.
Much work has been done to predict maintainability factors using software in-
ternal attribute metrics [4]. However, many problems related to quality cannot
be easily understood by analyzing a single version of a program. Most of the
time, it is possible to see the symptoms but not necessarily the causes. Evo-
lution study is essential to understand the design decision sequences that can
result in a problem.

With the advent of Internet and open source programs, there are now large
data samples for studying software evolution. However, fully automatic ap-
proaches require strong assumptions on data and often generate many false

41

2 Langelier et al.

positives [12]. From the other hand, the size of these samples makes it very
difficult to perform analysis tasks efficiently by human. In order to fully exploit
the analytic capabilities of humans, it is required to preprocess these data. A
good way to do so is to use visualization. Visualization is a semi-automatic ap-
proach that combines the automatic data preprocessing and presentation with
human visual system capabilities.

In this position paper, we show how it is possible to use visualization and
animation to view the different versions of a program throughout its lifetime.
We explain that the simple solution that consists in showing in a single picture
a sequence of several versions is not efficient because the user loose track of
individual elements and has to re-understand the structure of the program each
time. We animate the transitions with in-between frames to help users follow
entities. We also highlight the fact that the visual coherence is the key element
that helps detecting changes from one version to another.

The rest of this paper is organized as follows. Section 2 introduces the prin-
ciples of single version visualization in our approach. Section 3 describes why
coherence is a major point in evolution visualization. Different visualization tech-
niques that exploit the coherence are presented and compared in Section 4. Their
possible applications are briefly described in section Section 5. Section 6 gives a
brief overview of exiting work in evolution visualization and layout algorithms.
Finally, Section 7 gives a short conclusion and presents the future work.

2 Single Version Visualization

2.1 Class Visualization

In order to simplify the representation of programs and to make the analysis
easier, we decided to use a vector of metrics as an underlying model for classes.
This model has proven to be efficient for quality analysis, i.e., statistical trans-
formations are easily performed on the metric values. Since we target programs
in Java, we use object oriented metrics (see for example [1]). We use metrics
that capture important OO attributes: coupling (such as CBO, Coupling Be-
tween Object), size/complexity (such as WMC, Weighted Methods per Class),
cohesion (such as LCOM5, Lack of Cohesion in Methods) and inheritance (such
as DIT, Depth in Inheritance Tree). Metrics are extracted from Java programs
using a home made tool called POM [5]. POM generates an Xml file which can
be read by our environment. This makes this later independent from the static
analysis tools and to a certain extent from the OO programming languages.

Classes like any code artifact do not have any natural representation [8].
Their intend is to be understood by human and machines and they have no
concrete reality outside these purposes. Therefore, we have to represent classes
with arbitrary figures. We chose to represent classes as 3D boxes. A box is simple
and has several non-interfering graphical attributes (See [6] for a discussion on
biases and interfering graphical attributes) such as the height, the color and the
twist. Moreover, it can be easily rendered by graphical cards and easily processed
by the human brain.

42

Animation Coherence in Representing Software Evolution 3

A linear mapping binds a metric and a graphical attribute, with clamped
metric values above a maximum Mmax or below a minimum Mmin. Formally,
the mapping is defined as follows:

M
′

v
=







Mmin Mv < Mmin

Mv Mmin ≤ Mv ≤ Mmax

Mmax Mv > Mmax

Gv = Gmin + (Gmax − Gmin)

(

M ′

v
− Mmin

Mmax − Mmin

)

where Mv is the metric value, Gv is the resulting graphical value, Gmin and Gmax

are respectively the practical minimum and maximum values of the graphical
characteristics, and Mmin and Mmax respectively the minimum and maximum
practical value for the metric. The user can easily choose any mapping that suits
him. Figure 1(a) shows three representations of classes.

(a) (b)

Fig. 1. (a)Three examples of class representation using the mapping between metrics
CBO, LCOM5, and WMC, and graphical attributes color, twist, and height, respec-
tively. (b)Representation of the PCGEN application (1129 classes) using our adapted
Treemap algorithm.

2.2 Program Visualization

We use the layout of classes to express additional information on the architecture
of a program. This layout also contributes to the comprehension of programs as
entities instead of groups of elements. The layout technique used is highly in-
spired by the Treemap algorithm [7] which is useful to represent file system
hierarchies. Since Java programs use classes and packages that can be included
into other packages, this representation is suitable for our needs. The idea is to
use the rectangle of the screen as the root element in the hierarchy. After that,
we simply split the screen vertically and give a portion to each child which is
proportional to its size. The process is then repeated recursively for children

43

4 Langelier et al.

alternating the splitting direction between horizontal and vertical at each level.
However, this algorithm cannot be used “as is” because it only works for contin-
uous values. Indeed, our representation uses discrete values (each class occupies
the same space on the plane). We simply let the packages take as much space as
they need and readjust their parent size afterward. Because of the 3D and the
navigation possibilities, we are not constrained with the screen space anymore.
We use color separators to better differentiate the levels in the Treemap. Using
this layout, it is possible to see common characteristics in a package and to study
packages as entities. Figure 1(b) gives an example of how programs are displayed
in our environment.

In addition to program layout, we offer a navigation system to let the user
zoom in on more important parts and move around the program. The view angle
can be changed so it is possible to view hidden classes. The camera can move
around the semi-sphere over the plane and move in all four directions. Filters are
also available to either give information on the statistical distribution of metric
values or give structural information on each class. In this second case, a filter
is a dynamic way of displaying UML-like relationships between classes. More
details on single version visualization can be found in [9].

3 Software Coherence

Building software is an incremental process which takes place over time. There-
fore, modifications from version vn to vn+1 are highly influenced by vn. A class
is created or modified because there was something missing in the previous ver-
sion or because the previous version was not ideally implemented. Most of the
time, the difference between two successive versions is small and targeted. There-
fore, there exists some coherence intrinsic to software and we think that a good
visualization system should exploit this coherence.

The study of evolution should take into account the chronological order of
events in order to capture essential information. Users are interested not only
in global information, but also on what happens between two versions, and
how it is possible to improve this transition. It is important to know what was
modified and how it was modified but also what was kept intact for long time. In
this paper, we concentrate on transferring the coherence of software into visual
coherence.

4 Approach

The main idea of all the techniques described below is to use animation to
represent transitions from one version to another. To do so, we use a principle
called the “time slider” to give the user the opportunity to control time. The
idea is to consider time like any other dimension and the user can go back and
forth the same way he does for the Cartesian coordinates. This way, specific
transitions can be replayed or passed over quickly depending on the user needs.
As stated by Rilling and Mudur [15], the feeling of immersion is important for

44

Animation Coherence in Representing Software Evolution 5

any 3D visualization systems. This should also be true for the time dimension.
All algorithm variations below use the same principle but use different way to
display transitions and the versions themselves. For comparison purpose, we first
present a non-animated technique.

4.1 One Image; Many Versions

This solution is used by many of the current research projects on software evo-
lution. It allows seeing all the necessary information at a glance. It shows all the
information on one image; therefore a lot of space is required to represent only
few versions. On the other hand, data can be summarized to save space. How-
ever, in our opinion, this is a source of many analysis errors mainly because of the
many constraints that we have to take into account when combining measures.

Using this technique, both coherence and metric modifications are difficult to
understand because we cannot follow elements through time. When represented
explicitly, the architecture is hard to understand because many different ones
are present at the same time.

4.2 Fixed Position

In this technique, classes remain at the same position in the layout for each
version displayed in the visualization. In order to assign each class a specific
position, we create a virtual architecture tree containing all classes of all the
versions of the program and simply apply the Treemap algorithm on this tree.
We then only display classes present in a particular version whenever the user
choose this version using the time slider. Since classes are not moving, the only
animations required are the deletion and the adding of classes and the modifi-
cation of class characteristics. Indeed, the modification of code usually leads to
the modification of the metric vector which in turn leads to the modification of
graphics. This implies that for a given version vn some space in the visualization
is left empty. The first reason is that we must keep some space for classes that
will be created in versions subsequent to vn and the second reason is that classes
deleted from the system are not replaced by other classes.

Since objects are not moving, this technique gives good results in terms of
temporal coherence. Characteristics modifications are also very easy to under-
stand because you can concentrate on them. However, this technique demon-
strates a bad use of space, especially for earlier versions of a program. The space
lost is negligible for the latest versions because only a few classes disappeared
in general. The architecture understanding requires some effort because the user
must not take into account the empty packages and the empty space in pack-
ages. Figure 2(A) shows a few frames of this algorithm applied on the Freemind

application.

4.3 Moving Classes

For this technique, the layouts are computed normally for all versions. During
transitions, classes are slowly translated to their next position. This way, indi-

45

6 Langelier et al.

(a) (b)

(c) (d)
(A)

(a) (b)

(c) (d)
(B)

Fig. 2. (A) Algorithm with pre-calculated tree where classes have a stable position
throughout de visualization. (B) Algorithm with moving classes representing the same
software. To better perceive the differences between the these two techniques, please
consult the web site mentioned earlier to see the animated sequences corresponding to
each technique.

vidual layouts are preserved and space is used optimally. However, as mentioned
in [3] animating both the movement and the characteristics modification (height,
color, twist) at the same time overwhelms the human perceptual system. The so-
lution is simply to animate the transitions in two phases: the movement and then
the characteristics modifications. This leaves time for the user to first understand
the layout modifications and then observe the characteristics modifications. Note
that the two-step transition can be applied also to the fixed position technique.

Unfortunately, the algorithm can introduce unnecessary movements during
the visualization. For example, classes added in the middle of a package will
automatically displace some existing classes in the program. We circumvent the
problem by forcing the classes to stay at the same place whenever it is possible.
When doing this, movement within a same package is reduced and the user can
concentrate on real differences in the classes’ layout.

Another property of this technique is the optimal use of the space. Although
some holes can be present because of the Treemap limitation, the layout of each
version is computed individually regardless the other versions. In opposition,
the biggest shortcomings of this technique are in the time coherence. It is still
possible to follow the classes throughout the versions but this requires more
attention and effort from the user even if the fact that we force classes to keep
the same position whenever it is possible helps reducing this effort. Moreover,
since the movement and the modification of class metrics are done in two different
steps. Users can concentrate only on movement at first which helps them even
more. Similarly, the process in two steps helps to better perceive and interpret the
metric modifications as it was the case for the previous technique. Figure 2(B)
presents some screenshots of this technique.

46

Animation Coherence in Representing Software Evolution 7

4.4 Hybrid

This technique combines the two approaches described previously. Classes are
placed according to a virtual tree containing all classes that ever existed. How-
ever, instead of displaying the empty space, separators are placed such that some
empty packages are not represented. This way, classes have a fixed position but
the space loss in the early versions where a few classes are present is diminished.

This technique has similar advantages and disadvantages than the fixed po-
sition approach. It is slightly better for space optimization because many empty
packages are removed. The architecture comprehension stays a bit confuse be-
cause unnecessary packages are still present. Figure 3 shows an example of this
approach.

(a) (b) (c) (d)

Fig. 3. Example of the Hybrid approach. A corresponding animated sequence is in the
web site.

4.5 Summary

To better highlight strengths and weaknesses of each discussed techniques, we
present a summary of their qualitative evaluation. The evaluation is done ac-
cording to four characteristics: space optimization, temporal coherence, compre-
hension of characteristics modification, and architecture comprehension. Table 1
summarizes the observations on each technique.

Algorithm Space Temporal coherence Characteristics Architecture

side by side bad bad very bad average

fixed position average very good very good average

moving classes very good bad good very good

Hybrid good good very good average
Table 1. Comparative table of evolution visualization techniques

5 Possible Applications

Our environment can be used by developers or quality analysts to see whether or
not the new code respects the quality general principle rules. For example, classes

47

8 Langelier et al.

may have grown out of proportion or the coupling or cohesion may have been
affected by the new modifications. Developers are also able to detect at what
point things started to degenerate or if a problem was caused by a single commit
or is the result of a long process. Similarly, users can detect class renaming.
When a class is renamed, the box associated with it disappears and reappears
at another position. In general, a class rarely changes dramatically between two
successive versions. Its characteristics then remain unchanged. Consequently, as
the shape of its associated box almost does not change, the disappearance and
reappearance are perceived as a movement.

Researchers can also use our tool. It is interesting to study if a recurrent
problem is caused by the same sequence of events. By doing this, it is possible to
classify some patterns of software evolution or study their impact on the quality.
We have already started to investigate this direction. Our tool can also be used
to confirm or to accelerate the verification of phenomena found with automatic
algorithms.

6 Previous Works

6.1 Evolution Visualization

Lanza and Ducasse [10] presented a tool which takes the form of an evolution
matrix. They use 2D boxes in order to represent two metrics at time. One is
associated with the height and the other is associated to the width. Those boxes
are then placed in a matrix in which the columns represent versions in chronolog-
ical order and the rows represent each class. They also described a classification
of software elements according to the representation of their lifecycle. This clas-
sification is based on an astronomy metaphor. Mesnage and Lanza [11] chose
to utilize a standard scatter plot representation for versions visualization, how-
ever they use 3D boxes instead of points. Their tool, White Coasts, is useful
to interpret information extracted from version control systems. They use two
main views: the author view and the evolution matrix view. Metrics are repre-
sented by several graphical attributes from the 3D box such as the color, the
position (X, Y, Z) and the size (width, height, depth). Collberg et al. [2] use tra-
ditional graphs to represent information extracted from CVS repositories as well
as inheritance graphs and call graphs of a program. They use multiple frames
to represent every modification in a given time frame. A technique of weighted
nodes and edges insures smooth modifications of graphs during the evolution.

6.2 Coherence Between Frames and Layouts

Nguyen and Huang [13] propose a technique to animate layout in a standard tree
representation(arcs and nodes). If the user choose to inspect a node, their algo-
rithm execute a transition to go from a larger view to a view where the selected
node is the root; thus the center of attraction. The chosen node slowly goes up
in the hierarchy taking the place of its predecessors while its children follow it

48

Animation Coherence in Representing Software Evolution 9

taking the space it was occupying in the previous step. Fekete and Plaisant [3]
briefly discussed the animation of Treemaps. They use the fact that objects con-
tain other objects to accelerate the animation and do linear transformation in
two phases. They change the object position if they have to and then change
their size. They do not introduce any new elements either. They transform their
representation into a more complex one or they modify the metric observed,
which in turn, modifies the size of squares. North [14] proposes heuristics to
create an incremental layout of nodes in a directed graph. Nodes and arcs are
either marked modifiable or not and he uses backtracking whenever necessary.
The objective is that each node keeps a static position, however the movement
is inevitable in some cases. He measures the node stability in order to validate
his results.

7 Conclusion and Future Work

In this paper, we have shown that it is possible to use coherence through visual-
ization for a better comprehension of software evolution. We have described how
individual versions are represented before going to the representation of several
versions. To circumvent the problem of cognitive discontinuities, we have used
animation in different ways. All the proposed techniques were compared in or-
der to identify the advantages and disadvantages of each one. All the techniques
have shown strengths and weaknesses in terms of space utilization, temporal co-
herence, comprehension of characteristics modifications, and architecture com-
prehension. Some techniques can be better for certain analysis tasks while being
worst for others. Techniques without class movement offer a better comprehen-
sion of characteristics changes but lacks in terms of architecture comprehension.
However, techniques with moving classes tend to better use the space and reveal
more information about architecture modifications. The presented techniques are
novel because very little work is dedicated to the use of animation to represent
software evolution. From our experience, the animation contributes to reduce
cognitive discontinuities caused by the versions switching.

Many extensions of the proposed approach are possible. First, we can give
more control to the user via the time slider principle. The comprehension would
be improved if the user was able to stop in the middle of transition or choose
the speed of the transition. Moreover, it should be possible to skip versions in
order to visualize the modifications between more sparse versions if necessary.
The animation of separators would also give the user a better feeling of how
packages are reorganized.

We are currently developing a new layout based on relaxation to better ex-
ploit the coherence between versions. When we animate the evolution, classes can
be introduced anywhere without major perturbations to the rest of the software.

From the evaluation perspective, an empirical comparative study with sub-
jects will be conducted in order to confirm the qualitative results presented in
this paper. The environment will also be compared to existing approaches. More-

49

10 Langelier et al.

over, many visual patterns must be described in order to prove that our approach
is efficient in solving concrete evolution problems.

References

1. S. R. Chidamber and C. F. Kemerer. A metrics suite for object oriented design.
IEEE Trans. Softw. Eng., 20(6):476–493, 1994.

2. C. Collberg, S. Kobourov, J. Nagra, J. Pitts, and K. Wampler. A system for
graph-based visualization of the evolution of software. In SoftVis ’03: Proceedings
of 2003 ACM symposium on Software visualization, pages 77–86, New York, NY,
USA, 2003. ACM Press.

3. J.-D. Fekete and C. Plaisant. Interactive information visualization of a million
items. In INFOVIS ’02: Proceedings of the IEEE Symposium on Information Vi-
sualization (InfoVis’02), page 117, Washington, DC, USA, 2002. IEEE Computer
Society.

4. N. E. Fenton and S. L. Pfleeger. Software Metrics : A Rigorous and Practical
Approach. Course Technology, 1998.

5. Y.-G. Guéhéneuc, H. Sahraoui, and F. Zaidi. Fingerprinting design patterns. In
E. Stroulia and A. de Lucia, editors, proceedings of 11th Working Conference on
Reverse Engineering, pages 172–181. IEEE Computer Society Press, November
2004.

6. C. G. Healey and J. T. Enns. Large datasets at a glance: Combining textures
and colors in scientific visualization. IEEE Transactions on Visualization and
Computer Graphics, 5(2):145–167, 1999.

7. B. Johnson and B. Shneiderman. Treemaps: A space-filling approach to the visual-
ization of hierarchical information structures. In IEEE Visualization Conference,
October 1991.

8. C. Knight and M. Munro. Virtual but visible software. In IV ’00: Proceedings of
International Conference on Information Visualisation, pages 198–205, July 2000.

9. G. Langelier, H. A. Sahraoui, and P. Poulin. Visualization-based analysis of quality
for large-scale software systems. In ASE’05: IEEE/ACM International Conference
on Automated Software Engineering, pages 214–223, November 2005.

10. M. Lanza and S. Ducasse. Understanding software evolution using a combination
of software visualization and software metrics. In LMO’02: Proceedings of Langages
et Modèles à Objets, pages 135–149, 2002.

11. C. Mesnage and M. Lanza. White coats: Web-visualization of evolving software
in 3d. In VISSOFT’05: Proceedings of 3rd International Workshop on Visualizing
Software for Understanding and Analysis, pages 40–45, 2005.

12. P. F. Mihancea and R. Marinescu. Towards the optimization of automatic detection
of design flaws in object-oriented software systems. In CSMR’05: Proceedings of 9th
European Conference on Software Maintenance and Reengineering, pages 92–101,
2005.

13. Q. V. Nguyen and M. L. Huang. A space-optimized tree visualization. In INFO-
VIS ’02: Proceedings of the IEEE Symposium on Information Visualization (Info-
Vis’02), page 85, Washington, DC, USA, 2002. IEEE Computer Society.

14. S. C. North. Incremental layout in dynadag. In GD ’95: Proceedings of the Sym-
posium on Graph Drawing, pages 409–418, London, UK, 1996. Springer-Verlag.

15. J. Rilling and S. Mudur. 3d visualization techniques to support slicing-based pro-
gram comprehension. Computers & Graphics, 29(3):311–329, 2005.

50

Computing Ripple Effect for Object Oriented Software

Haider Bilal1 and Sue Black1

1 Centre for Systems and Software Engineering

Department of Software Development and Computer Networking

Faculty of Business, Computing and Information Management

London South Bank University
{bilalhz, blackse}@lsbu.ac.uk

Abstract. Software metrics can provide us with information regarding the

quality of software. The ripple effect metric shows what impact changes to

software will have on the rest of the system. It can be used during software

maintenance to keep the system at a high level of quality. The computation of

ripple effect is based on the effect that a change to a single variable will have on

the rest of a program; it provides a measure of the program's complexity. The

original algorithm used to compute ripple effect has been reformulated to

provide clarity in the operations involved and the measurement of ripple effect

for procedural software. This paper describes the ripple effect metric and

considers its applicability as a software complexity measure for object oriented

software. Extensions are proposed to the computation of ripple effect to

accommodate different aspects of the object oriented paradigm.

Keywords: Software Metrics, Change Impact Analysis, Ripple Effect, OOP.

1 Introduction

Software plays an important role in our lives. Products that affect people’s lives must

have quality attributes. Therefore, good quality software is required and in order to

determine the quality of software we need metrics to measure it. A key point here is

that the quality of a product may change over time and software is no exception. In

the early days of computing, software costs represented a small percentage of the

overall cost of a computer-based system. Hence, a sizable error in estimates of

software cost had relatively little impact. Today software is the most expensive

element in many computer-based systems. Therefore steps taken to reduce the cost of

software can make the difference between the profit and loss of a company. So by

determining the quality attributes of software, more precise, predictable and

repeatable control over the software development process and product will be

achieved.

Software is supposed to change. So, why does the software community struggle

with the problems of software maintenance and the software’s requisite change?

Much of the concern has more to do with the complexity and sheer size of current

applications than it has to do with change. As we develop large software systems

(now in the 10s of millions of lines of code) incorporating more features and newer

technology, the need for new Change Impact Analysis (CIA) technology has emerged

51

[9]. Changing requirements are endemic to software [11]; many researchers have

written about software changes and their consequences [6]. Final requirements seldom

exist for software systems since they are continually being augmented to

accommodate changes in user expectations, operational environment, and the like [2].

Therefore, many software systems are never really complete until their function in the

organization becomes obsolete.

Basic software change activities can be summarized as: understanding software

with respect to the change, implementing the change within the existing system, and

retesting the newly modified system. Each of these activities has some element of

impact determination. To understand the software with respect to the change, we must

ascertain parts of the system that will be affected by the change and examine them for

possible further impacts. While implementing the change within the existing system,

we need to be aware of ripple effects caused by the change and record them so that

nothing is overlooked. Once the change has been designed and implemented, we need

to find test cases that may need to be re-examined for redesign based on new

requirements [8].

2 Software Measurement

To improve the quality of the software during its development, we need models of the

development process, and within the process we need to select and deploy specific

methods and approaches and employ proper tools and technologies. We need

measures of the characteristics and quality parameters of the software development

process and its stages. We need metrics and quality models to help ensure that the

development process is under control to meet the quality objective of the product.

What is measured is improved. Data and measurements are the most basic

prerequisites for the improvement and maturity of any scientific or engineering

discipline. Yet, in the discipline of software engineering, this area is perhaps one that

has many critical problems and one that needs concerted effort for improvement.

Measurements for software projects should be well thought out before being used.

Each metric used should be subjected to an examination of the basic principles of

measurement scale, the operational definition, and validity and reliability issues

should be well thought out [15]. As the software industry has matured, resources have

shifted from being devoted to developing new software systems to making

modifications to evolving software systems: software maintenance. A major problem

for developers in a changing environment is that small changes can ripple through

software to cause major unintended impacts elsewhere. Therefore, software

developers need mechanisms to understand how a change to a software system will

impact the rest of the system. This process is called CIA. Making software changes

without understanding their effects can lead to unreliable software products. CIA can

be used to reduce the amount of maintenance required; thereby increasing the

reliability of the software, since fewer errors would have been introduced.

52

3 Software Maintenance

Over the years, several software maintenance models have been proposed, often to

emphasize particular aspects of software maintenance. Among these models, there are

common activities. The following is a brief summary of software maintenance models

reported in the literature.

Boehm’s model [7] consists of three major phases: understanding the software,

modifying the software and revalidating the software. The Martin-McClure model is

similar [21], consisting of program understanding, program modification, and

program revalidation. Parikh [24] has formulated a description of maintenance that

emphasizes the identification of objectives before understanding the software,

modifying the code, and validating the modified program. Sharpley’s model [26] has

a different focus, it highlights the corrective maintenance activities through problem

verification, problem diagnosis, reprogramming, and baseline reverification.

Osborne’s model of software maintenance [23] concentrates on managing the

maintenance activities and determining appropriate measurements applied for

visibility, but not into impacts of changes. The Yau and Patkow models are useful in

evaluating the effects of change on the system to be maintained. Yau [29] focuses on

software stability through analysis of the ripple effect of software changes. A

distinctive feature of this model is the post-change impact analysis provided by the

evaluation of ripple effect. This model of software maintenance involves: 1)

determining the maintenance objective, 2) understanding the program, 3) generating a

maintenance change proposal, 4) accounting for the ripple effect, and 5) regression

testing the program [29].

4 Ripple Effect

CIA information can be used for planning changes, making changes and tracing

through the effects of changes. Research into CIA has been concerned mostly with

procedural software: function-based programs not class-based. However, this work

will be concerned with object oriented software, since current software development

projects most commonly use object oriented programming.

Ripple effect is just one of many types of CIA techniques. It can make the potential

effects of changes visible before their implementation, making it easier to perform

maintenance changes more accurately. The term ‘ripple effect’ was first introduced

1972 by Haney, who used a technique called ‘module connection analysis' which was

a measure of probability. Myers [22] used matrices to quantify matrix independence.

Soong [27] used the joint probability of connection of all elements within a system to

produce a program stability measure. In 1978, Yau and Collofello introduced their

version of ripple effect which uses ideas from Haney, Myers and Soong’s work. It is

proposed as a measure of complexity as opposed to probability, which could amongst

other things be used during software maintenance to evaluate and compare various

program modifications to source code [30]. Computation of ripple effect involved

using error flow analysis where all program variable definitions involved in an initial

modification represented primary error sources from which inconsistency could

53

Module1
 x = y;

z = x + 1;

 Return z;

Module2
t = m1();

Intermodule

Intramodule

Intramodule

propagate to other program areas. Propagation continued until no new error sources

were created.

The computation of ripple effect was reformulated in 2001 to make the calculation

more explicit [4]. The reformulation revealed how the algorithm’s structure can be

broken down into separate parts thus providing clarity and enhancing the

understanding of its structure. To facilitate the software implementation of the new

algorithm an approximation was made, greatly simplifying the calculation that is the

basis of automatic ripple effect computation.

The current computation of ripple effect is based on the effect that a change to a

single variable will have on the rest of the program, it is used to determine the scope

of the change and to provide a measure of the program’s complexity. The effect of the

change may not necessarily be local to the modification, but may also propagate to

other parts of the program. There are two types of change propagation that are used to

calculate ripple effect values [4]:

• Intramodule change propagation: Propagation from one variable to another

within a module, (Fig. 1), e.g. propagation between y, x and z in Module1.

• Intermodule change propagation: propagation from one module to another, (Fig.

1), e.g. propagation from Module1 to Module2.

Fig. 1. Intramodule & Intermodule Change Propagation for Procedural Software

Intramodule change propagation is used to identify all variables which are affected by

ripple effect as a consequence of a modification to a specific variable within the

module. Intramodule change propagation uses information from assignment, i.e.

change propagation from the right-hand side of an assignment to the left-hand side;

and definition-use, i.e. change propagation from the definition of a variable to

subsequent use of that variable, (Fig. 2).

The combination of information from assignment and definition-use pairings

supply the required information for calculating intramodule change propagation.

However, Propagation from one module to another is called intermodule change

54

propagation. Where, a change to a variable can propagate to other variables via:

global variables, output parameters and variables used as input parameters to called

modules.

Fig. 2. Assignment and Definition-Use Pairings

5 Object Oriented Ripple Effect

Object Oriented (OO) programming is now the focus of the software engineering

community. The use of OO software development techniques has added new elements

to software complexity in the software development process and in the final product.

Understanding the OO paradigm is the first step towards the definition of metrics for

that paradigm. Terminologies vary among OO programming languages. However, all

OO languages share some concepts. Some of the characteristics of the OO paradigm

that will be considered in this research include: objects, class, overriding, inheritance,

polymorphism and implicit parameters [17].

Elish and Rine [12] present an algorithm for computing ripple effect for object

oriented programs at the design level, i.e. at a more coarse grained level than the

ripple effect presented in this paper. Chauman et al [10] study the impact of changes

across an object oriented system written in C++ by making one change at a time and

studying the resulting impact. Li and Offut [19] carry out CIA for object oriented

programs with the aim of highlighting modules that need to be re-tested.

Thus far, research built on the work of Black [4] has focused on the automatic

computation of ripple effect measures within a practical timescale for procedural

software, using the C programming language. A tool, REST, produced which uses an

approximation algorithm to compute ripple effect for the C programming language [4].

The research proposed here focuses on measuring ripple effect for C++ object

oriented software and possibly software written using other object oriented

programming languages, for example Java.

 (1) x = y

(2) z = x + 1
Assignment

Definition-Use

Assignment

55

6 Implementation Model

The proposed research focuses on the implementation and possible reformulation of

the ripple effect algorithm to produce the automatic computation of ripple effect

measures for object oriented software and possibly the subsequent evaluation of its

potential benefits.

The following software analysis tools are being used to assist in collecting the

required information for the measurement of ripple effect for object oriented software

systems:

• REST [4]: A software tool that was developed at the Centre for Systems and

Software Engineering to automate the production of ripple effect measures for C

code. A C++ parser for REST is currently being developed to allow computation of

ripple effect for object oriented software.

• CodeSurfer [28]: A C/C++ source code analysis and navigation tool. Codesurfer

is a code browser produced by GammaTech. It can be used for program

understanding, maintenance, CIA, re-engineering and reuse.

Using the above software analysis tools, different versions of the ripple effect

algorithm for object oriented software will be implemented and compared for

validation, (Fig. 3):

1. Concatenating all code within a class, omitting calls to local methods. Calculating

ripple effect between this class and other classes, (i.e. Ripple effect calculation at

the class granularity).

2. Looking at ripples across methods and classes, ignoring all propagations within

methods, (i.e. Ripple effect calculation at the class granularity, taking methods into

account).

3. Looking at ripples across methods and classes, calculating all propagations within

methods, between methods and between classes, (i.e. Ripple effect calculation at

both method and class granularity).

4. Looking at ripples across methods within each class, ignoring all propagations

between classes, (i.e. Ripple effect calculation at the method granularity).

An example application of computing ripple effect for a small C++ program has

already shown that it is applicable and useful [5]. However, to compute ripple effect

for the object oriented program using the current REST parser, the C++ code had to

be first converted to C. This involved removing all classes from the code and

converting all member-functions and member data into regular C functions and global

variables respectively. A future version of the REST tool will parse C++ code to

compute the ripple effect directly without the need of conversion.

Building on the work of Black [4], ripple effect will be computed for object

oriented software, keeping in mind the following characteristics of object oriented

software which have been identified as being important:

1. Implicit Parameters: When a call is made to a different non-parent class, a C++

member-function (or Java method) parameters are augmented by an implicit

variable, which is a pointer to the target object itself. If the function changes the

state of the target object (i.e. mutator) then the value of the implicit variable

changes. Therefore, implicit parameters must be considered when considering

starting points for the intramodule change propagation [5].

56

Module1
x = y;

z = x + 1;

 Return z;

Module2
t = m1();

Module4
v = m3();

Module3
u = m1();

Module5
w = m2();

Class1 Class2

Intramodule

Intermodule

Intermodule

*

*

2. Polymorphic Function/Method Calls: In most compiled procedural languages, it

can be determined before run-time which piece of code will be entered after the

invocation of a function. However, a characteristic of object oriented languages is

that the binding of some calls to particular function code only takes place at

runtime. This is of course crucial to the intermodule change propagation

calculations. Therefore, special parsing of subclasses of the target class or

implemented classes of the target interface will need to be carried out to determine

whether multiple potential target methods could be called [5].

3. Class Relationships & Links: A class can be defined as a group of variables and a

group of methods. A change can be applied to a class, to a variable or to a method.

Different types of relationships and links between a changed class and its impacted

classes will be looked into and taken into consideration for the calculation of ripple

effect. These relationships are: Inheritance, Association, Invocation, Aggregation

and Friendship [14].

Fig. 3. Intramodule & Intermodule Change Propagation for Object Oriented Software (* intra-

module/intermodule change propagation depending on the version of the ripple effect

algorithm used)

So far, there appear to be no major obstacles to computing ripple effect for object

oriented software. The most important issues that need further investigation and

resolution are the treatment of implicit variables in all object calls and intermodule

change propagation computation for polymorphic calls.

57

7 Research Implications

Software maintenance has been recognized as the most costly phase in the software

life cycle [18]. Over the life of a software system, software maintenance effort has

been estimated to be frequently more than 50% of the total life cycle cost [25]. This

work has the potential to improve maintenance of object oriented software, thereby

reducing its cost. Measurement of object oriented software using ripple effect

computation will help in:

• Understanding the nature of the software.

• Estimating the cost, the schedule and the effort devoted to a project.

• Determining the quality of the software.

• Predicting the maintainability of the software.

• Validating best practices for software development.

• Providing optimal maintenance solutions.

By identifying potential impacts before making a change, the risks associated with

embarking on a costly change can be reduced, because the cost of unexpected

problems generally increases with the lateness of their discovery. The more a

particular change causes other changes, the higher the cost is. Carrying out ripple

effect computation will allow an assessment of the cost of the change and help

management to choose between alternative changes. It will also allow managers and

engineers to evaluate the appropriateness of a proposed modification. If a proposed

change has the possibility of impacting large, disjoint sections of a program, the

change will need to be re-examined to determine whether a safer change is possible

[16]. This proposed research offers the potential to improve the stability and

efficiency of object oriented software and cut the cost of software maintenance.

8 Conclusion and Future Work

Because software now plays a very important role in our lives we need to ensure that

our software products are of good quality. Using CIA and specifically ripple effect as

part of a software measurement program can give useful feedback which can then be

used to improve future iterations of the product. Previous work has concentrated on

measuring ripple effect for procedural software. This research will focus on

implementing ripple effect measurement for object oriented software, for example

C++, to ensure that the quality of the software is enhanced and maintained. A brief

description of CIA, software maintenance, software measurement, object oriented

paradigm and ripple effect have been given. Explanation of the two fundamental

features of ripple effect computation: intramodule and intermodule change

propagation have been presented. Also, object oriented constructs relevant to

computing ripple effect have been discussed.

The ideas presented in this paper will be taken further by drawing up a much more

detailed framework of ripple effect measurement for object oriented software. For this

work to be useful, guidelines for the practical implementation of the ideas presented

are being drawn up and will be utilized. This work will enable and show the

automatic computation of ripple effect for object oriented software.

58

Work will be evaluated as it progresses by comparing the output of the

implementation of all 4 different versions of the ripple effect algorithm and the

difference in the ripple effect measure between object oriented and procedural

software systems. To the benefit of the first author, who has come to this work with

almost five years of industrial experience in software maintenance, the ideas proposed

and future results can be thoroughly debated and self-criticized.

References

1. Anderson, P., Reps, T., Teitelbaum, T., Zarins, M.: Tool Support for Fine-Grained

Software Inspection. IEEE Software 20(4): 2003, 42-50

2. Arnold, R.S., Bohner, S.A.: Impact Analysis – Towards A Framework for Comparison.

Proc. of the Conf. on Software Maintenance, Pages 292-301, September 1993

3. Bilal, H.Z., Black, S.E.: Using the Ripple Effect to Measure Software Quality. SQM 2005,

Cheltenham, Gloucestershire, UK. 21st-23rd March 2005

4. Black, S.E.: Computation of Ripple Effect Measures for Software. Ph.D. thesis, London

South Bank University, London, UK, 2001

5. Black, S.E., Rosner, P.E.: Measuring Ripple Effect for the Object Oriented Paradigm.

IASTED International Conference on Software Engineering, 15th-17th Innsbruck, Austria,

February 2005

6. Boehm, B.: Improving Software Productivity. IEEE Computer, September 1987, Pages

43-57

7. Boehm, B.: Software Engineering. IEEE Trans. On Computers, No. 25, Vol. 12,

December 1976, Pages 1226-1242

8. Bohner, S.A.: Impact Analysis in the Software Change Process: A Year 2000 Perspective.

In Proceedings International Conference on Software Maintenance ICSM'96, pages 42-51.

IEEE Computer Society Press, November 1996

9. Bohner, S.A., Arnold, R.S.: Software Change Impact Analysis. IEEE Computer Society

Tutorial, IEEE Computer Society Press, 1996

10. Chaumun, M.A., Kabaili, H., Keller, R.K., Lustman, F.A.: Change Impact Model for

Changeability Assessment in Object-Oriented Software Systems. Science of Computer

Programming, 45(2-3), 2002, 155-174

11. Davis, A.: Software Requirements: Analysis and Specification. Prentice-Hall, New Jersey,

1989

12. Elish, M.O., Rine, D.: Investigation of Metrics for Object Oriented Design Logical

Stability. In Proceedings of the Seventh European Conference on Software Maintenance

and Reengineering. 26-28 March 2003, 193-200

13. Haney, F.M.: Module Connection Analysis - a Tool for Scheduling of Software

Debugging Activities. Proceedings Fall Joint Computer Conference, 1972, 173-179

14. Kabaili, H., Keller, R.K., Lustman, R.A.: Change Impact Model Encompassing Ripple

Effect and Regression Testing. In Proceedings of the Fifth International Workshop on

Quantitative Approaches in Object-Oriented Software Engineering, Budapest, Hungary,

2001, 25-33

15. Kan, S.H., Basili, V.R., Shapiro, L.N.: Software Quality: An Overview from the

Perspective of Total Quality Management. IBM Systems Journal, VOL 33, No. 1, 1994

16. Lee, M.L.: Change Impact Analysis of Object-Oriented Software. Technical Report ISE-

TR-99-06, George Mason University, 1998

59

17. Lewis, J., Shields, M., Meijer, H.J.M.: Implicit Parameters: Dynamic Scoping with Static

Types. In Proceedings of the 27th Annual ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages (pp. 108-118). Boston, Massachusetts, USA, 2000

18. Li, W., Henry, S.: An Empirical Study of Maintenance Activities in Two Object-oriented

Systems. Journal of Software Maintenance, Research and Practice, Volume 7, No. 2

March-April 1995, Pages 131-147

19. Li, L., Offutt, A.J.: Algorithmic Analysis of the Impact of Changes to Object-Oriented

Software. In Proceedings of the International Conference on Software Maintenance, IEEE,

Monterey, CA, USA, November 1996, 171-184

20. Lientz, B.P., Swanson, E.B., Tompkins, G.E.: Characteristics of Application Software

Maintenance. Communications of the ACM 21(6) 1978, 466–471

21. Martin, J., McClure, C.: Software Maintenance: The Problem and its Solutions. Prentice-

Hall, London, 1983

22. Myers, G.J.: A Model of Program Stability. Van Nostrand Reinhold Company, 135 West

50th Street, NY 10020, Chapter 10, 1980, 137-155

23. Osborne, W.M.: Building and Sustaining Software Maintainability. Proceedings of

Conference on Software Maintenance, October 1987, Pages 13-23

24. Parikh, G.: Some Tips, Techniques and Guidelines for Program and System Maintenance.

Winthrup Publishers, Cambridge, Mass., 1982, Pages 65-70

25. ReiBing, R.: Towards a Model for Object-Oriented Design Measurement. Proceedings of

the 5th International ECOOP Workshop on Quantitative Approaches in Object-Oriented

Software Engineering, pp. 71-84, 2001

26. Sharpley, W.K.: Software Maintenance Planning for Embedded Computer Systems.

Proceedings of the IEEE COMPSAC, November 1977, Pages 520-526

27. Soong, N.L.: A Program Stability Measure. Proceedings 1977 Annual ACM conference,

Boulder, Colorado, 1977, 163-173

28. Teitelbaum, T., Reps, T. CodeSurfer. GrammaTech Inc.,

http://www.grammatech.com/products/codesurfer/overview.html, last accessed 9th April

2006

29. Yau, S.S., Collofello, J.S.: Some Stability Measures for Software Maintenance. IEEE

Trans. On Software Engineering, Vol. SE-6, No. 6, November 1980, 545-552

30. Yau, S.S., Collofello, J.S., McGregor, T.M.: Ripple Effect Analysis of Software

Maintenance. Proceedings COMPSAC '78 (1978), 60-65

31. 2nd Analysis, Slicing & Transformation Network Workshop, ASTReNet, London, UK,

June 2005, http://www.dcs.kcl.ac.uk/staff/zheng/astrenet/index.html, last accessed 9th

April 2006

60

 Using Coupling Metrics for Change Impact
Analysis in Object-Oriented Systems

M.K ABDI1, H. LOUNIS2, and H. SAHRAOUI1

 1 Department of Computer Science and Operations Research, Université de Montréal, Canada

{abdimust, sahraouh}@iro.umontreal.ca
2 Department of Computer Science, Université du Québec à Montréal, Canada

lounis.hakim@uqam.ca

Abstract. The development of software products consumes a lot of time and resources. On the other
hand, these development costs are lower than maintenance costs, which represent a major concern,
specially, for systems designed with recent technologies. Systems modification should be taken
rigorously, and change effects must be considered. In this paper, we propose an approach, both analytical
and experimental; its objective is to analyze and predict changes impacts in Object-Oriented (OO)
systems. The method we follow consists first, to choose an existing impact model, and adapt it afterward.
An impact calculation technique based on a meta-model is developed. To evaluate our approach, an
empirical study was led on a real system in which a correlation hypothesis between coupling and change
impact was advanced. A concrete change was done in the target system and coupling metrics were
extracted from it. The hypothesis was verified with machine-learning (ML) techniques and results are
presented and commented.

1 Introduction

Maintenance is the last phase of the software life cycle. It is defined as the process of modification of
software in operation to allow it to always satisfy current and future specifications [25]. According to Pfleeger
[26], maintenance cost depends in large part (40 %) on the modification of software architecture, interactions
between components, procedures/methods, and, variables. Systems modification should be taken seriously;
changes effects must be considered. A small change can have considerable and unexpected effects on the system.
Risks incurred during the modification are related to the consequence of the impact of a given change. When
modularity is adequately used, it limits the effects relating to changes. Nevertheless, change impacts are subtle
and difficult to discover; designers and maintainers need mechanisms to analyze changes and to know how they
are propagated in the whole system.

The main motivation of our work is to improve the maintenance of object-oriented systems, and to intervene
more specifically on change impact analysis. We mainly aim at the reduction of effort as well as maintenance
costs. Effort reduction can be carried out with time reduction between a change proposition, its implementation
and finally, its realization, while ensuring the quality of the system. Effort can be also reduced if one can predict
system behaviour in front of possible changes. Our work is much more in this research orientation; the more
analysis and change impact prediction are systematic, the more effort reduction is optimal. Good decisions can
be taken before introducing changes; by identifying the potential impact of a modification, one reduces the risk
to deal with expensive and unpredictable changes. This change impact analysis will allow the maintenance
responsible to know change consequences. The more a change affects classes, the more its realization cost is
high. Thus, change impact analysis allows to estimate change cost and to make a compromise between various
suggested changes.

The present paper is organised as follows: section 2 presents various works done in the topic of change
impact analysis. Our approach is presented in the third section; we explain the fundamental points on which it is

61

2 M.K. Abdi, H. Lounis, and H. Sahraoui

based, as well as the general stages of the adopted method. Then, we present the chosen change impact model
and its adaptation to the Java language. The way we calculate change impact expressions, based on a meta-
model approach, will finish this section. Section 4 is concerned with the empirical study, and the discussion of
obtained results. Finally, our work perspectives are discussed in the conclusion.

2 Related works

Several studies were conducted to validate metrics and to relate them to some maintainability properties. Li
and Henry [11] took five metrics of Chidamber and Kemerer [4], added three of their own, to show that there is a
strong relationship between these metrics and maintenance effort, expressed in number of changed lines code. In
[16], the authors showed that the choice of architectures, in early stages of software systems design, has an
important impact on a number of quality factors, for instance, maintainability, efficiency, and reusability. Lounis
& al [19] proposed a succession of 24 code metrics to generate predictive models related to the fault- proneness.
Finally, in [17], the authors also studied relationships between most of the coupling metrics, cohesion, and,
inheritance ones in one side, and classes fault-proneness in the other side.

Less works have been conducted on change impact. Han [7] developed an approach for computing change
impact on design and implementation documents. His approach does not consider the invocation dependencies.
Furthermore, impacts are not defined in a formal way. In [1], the authors predicted evolving object-oriented
systems size starting from the analysis of the classes impacted by a change request. They predicted changes size
in terms of added/modified lines of code. On the other hand, Kung and al [9], interested by regression testing,
developed a change impact model based on three links: inheritance, association, and, aggregation. They also
defined formal algorithms to calculate all the impacted classes including ripple effects. Li and Offutt examined
in [12], the effects of encapsulation, inheritance, and, polymorphism on change impact; they also proposed
algorithms for calculating the complete impact of changes made in a given class. However, some changes,
implying for instance inheritance and aggregation, were not completely covered by their algorithms.

Lastly, Briand and al., in [2], tried to see if coupling measures, capturing all kinds of collaboration between
classes, can help to analyze change impact. Strategy adopted in this study is different from other strategies since
it is purely empirical. This study, (i) showed that some coupling metrics, related to aggregation and invocation,
are connected to ripple effect, and, (ii), it allows performing dependence analysis and reducing impact analysis
effort. In [3] and [8], a change impact model was defined at an abstract level, to study the changeability of
object-oriented systems. The adopted approach uses characteristic properties of object-oriented systems design,
measured by metrics, to predict changeability.

In short, studies made in [2] and [15] are examples of purely empirical approaches. Works in [9], [12], [18],
and, [10] exploit approaches based mainly on models like, dependence graphs, possibly enriched by some
formalisms. Studies in [3] and [8] propose a different approach; we will speak about it afterward. Moreover, we
noticed through this synthesis, that there are more works based on dependence graphs than works based on other
abstractions or purely empirical works. On the other hand, generally, impact is not calculated in a systematic
way and most of done experiments were on small systems; it doesn’t allow the generalization of obtained results
(rules, relationships, laws, etc.). In the next section, we present in detail our approach.

3 The approach

From the beginning, we have decided that our approach will not be purely empirical; indeed, we want to
obtain general results e.g., rules, relationships between causes and effects, etc., we can apply to wide application
domains. However, we do not reduce the importance and the necessity of empirical studies; our approach is both
analytical and empirical. In our opinion, the study of changes and their impacts analysis must be done, at first, at
a high level of abstraction. Results found at such a level must be necessarily verified afterward, by empirical
studies. On the other hand, in our domain literature review, we have noticed that very few works propose a more
or less complete definition of change impact, i.e., model taking into account main links that one can find in an
object-oriented design (namely, association, aggregation, invocation and inheritance) [1] and [7]. In our study,

62

 Using Coupling Metrics for Change Impact Analysis in Object-Oriented Systems 3

we took the impact model defined in the SPOOL1 project [14]; [3] and [8] noticed that this model is one of the
most general, and it allows impact calculation in a systematic way. It is an important factor concerning effort
and maintenance cost reduction. The SPOOL project had as main objective the understanding of industrial
systems design properties and their influences on maintenance and evolution.

In our work, we use this model to lead our experiments, which are directed by hypotheses statements. By
analogy with the other works made in the domain [19] and [17], hypotheses express generally relationships
between some system design characteristics (or architectural properties) and change impact, in our case. These
design characteristics are measured by metrics, and, the choice of these metrics is part of our empirical study
orientation. Verifying these hypotheses can be made by different techniques, e.g., statistical models [8]. In our
work, we choose artificial intelligence techniques, more specifically, machine-learning ones, for two main
reasons: (i) these techniques were not yet used in previous works on change impact analysis, and, (ii) models
produced by these techniques are knowledge pieces, represented according to a given formalism, which can be
integrated into a knowledge-based decision system. Finally, in this work, we aim at analyzing software systems
coded with the Java language; an adaptation of the model (defined at abstract level) to this language is necessary
for impact calculation of any possible atomic change in Java. We need also tools, which allow analyzing the
code of the system under test. The implementation of the change impact calculation expressions, deduced at an
abstract level, by the model, depends first, on considered changes, and secondly, on the analysis tool. The
calculation of selected metrics is also a task, which can be realized within the used tool framework, as it can be
totally independent. Finally, the choice of machine-learning algorithms techniques for hypotheses verification
depends on their applicability and performances.

3.1 Change impact model

When a change is considered, it is necessary to identify system components that will be impacted; it will
ensure that the system will still run correctly after change implementation. Our concern is then focussed on how
the system reacts to a change (in general). It is generally accepted that a system absorbs easily a change if the
number of impacted components is small. A system is seen as a set of classes connected by different links; a
class is defined as a group of methods, which serve as public interface or for internal operations, and a section of
variables, which define the state of classes’ instances. A component refers to a class, a method, or a variable. As
examples of changes, one can have the deletion of a variable, the change in a method’s scope from "public" to
"protected" or the removal of the relationship between a class and its parent. Table 1 consigns main changes in
object-oriented systems, at the design level; they are categorized according to the component they affect and a
total of 13 changes are identified.

Once a given component is subject to change, a specific part may be affected, in case it is related to the
changed component via a link. These links are among the four following types: S (association: a class makes
reference to variables of another class); G (aggregation: the definition of a class implies objects of another class);
H (inheritance: a class inherits the characteristics defined in another class (parent)); I (invocation: the methods of
a class call upon methods defined in another class). We also consider a special notation commonly used in
Boolean algebra: the absence of operator between 2 links means an intersection. The “+” operator means a
union. The “~” before a link means the negation. For instance, ~G means the set of classes that are not linked to
the specified class by an aggregation. Moreover, links are independent from each other, and, we can expect to
find any number and any type of links between two classes. A change of a class can also have an impact in the
same class. Pseudo-link L (local) is introduced to denote this.

1 SPOOL: "Spreading desirable Properties into the design of Object-Oriented Large-scale software systems". This project was organized by
CSER (Consortium for Software Engineering Research), and subsidized by BELL Canada, NSERC (Natural Sciences and Research Council
of Canada) and NRC (National Research Council Canada).

63

4 M.K. Abdi, H. Lounis, and H. Sahraoui

 Table 1. Main changes at the abstract level

Component Change description

Type change
Variable scope change
Addition

Variable

Deletion
Return type change
Implementation change
Signature change
Method scope change
Addition

Method

Deletion
Inheritance structure change
Addition

Class

Deletion

We call change impact the set of classes that require a correction after this change. It depends on two
factors. First, the change category; for example, changing the type of a variable has an impact on all classes
referencing this variable, whereas the addition of a variable has no impact on these classes. Given a change
category, the type of link between classes is the second factor that influences impact. Consider a change in the
scope of a method from "public" to "protected"; classes invoking this method will be impacted, excepted for
those, which are derived from the changed class. However, let us notice that several links, between a changed
class and an impacted one, can be involved in the calculation. Thus, for a given change chi in class clj, the set of
impacted classes is expressed as a Boolean expression in which the variables stand for the links. For instance,
the impact formula for such a hypothetical change may be given by:

Impact (clj, chi) = S~H+G .

This expression means that classes in association (S) with clj, and not derived (~H) from the changed class
clj, or classes that are in an aggregation link (G) with clj, are impacted. Table 2 gives examples of change impact
expressions for each type of constituent.

 Table 2. Changes examples and their expressions

Component

Change description Impact expression

Impact (clj, chi)

Variable Type Change S+L

Method Scope change from
"public" to " protected

I~H

Class Deletion H+G+S+I

Let us note, that this impact model allows predicting which classes would be impacted if a change were
really made. In our work, we are interested only in changes that have a syntactic impact; a given change is
characterized by a code transformation somewhere in the system. If the system is successfully re-compiled, then
there is no impact; otherwise, we have an impact, i.e., code modifications must be done elsewhere in the system
to obtain a syntactically correct code that will re-compile. Since our focus is only on syntactic impact,
appropriate measures we have to apply are based on impacts that are dependent on the static nature of the source
code. Thus, the impact, which can occur during the execution, because of polymorphism, is not considered.

3.2 Model adaptation to the Java Language

We have indicated that this model, defined at the abstract level, was already adapted to the C++ language, in
the SPOOL project [3] [8] [14]; it was a requirement of the industrial partner. In the present study, we target
software systems coded in Java; an adaptation operation of this model to this language turns out to be necessary.
Some changes are common to the two languages, e.g., variable type change, method signature change, class
inheritance structure change, etc. On the other hand, some other changes are specific to C++, e.g., those related

64

 Using Coupling Metrics for Change Impact Analysis in Object-Oriented Systems 5

to "virtual" (virtual method or virtual class) and "friendship" (friendly class) concepts. The model adaptation to
Java is presented in table A of the appendix. The final list contains a total of 52 changes, including 12 changes
for variables, 25 for methods, and, 15 for classes. Finally, for our experiments, we opted for the PTIDEJ2 tool. In
[6], Guéhéneuc proposes and describes models and algorithms to ensure the traceability of design motives3
between implementation and retro design phase’s programs. The PTIDEJ tool is an implementation in Java of
these models and algorithms. It is integrated into the Eclipse development environment [13].

4 Empirical study and Results

In our study, we focalise on inter-classes dependencies; they are supposed to have an impact on ripple
effects. We study the relationship between coupling, an architectural property, and change impact. We propose
to verify the following hypothesis:

 "Coupling influences somehow change impact in object-oriented systems”.

We quoted in section 2 several works on this architectural property, but our objective in this study is to see
which types of coupling influences more change impact. We chose a program analysis toolbox system, called
BOAP, and, developed at the computer science research center of Montreal (CRIM) [5]. It is a set of integrated
software tools, which allow an expert to evaluate some software qualities, e.g., conceptual or structural
weaknesses, too complex instructions, etc. We considered the BOAP system in its version 1.1.0; it is written in
Java and contains 394 classes. The change we chose is the variable type one. We have determined a class that
presents an important number of associations with other classes; the goal is to have a rather considerable impact
on the rest of the system, according to the envisaged change. Then, we selected a variable and carried our
change. We obtain:

Considered class: dbClass (of the DBLMR package)
Variable chosen: sizeInBytes
Change: from "long" type to type "integer"
The impact expression of this change is: S + L (see table A, in Appendix).

This expression means that there is change impact locally at first (in the changed class itself) and also in all
the classes of the system that are in association with the changed class "dbClass". The calculation technique of
change impact returns a total of 42 classes; there are thus 42 impacted classes after this change. We proceeded
the same way for all others system classes. Let us note that it can involve other variable types changes, as it is
completely possible that a change does not create any impact (null impact). On the other hand, we extracted from
the BOAP target system, a set of metrics related to coupling. They are presented in table 3. We calculated them
by the tool developed in [21].

As already indicated, we used in this study, machine-learning techniques. We have exploited the Weka
environment (Waikato Environment for Knowledge Analysis) [20]; it is a set of tools implementing most of
machine-learning algorithms. It is written in Java and is open source. We wanted in this experimentation, to use
several machine-learning algorithms, in order to find various relationships between coupling metrics and change
impact. The choice of these algorithms was based on three criteria: (i) interpretability of the produced models,
(ii) models complementarity, and, (iii) precision (accuracy) of the results. Our learning data set gather 11
variables (10 independent variables + the dependent variable). The independent variables represent coupling
metrics while the dependent variable represents change impact. All the independent variables are numeric. On
the other hand, the dependent variable is discrete; it was initially numeric as it resulted from our calculation
technique with the impact expression (S+L). However, it was necessary to transform it into a discrete variable to
use effectively the 3 chosen ML algorithms, i.e., J48, PART, and, NBTree.

2 Ptidej: Pattern Trace Identification, Detection, and Enhancement in Java.
3 A design motive is the solution of a pattern design.

65

6 M.K. Abdi, H. Lounis, and H. Sahraoui

Table 3. The selected coupling metrics

Metrics Definition

RFC Response For a Class: number of methods called upon in
response to a message.

MPC Message Passing Coupling: number of messages sent by a class
in direction of the other classes of the system.

CBOU CBO Using: refers to the classes used by the target class.

CBOIUB CBO Is Used By: refers to the classes using the target class.
CBO Coupling Between Object: number of classes with which a class

is coupled.
CBONA CBO No Ancestors: CBO without considering classes ancestors.
AMMIC Ancestors Method–Method Import Coupling: number of parents’

classes with which a class has an interaction of the method-
method type and a coupling of the type IC.

OMMIC Others Method–Method Import Coupling: number of classes
(others that super classes and subclasses) with which a class has
an interaction of the method-method type and a coupling of the
type IC.

DMMEC Descendants Method–Method Export Coupling: number of
subclasses with which a class has an interaction of the method-
method type and a coupling of the type EC.

OMMEC Others Method–Method Export Coupling: number of classes
(others that super classes and subclasses) with which a class has
an interaction of the method-method type and a coupling of the
type EC.

J48 is an implementation of the well-known C4.5 algorithm [22]. It is a supervised learning algorithm that
induces a classification model represented by a decision tree or rules. PART [23] allows the induction of rules by
the iterative generation of partial decision trees; its main idea is to build a partial decision tree instead of an
entirely explored one. It provides results as precise as those of J48 algorithm. Finally, with NBTree (Naïve-
Bayes decision-Tree), Kohavi [24] proposes a hybrid approach combining naive Bayesian classifiers and
classifiers based on decision trees. This hybrid approach frequently obtains a very high precision compared to
naive Bayesian classifiers or decision trees classifiers. It exploits a tree structure to divide the instances space
into subspaces and to generate a naive Bayesian classifier for each subspace. In a conventional decision tree,
each leaf is marked with only one class and the algorithm predicts this class for the instances that reach the leaf,
whereas a naive Bayesian tree uses a local naive Bayesian classifier to predict the classes of these instances.

During the use of these 3 ML algorithms, the computation of models accuracy is done thanks to a cross-
validation procedure. It is helpful when the amount of data for training and testing is limited, which is our case;
we try a fixed number of approximately equal partitions of the data, and each in turn is used for testing while the
remainder is used for training. At the end, every instance has been used exactly once for testing.

J48 obtains an accuracy of 73.85 %; it is pretty high and interesting. This rate expresses that on 394
instances, 291 were correctly classified. On the other hand, we find that the generated decision tree is rather
large (size=67). Consequently, it is difficult to extract causality rules from this tree; to obtain a more compact
decision tree, we chose a data pre-processing: we keep a reduced set of attributes (or independent variables), the
most relevant, instead of considering the set of all attributes. Weka offers such a simple filtering algorithm that
arranges subsets of attributes according to a correlation based on a heuristics evaluation function; some attributes
should be ignored because they will have a low correlation with the variable to be predicted. The attributes
which were selected to participate (to the learning process) are: MPC, CBOU, CBONA, AMMIC, and OMMIC
(see table 3). We have run again J48 on this new data set, and, the obtained accuracy was very close to the
previous (73.30 %). However, the induced decision tree is well reduced (size=31) and compact. It contains 16
leaves; every path from the root to a given leaf is a causality rule. We have obtained then a set of 16 rules. Figure
1 presents some of these rules.

66

 Using Coupling Metrics for Change Impact Analysis in Object-Oriented Systems 7

Rule 1:
MPC ≤ 21

OMMIC ≤ 4

AMMIC = 0

→ impact: weak (119.0/51.0)

Rule 2:
MPC ≤ 21

OMMIC ≤ 4

AMMIC > 3

→ impact: weak (32.0)
Rule 11:

MPC ≤ 21

OMMIC > 4

CBOU ≤ 7

→ impact: weak (68.0/12.0)

Rule 12:
MPC ≤ 21

OMMIC > 4
CBOU > 7

→ impact: average (9.0/1.0)
Rule 15:

MPC > 36

CBOU > 14

AMMIC ≤ 5

→ impact: average (4.0/1.0)

Rule 16:
MPC > 36

CBOU > 14

AMMIC > 5

→ impact: very-strong (2.0)

 Fig. 1. Causality rules induced by J48

The first remark to be made on this set of rules is that there are 14 rules on 16, where import coupling
metrics are implied. It illustrates the influence of this particular coupling property on change impact. By
observing well this subset of 14 rules, one can still distinguish 3 particulars subsets; the first subset, formed of 10
rules, evokes two import coupling metrics, i.e., OMMIC and AMMIC; the second one is formed of 2 rules,
where appears only the OMMIC metric; finally, the third subset is also formed of 2 rules, where appears only the
AMMIC metric. On the other hand, in the first subset, we notice that in most cases, impact is weak or very-weak
for classes which present a weak Method-Method-Others import coupling (OMMIC ≤ 4, average is 9.26) and a
weak/medium Method-Method-Ancestors import coupling (AMMIC between 0 and 3, average is 2.15). For the
second subset, the OMMIC metric is not deciding but it represents an important element to consider in impact
prediction; it is weak or medium according to whether the number of classes used by the target class is medium
or great (CBOU ≤ 7 or > 7, average is 3.57). That is valid for classes, which have not a very large number of
static invocation methods (MPC ≤ 21, average is 11.34) and a Method-Method-Others import coupling not too
small (OMMIC > 4, average is 9.26). For the third subset, rules express that for classes with a great number of
static invocation methods (MPC > 36) and a great number of classes used by the target class (CBOU > 14), the
Method-Method-Ancestors import coupling measure is determining in the sense that impact for these classes,
will be medium or very strong.

On the other hand, the PART algorithm obtains an accuracy of 65.48 %, it is weaker than the score obtained
by J48; the induced knowledge is represented by a set of 25 rules. The first observation to make on this rule-set
is that 16 rules involve import coupling metrics. That confirms the remark made before, concerning the influence
of this particular coupling property on change impact. In addition, several rules are similar with those found by
J48. For instance, rules 3 and 4 of PART are close to rules 2 and 11 of J48, and for the two algorithms, rules 15
are identical. That partially confirms the important result found by J48. Figure 2 shows some rules chosen
among the set of rules generated by PART.

Finally, by running the NBTree algorithm on our data set, we obtain an accuracy of 66.75%. The induced
decision tree is compact (size=17). It contains 9 leaves, containing each one a Bayesian classifier. Each path
from the root to a given leaf is a probabilistic causality rule; we thus have a set of 9 rules. Figure 3 presents some
of them. Let us note that in the conclusion part of each rule, we find the identifier of the naive Bayesian classifier
(it is NB3 for rule 1), followed by the class to be predicted, which is in fact, the class with the highest
probability. This probability is given between brackets. The results of this algorithm affirm that in addition of
import coupling, coupling measured by CBONA and CBOU metrics also influences impact. Rules 1 and 9 (see
figure 3) illustrate well that the impact is very weak or strong according to values' of these metrics (small or
large). On the other hand, rules 2 and 3 express that the impact becomes increasingly weak when the Method-
Method-Ancestors import coupling (AMMIC) increases; it confirms a result already found by J48.

67

8 M.K. Abdi, H. Lounis, and H. Sahraoui

Rule 3:
MPC <= 13
AMMIC > 3
 → impact: weak (33.0/1.0)
Rule 4:
MPC <= 13
OMMIC > 4
CBOU <= 1
 → impact: weak (6.0)

Rule 15:
MPC > 36
CBOU > 14
AMMIC <= 5
 → impact: average (4.0/1.0)

 Figure 2. Causality rules induced by PART

Rule 1:
CBONA ≤ 3.5

CBOU ≤ 0.5

→ NB3: impact very-weak (0.46)

Rule 2:
CBONA ≤ 3.5
CBOU ∈]0.5,1.5]
AMMIC ≤ 0.5
→ NB5: impact weak (0.54)

Rule 3:
CBONA ≤ 3.5

CBOU ∈]0.5,1.5]

AMMIC > 0.5

→ NB6: impact very-weak (0.76)

Rule 9:
CBONA > 3.5
CBOU > 36.5

→ NB16: impact strong (0.48)

 Figure 3. Causality rules induced by NBTree

5 Conclusion

We proposed in this article an approach of change impact analysis and prediction for object-oriented
systems. We chose an existing impact model and we adapted it to the Java language. Then, we proposed a
calculation technique of change impact expressions using a meta-model approach. To verify our approach, we
developed an empirical study in which we stated a hypothesis between coupling and change impact. Some
experiments were carried out on a target Java system; a change was concretely made on this system (variable
type change) and its impact was deduced by our model then calculated by a calculation technique. On the other
hand, a set of metrics related to coupling was extracted from the target system. Finally, we exploited 3 ML
algorithms to verify our hypothesis.

The accuracies obtained by the 3 algorithms seem rather interesting. The results of J48 then confirmed by
PART, express that import coupling influences much more change impact than other types of coupling, since in
most cases, the impact is mainly related to this type of coupling. On the other hand, it turns out that for the
classes for which the number of static methods invocations, as well as the number of classes used with the target
class, is large, import coupling (measured by the AMMIC metric) determines change impact. This result was
found by J48 then partially confirmed by PART. Finally, NBTree results added more details to the results
already found by J48 and PART, and showed that coupling measured by CBONA and CBOU metrics also
influences the impact.

We are now working on other experiments on other systems in order to confirm these results. We are also
interested by other coupling measures, and, others types of architectural properties, that could be related to
mechanisms explaining ripple effect in object-oriented systems. It would be interesting, in our opinion, to
compare change impact through different systems and then find results applicable to a wide category of them.

68

 Using Coupling Metrics for Change Impact Analysis in Object-Oriented Systems 9

References

1. G. Antoniol, G. Canfora and A. De Lucia. Estimating the size of changes for evolving object-oriented systems: a Case Study. In

Proceedings of the 6th International Software Metrics Symposium, pages 250-258, Boca Raton, Florida, Nov 1999.
2. L. C. Briand, J. Wüst, and H. Lounis, "Using Coupling Measurement for Impact Analysis in Object-Oriented Systems" in proceedings of

the International Conference on Software Maintenance ICSM'99, Oxford, England, August 30 – September 3, 1999.

3. M. A. Chaumun. "Change Impact Analysis in Object-Oriented Systems: Conceptual Model and Application to C++". Master's thesis,
Université de Montréal, Canada, November 1998.

4. S. R. Chidamber and C. F. Kemerer. "A Metrics Suite for Object Oriented Design" in IEEE Transactions on Software Engineering, Vol.

20, No. 6, pages 476-493, June 1994.
5. E.H Alikacem, H. Snoussi, "BOAP 1.1.0, Manuel d’utilisation", CRIM, Janvier 2002.

6. Y-G Guéhéneuc, Un cadre pour la traçabilité des motifs de conception. Thèse de doctorat de l’université de Nantes, École Nationale

Supérieure des Techniques Industrielles et des Mines de Nantes, juin 2003
7. J. Han. " Supporting Impact Analysis and Change Propagation in Software Engineering Environments" in Proceedings of the STEP97,

London, England, pages 172-182, July 1997.

8. H. Kabaili, "Changeabilité des logiciels orientés objet propriétés architecturales et indicateurs de qualité", PhD thesis, Université de
Montréal, Canada, Janvier, 2002

9. D. C. Kung, J. Gao, P. Hsia, J. Lin and Y. Toyoshima. "Class firewall, test order, and regression testing of object-oriented programs" in

Journal of Object-Oriented Programming, Vol. 8, No. 2, pages 51-65, May 1995.
10. M. L. Lee, "Change Impact Analysis for Object-Oriented Software". PhD thesis, George Mason University, Virginia, USA, 1998.

11. W. Li and S. Henry, "Object-Oriented Metrics that Predict Maintainability" in Journal of Systems and Software, Vol. 23, pages 111-122,

1993.
12. L. Li and A. J. Offutt, "Algorithmic Analysis of the Impact of Changes to Object-Oriented Software" in ICSM96, pages 171-184, 1996.

13. Object Technology International, Inc. / IBM. Eclipse platform – A universal tool platform, July 2001.

14. R. Schauer, R. K. Keller, B. Laguë, G. Knapen, S. Robitaille, and G. Saint-Denis. The SPOOL Design Repository: Architecture, Schema,
and Mechanisms. In Hakan Erdogmus and Oryal Tanir editors, Advances in Software Engineering. Topics in Evolution, Comprehension,

and Evaluation. Springer-Verlag, 2001.

15. F. G. Wilkie, B. A. Kitchenham, "Coupling Measures and Change Ripples in C++ Application Software", published in the proceedings
of EASE’99, University of Keele, UK, 1998.

16. L. C. Briand, S. J. Carrière, R. Kazman, J. Wüst, "A Comprehensive Framework for Architecture Evaluation", International Software

Engineering Research Network Report ISERN-98-28.
17. L.C. Briand, J. Wust, H. Lounis. "Replicated Case Studies for Investigating Quality Factors in Object-Oriented Designs".In Empirical

Software Engineering, an International Journal, 6(1):11-58, March 2001, Kluwer Academic Publishers.

18. R. Cantave "Abstractions via un modèle générique d’application orientée objet", Master's thesis, Université Laval, Canada, Avril 2001
19. H. Lounis, H.A. Sahraoui, and W.L. Melo, "Defining, Measuring and Using Coupling metrics in Object-Oriented Environment" in

SIGPLAN OOPSLA'97 Workshop on Object-Oriented Product Metrics, 1997, Atlanta, Georgia, USA, 1997.

20. I. H. Witten and E. Frank, "Data Mining: Practical Machine Learning Tools and Techniques with Java Implementation", © 2000 Morgan
Kaufmann Publishers

21. L. Cheïkhi, "Estimation de l’impact du changement dans les programmes à Objets", Master's thesis, Université de Montréal, Canada,

November 2004.
22. J.R Quinlan, "C4.5: Programs for Machine Learning". Morgan Kaufmann Publishers, Sao Mateo, CA, 1993.

23. E. FRANK, I.H. WITTEN, "Generating Accurate Rule Sets Without Global Optimization" in Proceedings of the Fifteenth International

Conference, Morgan Kaufmann Publishers, San Francisco, CA, 1998.
24. R. KOHAVI, "Scaling up the accuracy of naive-Bayes classifiers: a decision tree hybrid" in Proceedings of the Second International

Conference on Knowledge Discovery and Data Mining, (1996).

25. Computer Society Press, "Standards Collection Software Engineering", The Institute of Electrical and Electronics Engineers, Inc., 1993.
26. S. L. PFLEEGER, "A Framework for Software Maintenance Metrics" in IEEE Transactions on Software Engineering, pages 320-327, May

1990.

69

10 M.K. Abdi, H. Lounis, and H. Sahraoui

Appendix

Table A. Results of change impact for Java

Change Id

 Change Description
Impact

Expression

v.1.1 Variable value change -
v.1.2 Variable type change S+L
v.1.3 Variable addition -
v.1.4 Variable deletion S+L
v.1.5 Variable scope change
v.1.5.1 Public → Private S
v.1.5.2 Public → Protected S~H
v.1.5.3 Protected → Private SH
v.1.5.4 Protected → Public -
v.1.5.5 Private → Public -
v.1.5.6 Private → Protected -
v.1.6 Variable change

(Static/Non-static)

v.1.6.1 Static → Non-static S+L
v.1.6.2 Non-static → Static -

m.2.1 Method change

(Static/Non-static)

m.2.1.1 Static → Non-static I+L
m.2.1.2 Non-static → Static L
m.2.2 Method change

(Abstract/Non-abstract)

m.2.2.1 Abstract → Non-abstract H+ie(3.1.2)+L
m.2.2.2 Non-abstract → Abstract H+ie(3.1.1)+L
m.2.3 Method Return type change
m.2.3.1 Non-abstract method H+ie(3.1.2)+L
m.2.3.2 Abstract method H+L
m.2.4 Method implementation

change
L

m.2.5 Method signature change
m.2.5.1 Non-abstract method I+ie(3.1.2)+L
m.2.5.2 Abstract method H+L
m.2.6 Method Scope change
m.2.6.1 Public → Private
m.2.6.1.1 Non-abstract method I

m.2.6.1.2 Abstract method -
m.2.6.2 Public → Protected
m.2.6.2.1 Non-abstract method ~H I

m.2.6.2.2 Abstract method -
m.2.6.3 Protected → Private
m.2.6.3.1 Non-abstract method H I
m.2.6.3.2 Abstract method -
m.2.6.4 Protected → Public
m.2.6.4.1 Non-abstract method -
m.2.6.4.2 Abstract method -
m.2.6.5 Private → Public
m.2.6.5.1 Non-abstract method -
m.2.6.5.2 Abstract method
m.2.6.6 Private → Protected
m.2.6.6.1 Non-abstract method -
m.2.6.6.2 Abstract method -
m.2.7 Method addition
m.2.7.1 Abstract method ie(3.1.1)
m.2.7.2 Non-abstract method I+ie(3.1.2)+L
m.2.8 Method deletion
m.2.8.1 Abstract method ie(3.1.2)
m.2.8.2 Non-abstract method I + ie(3.1.1)+ L

c.3.1 Classe change

(Abstract/Non-abstract)

c.3.1.1 Non-abstract → Abstract G+H+I+L
c.3.1.2 Abstract → Non-abstract H+L
c.3.2 Classe deletion
c.3.2.1 Non-abstract class S+G+H+I
c.3.2.2 Abstract class S+H+I
c.3.4 Class inheritance derivation
c.3.4.1 Public → Private S+I
c.3.4.2 Public → Protected ~H(S+I)
c.3.4.3 Protected → Private H(S+~SG+~S I)
c.3.4.4 Protected → Public -
c.3.4.5 Private → Public -
c.3.4.6 Private → Protected -
c.3.5 Class addition -
c.3.6 Class inheritance structure
c.3.6.1 Abstract class addition S+G+H+I+

ie(3.1.1)+ L
c.3.6.2 Non abstract class addition H+L
c.3.6.3 Abstract class deletion H+ie(3.1.2)+ L
c.3.6.4 Non abstract class deletion H+L

70

A maintainability analysis of the code produced by an
EJBs automatic generator

Ignacio García-Rodríguez de Guzmán, Macario Polo, Mario Piattini

ALARCOS Research Group
Information Systems and Technologies Departament

UCLM-Soluziona Research and Development Institute
University of Castilla-La Mancha

Paseo de la Universidad, 4 – 13071 Ciudad Real, Spain
{Ignacio.GRodriguez, Macario.Polo, Mario.Piattini}@uclm.es

Abstract. Design and development of Web applications is an
increasinglydemanded topic. However, successive changes to their code and
databases result in a progressive decreasing of its quality and maintainability.
Because of that, we have built a tool for the automatic generation of multilayer
web components-based applications to manage databases. The source code of
these applications is automatically generated, being this one optimized,
corrected and already pre-tested and standardized according to a set of code
templates. This paper makes an overview of the code generation process and,
then, shows some quantitative analysis related to the obtained code, that are
useful to evaluate its maintainability. This study is important for developers
since they will probably require to implement some changes for its adaptation
to the final requirements.

1. Introduction

Reengineering is one of the most powerful tools offered by software engineering to
maintain legacy systems (Fig. 1). According to [1], reengineering is composed in turn
by other two techniques, the “forward” and the “reverse engineering”

Fig. 1. Simplified reengineering model

71

2 Ignacio García-Rodríguez de Guzmán, Macario Polo, Mario Piattini

Reverse engineering is the process of building abstract formal specifications from
source code of a legacy system that can be later used to build new versions of the
system, but now, using forward engineering [1].

In this context, we have developed a tool which generates Web applications from a
relational database applying complete reengineering process. These Web applications
are generated automatically, and support the management of a relational database.
According to [2-5], the most usual practice when reverse engineering is applied to
databases is to obtain an entity-relation scheme, although, other proposals get an
object oriented representation from the database, usually as a class diagram [6, 7].
The use of class diagrams instead of ER schemas provides, from a reengineering point
of view, the possibility of taking advantage of the object oriented paradigm
constructions for the later steps.

Because of their nature, web applications have a complex development process,
especially when a middleware must support the management of the database, and
security of transaction constraints must be taken into account. Enterprise JavaBeans
is a technology specifically designed for dealing whit this problems, but these
characteristics (such as indirect relationship among classes and interfaces, that are
managed by component containers) make difficult its development and maintenance.

Our proposal is based on a tool which automatically generates distributed
component-based applications (specifically EJB components and Web Services, both
written in Java), using some principles of software engineering inside them. Some of
these principles are the use of design patterns (which provide great consistency,
extensibility and understandability to the application). As a result, applications can be
easily extended adding new features which implement new. Furthermore, some
technical documentation is generated when the web application is generated. This
documentation helps us in the afore-mentioned maintenance process, making easier
the modification of the source code. In addition, automatic development of these kind
of web applications lets to the development team to save a lot of time. In order to
analyze the maintainability of the generated code, in this paper we make a
quantitative analysis of the generated source code by means of the use of some object-
oriented metrics. A quantitative way, an overview of such easy is to maintain these
applications.

This paper is organized as follows: Section 2 contains an overview of some related
technologies and metrics; in Section 3, some metrics are applied to an example web
application obtained from a relational database by our tool. Result are shown and
commented in the same section; finally, we draw our conclusions and future lines of
work in Section 4.

2. Web Application technologies and Metrics for source code
evaluation

From a relational database, our tool generates a multilayer application [8] based on
EJB components and JSP pages. Fig. 2 shows the general architecture of the
automatically web applications.

72

A maintainability analysis of the code produced by an EJBs automatic generator 3

Fig. 2. Basic architecture of the automatic generated applications

In Fig. 2 we can distinguish a layer made up of JSP pages whose goal is to offer a
friendly interface to the user in order to manage the database. The middle layer is a
middleware composed by EJB components which implements the logic to perform the
management of the database. The third layer is made up of the relational database
and, maybe, some additional classes. We do not provide an analysis of neither the tool
nor of the generated web application from since this points are out of the scope of this
paper.

The most important elements of the generated web applications are the EJB
(Enterprise Java Bean) components, which are components written in Java language.
An EJB component has a couple of interfaces, a class which implements the methods
(of the interfaces and others) and a set of additional classes which gives support for
some features that could be necessary implement. Actually exits three types of EJB
components (Entity Beans, Message Driven Bean and Session Bean. For our proposal,
the most interesting EJB type is the Entity Bean, because this one referents a
persistent entity existing in the relational database.

As we said in the beginning, these applications carry a substantial complexity,
because there are some technologies involved in the development process in order to
implement all the features, and also, to delegate the database management to the
component-based middleware requires an additional effort. This is due to the fact that
we have to program the necessary logic to orchestrate all the components in such way
that the database integrity be respected. That corresponds to define the choreography
among the EJB components.

After studying the problem, we notice that the development process of such
applications could be performed in an automatically way, because the generated
source code could be predicted. The preliminary analysis let us to generate free-error
code, and as far as possible, this code is already optimized by means of the use of
design patterns. In this manner, we obtain the basic number of classes, with the basic
number of methods per class for each component, being written both classes and
methods in a clearly and concise. This allows the possibility of realize task of
adaptive and perfective maintenance in the future, when new features and
requirements have to be added to the web applications in order extend the offered
services.

To check these assertions, we will use some well-known software metrics to verify
the quality of the source code of the generated applications. The used metrics are the
following:

73

4 Ignacio García-Rodríguez de Guzmán, Macario Polo, Mario Piattini

• LOC (Lines Of Code): This metric is the sum of lines of the source code
of the

• class.
• WMC (Weighted Methods Class): This metric is the sum of the

complexities of methods of a class, this is, the sum of the ciclomatic
complexities.

• CBO (Coupling Between Objects Classes): This metric measures coupling
among classes.

According to several studies, high coupling is the best predictor of the fault
proneness of classes [9]. When the coupling or complexity understandability and
testability of the system decreases, and any attempt of change something in
maintenance task will be hard and difficult. So, these metrics are good predictors of
the quality of our generated Web applications.

A database example (see Fig. 3) has been designed to illustrate the results of
applying these metrics to the obtained source code. The database schema is very
simple but enough for our illustrative goal.

Fig. 3. A simple database

Once we have the database schema, the last step is generating the source code of
the Web application. The following sections deal with the measure of this generated
source code.

3. Source code quality measure

With out tool, an EJB is generated for each table. Fig. 4 shows the signature of the
operations generated for the CreditCard table (Fig. 3).

Next sections concrete present the calculus of the values of these metrics for these
EJBs; Section 3.4 includes the description of the equations for predicting their values
from the database schema.

74

A maintainability analysis of the code produced by an EJBs automatic generator 5

Fig. 4. Classes and interfaces automatically generated from the table CreditCard

3.1. Lines of Code

This metric measures the total number of lines ended with a semicolon in classes and
interfaces. Below, we show the results for each element of each Enterprise Java Bean
generated from the original data base:

The number of lines of code generated depends on the schema of the database, the
number of columns and tables, foreign keys, indexes and stored procedures. Also the
number of LOC source code generated is very predictable, because lines of code
generated from a table are directly proportional to the elements related with it.

3.2. Coupling between objects classes

The high coupling is a non-desirable characteristic in an OO system that can be
measured using the Coupling Between Object Classes metric (CBO). CBO is a count
of the number of classes a class is coupled to. It is measured by counting the number
of related class hierarchies on which a class depends [10].

Inside the source code generated by our tool, coupling depends directly on the
scheme of the database too. So coupling is directly proportional to the number of
foreign keys existing among tables. For example, if there is a table in the database
with three foreign keys to other tables, the EJB which represents this table will be

75

6 Ignacio García-Rodríguez de Guzmán, Macario Polo, Mario Piattini

related with the other three EJBs epresenting the tables whose primary keys are
foreign keys in the first table.

For this reason, the coupling measured here will be the existing coupling among
components, not among classes, because coupling among classes automatically
generated will be a constant. Other thing is the coupling caused by an external
developer that modifies the source code in order to add some functionality or new
features to the generated application. Because this relation among components
depends on the number of foreign keys in the tables of the database, the level of
coupling of the system will be also predictable.

Fig. 5. CreditCardHome Interface with its 8 lines of code

Continuing with our example, the coupling from the component point of view is
represented in Fig. 6. As we can see, the CreditCard EJB depends of the Account and
the Person EJBs. This figure can be compared with Fig. 3, where we can clearly see
the foreign keys.

According to [10], coupling between objects should not be greater than 5 since
higher CBO decreases system understandability, avoids the reuse of components and
makes more costly maintenance. Our tool keeps the coupling between classes and
components at the minimum level.

Fig. 6. Coupling between EJBs

76

A maintainability analysis of the code produced by an EJBs automatic generator 7

3.3. Weighted Methods per Class

The last metric applied to the generated source code by our tool from a relational
database is the Weighted Methods per Class (WMC). This metric is very similar to the
McCabe Ciclomatic Complexity [11].

As Ciclomatic Complexity, [11] WMC gives the minimum number of test cases for
a given system, supposing each decision condition as a different decision node; when
the complexity is greater than 10, the probability of find faults in code grows, and so,
we should raise again the architecture of the module which obtains this punctuation.

According to [10], WMC, must be lower than 100, so a class must have at most
twenty methods per class and the ciclomatic complexity per method must be lees than
5. WMC is given by the following expression:

)(jComplexityCiclomatic
classesi

i
Methodsj

∑ ∑
∈ ∈

In our small example, WMC for each class and for all the components are the
following:

As we can notice see, none of the EJB in the example overcomes the limit imposed

by [10]. In case, the code generated is fault-free.
In the case that other developers add some code generated by themselves,

complexity of web applications could be increased depending on the ability of these
developers, although to follow the code and design styles our tool adds some
technical documentation in addition to the generated code, and so, developers can
notice the design styles and follow them.

77

8 Ignacio García-Rodríguez de Guzmán, Macario Polo, Mario Piattini

Fig. 7. loadRow method with a 2 ciclomatic complexity level

3.4. Equations to predict metrics (and its maintainability)

Finally, in sight of the result afore-obtained and the source code generated, we have
derived some equations. These equations allow to predict some characteristics of the
web applications generated from a database.

To predict the Number of Lines of Code (LOC) for the EJB components, we can
apply the following equation:

ColFKNColNOfIndexesNKLOC LOC º*3º*8º*13 +++= (1)

Where KLOC is a constant representing the minimum lines to be always generated and
its value is 90; NºOfIndexes is the number of indexes in the table associated to the
EJB; NºCol is the number of columns in the table and NºColFK is the number of
columns of the table which are foreign keys.
Coupling between objects (CBO), for a given EJB, can be predicted from the table
by means of the following equation:

∑
=

=
FKs

i
iEJB FKColsNCBO

0
)(º

(2)

Where FKs is the set of foreign keys of the table represented by the EJB, FK is the
foreign key that is being examined, NºCols() is a function that obtains the number of
columns that targets to different tables inside de same foreign key. Note that a
consequence to take in account when we realize this operation is that if columns
belonging to the current foreign key are targeting to the same table, functions returns
one.

78

A maintainability analysis of the code produced by an EJBs automatic generator 9

To estimate the Weighted Methods per Class, we have obtained other equation:

ColFKNColNKWMC WMC º*2º*4 ++= (3)

Where KWMC is a constant representing the minimum ciclomatic complexity to be

always generated and its value is 20, NºCol is the number of columns of the table
associated to the EJB, and NºColFK is the number of foreign key columns.

Also, if there is stored procedures in the database, an additional EJB is generated
containing methods to call them. In this case, this EJB is not an Entity Bean but a
Session Bean. As well as an Entity Bean materializes a record from a table, a Session
Bean only interacts with the client. For our purpose, the Session Bean will allow us to
invoke the stored procedures of the database. In order to estimate the effect caused to
the calculated metrics, we derive two very simple expressions which give us a
measure of LOC and WMC (coupling is not affected). The estimated metrics for the
Session Bean representing the stored procedures are:

StorProcNKLOC LOC º*12+= (4)

StorProcNºKWMC WMC *3+= (5)

In the LOC equation, KLOC is the minimum number of lines always included in the

bean, and NºStorProc is the number of stored procedures the database In the WMC
equation, KWMC is a constant which value is 7, and NºStorProc is the number of stored
procedures in the database. For the stored procedures owned by the system, the tool
does not generate code.

As it is seen, the design of the database has a strong influence on the quality of the
application that manages it. Using the thresholds proposed by NASA [10] together to
equations 1-6 (as predictors of the quality of the application), it is possible to
determine, before the application development, that a change in database design is
required in order to keep adequate values of maintainability and fault proneness in the
application.

4. Conclusions and future work

Development of component-based web applications constitutes a complex process
which involve some technologies. For this reason, a tool has been developed in order
to automate this process. The fact of generating correct web applications is so
important that writing of optimized, easily understandable and documented source
code.

The tool presented, give us a very simple method to develop web applications to
support the management of a relational database. This management is realized by
means of a set of EJB components which constitutes the middleware that implements

79

10 Ignacio García-Rodríguez de Guzmán, Macario Polo, Mario Piattini

all the necessary logic. As the generated application must probably be modified to
adapt it to the actual requirements, we have studied the quality of the generated source
code from the maintainability point of view. Thus, we have analysed some features of
the code as predictors of maintainability. As our prediction method has demonstrated,
the developed tool generates code which is easily to maintain and understand.

Other lines of work could consist in develop other techniques which optimize more
the source code obtained, reducing the number of EJB components in the systems.
Some of these techniques could be the implementation of any heuristic to optimize the
number of tables represented by an EJB, or the choreography defined to coordinate
the operations of the EJB during the management of the relational database.

5. Acknowledgements

This work is partially supported by the MÁS project (Mantenimiento Ágil del
Software), Ministerio de Ciencia y Tecnología/FEDER, TIC2003-02737-C02-02, and
the ENIGMAS project, Plan Regional de Investigación Científica, Desarrollo
Tecnológico e Innovación, Junta de Comunidades de Castilla La Mancha, PBI-05-058

References

1. Arnold, R.S., Software Reengineering, ed. 0-8186-3272-0. 1992: IEEE Press. pp. 675.
2. Andersson, M. Extracting an Entity Relationship Schema from a Relational Database

through Reverse Engineering. in 13th International Conference on Entity-Relationalship
Approach. 1994. Berlin: Loucopolous.

3. Pedro de Jesus, L. and P. Sousa. Selection of Reverse Engineering Methods for Relational
Dabases. in Proceedings of the Third European Conference on Software Maintenance.
1998. Los Alamitos, California: Nesi, Verhoef.

4. Chiang, R., T. Barron, and V.C. Storey, Reverse engineering of relational databases:
extracting of an EER model from a relational database. Journal of Data and Knowledge
Engineering, 1994. 12((2)): p. pp. 107-142.

5. Hainaut, J.-L., et al. Database Design Recovery. in Eighth Conferences on Advance
Information Systems Engineering. 1996. Berlin.

6. Polo, M., et al., Generating three-tier applications from relational databases: a formal and
practical approach. Information & Software Technology, 2002. 44(15): p. pp. 923-941.

7. García-Rodríguez de Guzmán, I., M. Polo, and M. Piattini. An Integrated Environment for
Reengineering. in Proceedings of the 21st International Conference on Software
Maintenance (ICSM 2005). 2005. Hungary, Budapest: IEEE Computer Society.

8. Larman, C., Applying UML and Patterns. 1998, New York: Prentice Hall, Upper Saddle
River.

9. Briand, L., J. Wuest, and H. Lounis. Using Coupling Measurement for Impact Analysis in
Object-Oriented System. in IEEE International Conference on Software Maintenance
(ICSM´99). 1999. Oxford.

10. Rosenberg, L., R. Stapko, and A. Gallo, Applying Object Oriented Metrics. 1999, NASA.
11. Piattini, M.G., et al., Análisis y diseño de Aplicaciones Informáticas de Gestión: Una

perspectiva de Ingeniería del Software. 2004, Madrid: RA-MA. 710.

80

Validation of a Standard- and Metric-Based
Software Quality Model

Rüdiger Lincke and Welf Löwe

School of Mathematics and Systems Engineering,
Växjö University, 351 95 Växjö, Sweden

{rudiger.lincke|welf.lowe}@msi.vxu.se

Abstract. This paper describes the layout of a project1 that we want to
discuss with the scientific community. In the project, we will validate the
automated assessment of the internal quality of software according to the
ISO 9126 quality model. In selected real world projects, automatically
derived quality metric values shall be compared with expert opinions and
information from bug and test databases. As a side effect, we create a
knowledge base containing precise and reusable definitions of automati-
cally assessable metrics and their mapping to factors and criteria of the
ISO quality model.

1 Introduction

Different studies show that currently more than half of the total costs in own-
ership of a software system are maintenance costs [7, 15]. Hence, it is important
to control software qualities like maintainability, re-usability, and portability
directly during the development of a software system.

Software quality is defined in the ISO/IEC 9126 standard [10], which de-
scribes internal and external software qualities and their connection to attributes
of software in a so-called Quality Model, cf. ISO/IEC 9126-1:2001. The Quality
Model follows the Factor-Criteria-Metric model [17] and defines six quality char-
acteristics (or factors), which are refined into sub-characteristics (or criteria).
Sub-characteristics in turn are assessed by metrics; they measure the design and
development process and the software itself. ISO/IEC 9126-3:2003 provides a set
of internal metrics for measuring attributes of the six defined sub-characteristics.

These measurements are currently intended to be performed manually as
they require human insights, e.g., with code and document reviews. Manual
approaches, however, have a series of drawbacks:

1. They are error-prone since they highly depend on the subjects performing
the measurement. Hence, they are not measurements in the mathematical
sense, which are required to be objective and repeatable. Humans might
oversee or even deliberately ignore certain problems.

1 The KK foundation, Sweden: Project ”Validation of metric-based quality control”,
2005/0218.

81

2

2. They are time consuming. When taking, e.g., code reviews seriously, people
have to read and understand codes that they haven’t created in the first
place.

3. They might cause tensions in the organizations. There is a conflict of interest
when, e.g., the project/quality manager requests reports from a developer,
which at the same time is used to evaluate the performance of that developer.

These drawbacks are getting more severe considering current trends in soft-
ware development, like outsourcing of development and integration of open
source components into proprietary systems. For a reliable software production,
it is essential to guarantee not only the functional correctness of external com-
ponents but also the internal qualities of external components. Manual quality
measurement is not an option in these settings.

Finally, many customers of software systems, especially governmental organi-
zations or those operating in security and safety critical areas, demand certified
process maturity from their vendors, e.g., as specified in the ISO 9000 series
[11–13] or the Capability Maturity Model Integration (CMMI) [4]. They require
quantitative reasonable statistical control over product quality as a basis for
continuous quality improvement in the software and the software development
process. This is, for the aforementioned reasons, hard to establish with manual
quality control.

Replacing the ISO/IEC 9126 metrics manually assessing internal qualities
with metrics allowing for automatic measurement resolves the above problems.
The remaining problem is, however, to ensure that this automated approach is
appropriate, i.e. provides a reliable assessment for at least some (sub-) charac-
teristics. Our project aims at this validation.

In the long run, we expect to have a set of tools and methods allowing the
automated assessment of software systems. Possible usage scenarios could be:

– monitoring of software quality goals during the development process result-
ing in early corrective actions;

– assessment of maintenance effort for change or redeveloping decisions;
– control if subcontractors or outsourced software developers meet the agreed

quality goals;
– foundation to choose between different software products offered by compet-

ing companies. Is the cheaper product really the better choice in the long
run?

Yet in all these activities, the tools and methods are expected to be indicators
of bad quality, making reviews more efficient and directed. In any case, manual
reviews are needed to validate an issue or identify false positives. We do not
expect to create a fully automated assessment of software quality which can
make decisions completely independent of human insight.

The structure of this paper is as follows. Section 2 explains our research goal
and the expected results. Section 3 defines the scientific approaches. Section 4
gives an overview of the knowledge repository. Section 5 provides an overview
about the participating companies and projects. Section 6 concludes the discus-
sion.

82

3

2 Goal of our Research

We replace ISO/IEC 9126 metrics manually assessing internal qualities with
metrics allowing for automatic measurement. This defines an adapted Quality
Model. We validate the significance of this Quality Model with experiments in
four selected software development projects of four Swedish companies2 ranging
from a small software company to a large company from the SAAB group.

The project will deliver both research insights and practical methods and
tool support for participating companies.

On the research side, we expect two major contributions:

1. We define an adapted Quality Model, assessing internal quality (sub-) char-
acteristics as defined by an industry standard with well-established metric
analyses as proposed by the research community. This quality model is pub-
lished as a compendium of software quality standards and metrics [16].

2. We validate the significance of that novel Quality Model, i.e. we support or
disprove the hypothesis that static metric analyses allow for an assessment
of (some) internal qualities of software systems.

Together, (1) and (2) provide the theoretical basis for quality management
assessing industrially standardized software qualities in an effective way, since
they are significant and objective, and in an efficient way, since they are auto-
mated.

On the practical side, we produce tools and methods supporting the quality
assessment of software under development having a thorough theoretical basis.
By implementing them in the participating partner companies, we gain under-
standing of their practicality and usefulness.

3. We get insights on how our theory, tools and methods integrate with different
quality management processes existing in industry. This includes insights
on initial efforts for integration and possible/necessary adaptations of these
processes.

4. We understand the speed-up in performance of assessing internal quality
automatically vs. manually, since we implement both approaches: the man-
ual standard approach for validating the significance of the new automated
approach.

Regarding the practical contributions we can expect that the participating
companies already have quantitative information available, which can be un-
derstood as manual metrics. Of course, the quality of the available information
can not be expected to be sufficient for our evaluation, and modifications will
be necessary. Therefore, both approaches will be implemented and adjusted in
parallel.

As a side effect, we expect a higher awareness of internal quality issues in par-
ticipating companies as a first result. We even expect improvements of software
2 Respecting our Intellectual Property Rights agreement we do not name the compa-

nies.

83

4

quality in the companies as well as improvements in their development process.
These effects, however, will be evaluated qualitatively and subjectively in the
first place and not validated statistically.

3 Scientific Approaches

This section describes the scientific approach for validating the significance of
the metric-based Quality Model. First, we informally summarize the general idea
for the validation. Thereby, we also give some examples for the metrics we use.
Second, we define the precise goal and questions for the validation. Finally, we
provide the background for the statistical analysis.

3.1 Validation Idea

The idea for the validation is to use static and dynamic (metric) analyses applied
on the version history of particular software systems, and additional information
sources like bug databases, and even human insights.

To avoid confusion, we distinguish model metrics from validation metrics.
The former are automated metrics in the new Quality Model mapped to sub-
characteristics. The latter are metrics assessing the (sub-) characteristics directly,
but with much higher effort, i.e. with dynamic analyses or human involvement,
or a posteriori, i.e. by looking backward in the project history.

For instance, a model metric for the sub-characteristic ”Testability” might
assess the number of independent paths in a method like the McCabe Cyclomatic
Complexity metric. A corresponding validation metric of this sub-characteristic
might count the actual coverage of test cases for that method. The former can
be assessed easily by static metrics; the latter requires dynamic analyses.

A model metric of the sub-characteristic ”Changeability” might assess the
change dependency of client classes in a system triggered by changes in their
server classes like the Change Dependency Between Classes [8] metric. A cor-
responding validation metric of this sub-characteristic might observe the actual
change costs when looking backwards in the project history. Again, the former
can be assessed easily by static metrics; the latter requires version analyses and
human effort in documenting programming cost for changes.

The model metric of the characteristic ”Maintainability” is some weighted
sum of the aggregated values of the metrics assigned to the sub-characteristics
of ”Maintainability” (to be defined precisely in the software quality model).
The validation metric of ”Maintainability” could compare change requests due
to bug reports, bug-fixing changes, and new bug reports, which again requires
backwards analyses and human annotations.

For each single version in the version history of particular software sys-
tems, source and binary codes are available, which are input to our model met-
rics. Additional information about bugs reported, test reports informing about
failed/passed test cases, and costs of work spent on the system for maintenance
or development is available too and can be associated with a certain version.

84

5

This information is input to our validation metrics. Based on this, we can, on
the one hand, determine the quality of each version according to our Quality
Model, and on the other hand determine the quality based on the additional
information. We assume that a higher quality according to our model correlates
to fewer bugs, fewer failed test cases, and lower maintenance and development
costs. Opposed to this, a low quality, according to our model, would correlate
to many reported bugs, failed test cases, and higher costs for maintenance and
development, etc.

Our validation succeeded if software systems having high quality according
to our model metrics have also a high quality according to the validation metrics
and vice versa.

3.2 Validation Goals and Questions

The project goal is a Quality Model allowing for automated metrics-based quality
assessment with validated significance.

For validating the significance, we apply the Goal-Question-Metric (GQM)
approach [1]. The GQM approach suggests defining the experiment goals, to
specify questions on how to achieve the goals, and to collect a set of metrics,
answering the questions in a quantitative way.

The goal is to validate the significance of our Quality Model based on the
model metrics. Questions and sub-questions are derived from the ISO/IEC 9126
directly:

Q1: Can one significantly assess re-usability with the model metrics proposed
in the Quality Model?

Q1.1 - Q1.4: Can model metrics significantly assess understandability, learn-
ability, operability, and attractiveness, respectively, in a reuse context?

Q2: Can one significantly assess efficiency with the model metrics proposed in
the Quality Model?

Q2.1 - Q2.2: Can model metrics significantly assess time behavior and resource
utilization?

Q3: Can one significantly assess maintainability with the model metrics pro-
posed?

Q3.1 - Q3.4: Can model metrics significantly assess analyzability, changeabil-
ity, stability, and testability?

Q4: Can one significantly assess portability with the model metrics proposed?
Q4.1 - Q4.2: Can model metrics significantly assess adaptability, and replace-

ability?

For answering each sub-question, we need both a number of model metrics,
which are defined in our Quality Model, and validating metrics, which are defined
in our experimental setup, cf. examples above.

85

6

3.3 Background for Statistical Analysis

The basis for the statistical analysis of an experiment is hypothesis testing [18].
A negative hypothesis is defined formally. Then the data collected during the
experiment is used to reject the hypothesis, if possible. If the hypothesis can be
rejected, then intended positive conclusions could be drawn.

Our negative null hypothesis H0 states that correlations of model and vali-
dation metrics are only coincidental. This hypothesis must be rejected with as
high significance as possible. We start for all our analyses with the standard
borderline significance level of 0.05, i.e. observations are not coincidental but
significant with at most a 5% error possibility. The alternative hypothesis H1 is
the one that we can assume in case H0 is rejected.

To define the hypothesis, we classify the measured values as high, average,
and low. For this classification we use a self-reference in the software systems
under development: systems are naturally divided in sub-systems, e.g., packages,
modules, classes etc. More precisely, for each (sub-) characteristic c and each
sub-system s:

1. We perform measurements of model and validation metrics.
2. The weighted sum as defined in the Quality Model defines aggregated values

V M(c, s) from values measured with model metrics. We abstract even further
from these values and classify them instead with abstract values AM(c, s).
It is:

– AM(c, s) = high iff V M(c, s) is among the 25% highest values of all
sub-systems,

– AM(c, s) = low iff V M(c, s) is among the 25% lowest values of all sub-
systems, and

– AM(c, s) = average, otherwise.
3. The validation metrics provide values V V (c, s) for direct assessment of (sub-)

characteristics.

Abstraction and normalization from the precise metric values V M to the
abstract values AM is necessary, since V M delivers values in different ranges
and scales. For instance the Line Of Code metric has positive (in theory infinite)
integer values, whereas the Tight Class Cohesion metric delivers rationale values
between 0.0 and 1.0. However, they all have in common that there is a range in
which values are acceptable and outlier ranges which indicate issues.

Selecting 25% as boundary values seems to be a suitable first assumption.
We expect that the majority of the values vary around a (ideal) median, whereas
the outliers are clearly distinguished. The values will be adjusted if first analysis
results suggest other boundaries.

Our statistical evaluation studies the effect of changes in AM(c, s) (indepen-
dent variables) on V V (c, s) (dependent variables). The hypotheses H0 and H1

have the following form:

H0 : There is no correlation between AM(c, s) and V V (c, s).
H1 : There is a correlation between AM(c, s) and V V (c, s).

86

7

In order to find out which dependent variables were affected by changes in the
independent variables, we may use, e.g., the Univariate General Linear Model
[20], as part of the SPSS system [19], provided the obtained data is checked for
test condition suitability.

4 The Compendium

Currently, we build a knowledge base [16] mapping standard qualities to well-
established software metrics and vice versa. This compendium formalizes our
hypotheses.

The goal of the compendium is to provide an information resource precisely
defining our interpretation of the software quality standards and the software
metrics and their variants. Moreover, we propose connections between them.
These connections are the hypotheses to be validated.

Currently, the compendium describes only

– 37 software quality properties (attributes, criteria),
– 14 software quality metrics.

The 37 quality properties are taken from the ISO 9126-1 standard. For a
description, we refer to the ISO standard [10]. The 14 software quality metrics
are taken from different well know metrics suites like Chidamber and Kemerer
[5], Li and Henry [14], Bieman and Kang [2], or Hitz and Montazeri [9, 8] and
contain among others Weighted Method Count (WMC), Tight Class Cohesion
(TCC), Lack of Cohesion in Methods (LCOM), McCabe Cyclomatic Complexity
(CC), Lines Of Code (LOC), Number Of Children (NOC), Depth of Inheritance
Tree (DIT), Data Abstraction Coupling (DAC), and Change Dependency Be-
tween Classes (CDBC), etc. The non-object-oriented metrics are mainly size and
complexity metrics. The object-oriented metrics focus on cohesion, coupling, and
inheritance structure.

We chose metrics that have been discussed, are accepted, validated in case
studies, and commented, e.g., by the FAMOOS project [3]. The quality prop-
erties and metrics are linked to each other over a double index, allowing us to
determine the relevance between the metrics and criteria from each point of
view. However, this compendium is meant to be a live document going beyond
the normal experience sharing in conferences and workshops. We wish to create
a compendium in the spirit of ”A compendium of NP optimization problems”
edited by Pierluigi Crescenzi and Viggo Kann [6]. The difference is that we pro-
pose a double index. The community is welcome to contribute with new metrics
or comments, corrections, and add-ons to already defined ones. References to
validating experiments or industrial experiences are especially appreciated. The
contributions proposed by the community in the form of web forms or emails
will be edited, added to the compendium, and used to create new references in
the double index, or to change/remove references proofed invalid.

87

8

5 The Participating Companies and Projects

Each software system assessed in our project implies other constraints, and the
emphasis on the parts of the applied Quality Model varies. This is because the
participating companies have distinct expectations and priorities on the quality
factors and criteria. Additionally, individual requirements for the application of
the quality model result from the architecture and design, programming lan-
guages, and development environments.

All selected projects allow for quantitative and qualitative analysis. It is
possible to look back in time by accessing their software repositories and to
observe their long term evolution during the three years the project shall go
on. During this time, the metrics (cf. Sect. 4) can be validated empirically for
their usefulness, their limits, and their applicability in new areas like web based
applications.

The first company is developing Web applications with C# as implementa-
tion language, running on .NET Framework (2.0, Windows) and Mono (Linux
pendant). Because one and the same application is required to run on both sys-
tems, portability is a particularly important quality factor. We plan to assess
in particular the adaptability and replaceability characteristics according to our
quality model described in the compendium (cf. Sect. 4). Relevant metrics are,
among others, WMC, TCC, LCOM, and LOC. Additionally, we need to define
appropriate new metrics, assessing peculiarities with C# code written for .NET
and Mono, since not all code running on .NET runs without problems on Mono,
unless some special rules are followed. The details for these metrics still need to
be discussed and formalized with the company.

The second company is developing Web applications with Java 1.4 and JSP
for JBoss using Eclipse and Borland Together J. The product is currently in the
maintenance phase. The main interest is on assessing the maintainability and
on preventing decay in architecture and design. As the maintainability factor
is of highest interest, its characteristics of analyzability, changeability, stability
and testability are assessed. The compendium connects them in particular, with
LOC, WMC, and CC assessing the complexity, and TCC and LCOM assessing
at the cohesion. A particular challenge is that Java Applets, JSP and HTML
are part of the design which need to be taken into account when assessing the
maintainability of the software system. Other metrics might be included to adapt
the Quality Model to the product specific needs.

The third company is developing Web applications with Java. They are cur-
rently interested in software quality in general, how it can be automatically
assessed, and what it can do for them. They do not have a particular expecta-
tion or need for an emphasis on a certain quality factor; therefore, the complete
Quality Model, as described in the compendium, will be applied, covering qual-
ity factors like (re-)usability, maintainability, and portability, but also reliability
and efficiency. Once some higher awareness about what the internal quality has
been achieved, the quality model will be adjusted.

The last company is developing embedded control software with C. Their
main concern is the quality of design and maintainability. This means the fo-

88

9

cus lies on the maintainability factor with an emphasis on the architecture and
design. Suitable metrics assessing inheritance, coupling, and cohesion are NOC,
DIT, DAC, CDBC, LCOM, and TCC, as described in the compendium. Com-
plementing these metrics, design patterns and anti-patterns might become in-
teresting as well.

We do currently not expect particular problems with collecting data for the
model metrics, since the source code in all projects is available in version man-
agement systems. Collecting data for the validation metrics is expected to work
without problems as well, but might involve more human effort, since the data
is not always available in an easily processable way.

6 Conclusions

This paper defines the layout of an experiment in quality assessment. In contrast
to other experiments of this kind, it addresses two concerns, which are usually
on the common wish list of experiments in this area: comparing automated
metrics collection vs. manual metrics collection, and the involvement of industry
partners. It should answer the question: Is it possible - in general or to some
degree - to automatically assess quality of software as defined by the ISO 9126
standards using appropriate metrics?

We are aware of threats to our approach that are hard to control, like the
influence of the projects used for validation (their size, programming language,
duration, maturity of company and programmers, etc.) and the validity of the
version history and additional information sources. Other problems like a precise
definition of standards and metrics (and their information bases) appear only to
be resolved as a community activity.

Altogether, the paper aims at entering the discussions on usefulness of such
a validation in quality assessment, threads, and possible common efforts.

References

1. Basili, V.R., Rombach, H.D.: The TAME project: Towards improvement-oriented
software environments. Trans. Software Engineering 14, 6 (June), IEEE, 1988, pp.
758-773.

2. Bieman, J.M., Kang, B.K.: Cohesion and Reuse in an Object-Oriented System.
Proceedings of the ACM Symposium on Software Reusability, April 1995.

3. Bär, H., Bauer, M., Ciupke, O., Demeyer, S., Ducasse, St., Lanza, M.,
Marinescu, R., Nebbe, R., Nierstrasz, O., Przybilski, M., Richner, T.,
Rieger, M., Riva, C., Sassen, A., Schulz, B., Steyaert, P., Tichelaar,
S., Weisbrod, J.: The FAMOOS Object-Oriented Reengineering Handbook.
http://www.iam.unibe.ch/~famoos/handbook/, October 15, 1999.

4. Capability Maturity Model Integration (CMMI). http://www.sei.cmu.edu/cmmi/,
2006.

5. Chidamber, S. R., Kemerer, C. F.: A Metrics Suite for Object Oriented Design.
IEEE Transactions on Software Engineering, vol. 20, no. 6, pages 476-493, June
1994.

89

10

6. Crescenzi, P., Kann, V., Karpinski, M., Woeginger, G.: A compendium of NP opti-
mization problems. http://www.nada.kth.se/~viggo/wwwcompendium/, 2006.

7. Erlikh, L.: Leveraging legacy system dollars for E-business. IT Pro, IEEE, May/June
2000, pp. 17-23.

8. Hitz, M., Montazeri, B.: Measure Coupling and Cohesion in Object-Oriented Sys-
tems. Proceedings of International Symposium on Applied Corporate Computing
(ISAAC’95), pages 24, 25, 274, 279, October 1995.

9. Hitz, M., Montazeri, B.: Chidamber and Kemerer’s Metrics Suite; A Measurement
Theory Perspective. IEEE Transactions on Software Engineering, vol. 22, no. 4,
pages 267-271, April 1996.

10. ISO/IEC 9126-1 Software engineering - Product Quality - Part 1: Quality model,
2001.

11. ISO 9000:2005 Quality management systems Fundamentals and vocabulary, 2005.
12. ISO 9001:2000 Quality management systems Requirements, 2001.
13. ISO 9004:2000 Quality management systems Guidelines for performance improve-

ment, 2000.
14. Li, W., Henry, S.: Maintenance Metrics for the Object Oriented Paradigm. IEEE

Proceedings of the First International Software Metrics Symposium, pages 52-60,
May 1993.

15. Lientz, B.P.,Swanson, E.: Problems in application software maintenance. Commu-
nications of the ACM 24 (11), ACM, 1981, pp. 763-769.

16. Lincke, R., Löwe, W.: Compendium of Software Quality Standards and Metrics.
http://www.arisa.se/compendium/, 2006.

17. McCall, J. A., Richards, P.G., Walters, G.F.: Factors in Software Quality. Volume
I. NTIS AD/A-049 014, NTIS Springfield, VA, 1977.

18. Spiegel, M., Schiller, J., Srinivasan, A.: Probability and statistics. New York:
McGraw-Hill, 2001.

19. SPSS. http://www.spss.com, 2005.
20. Walpole, R.E.: Probability and Statistics for Engineers and Scientists. Prentice

Hall, NJ, 2002.

90

A Proposal of a Probabilistic Framework for Web-
Based Applications Quality

Ghazwa Malak1, Houari Sahraoui1, Linda Badri2 & Mourad Badri2

(1) Department of Computer Science and Operational Research
University of Montreal, Montreal, Qc, Canada, H3T 1J4

{rifighaz@iro.umontreal.ca; sahraouh@iro.umontreal.ca}
(2) Department of Mathematics and Computer Science

University of Quebec at Trois-Rivières
Trois-Rivières, Qc, Canada, G9A 5H7

{Linda.Badri@uqtr.ca; Mourad.Badri@uqtr.ca}

Abstract. Many studies on quantitative evaluation of Web-based applications
quality have proposed metrics, tools and models. Most of these studies do not
address some key issues inherent to this field such as causality, uncertainty and
subjectivity. In this paper, we propose a framework for assessing Web-based
applications quality by using a probabilistic approach. The approach uses a
model including most factors related to the evaluation of Web-based
applications quality. A methodology regrouping these factors, integrating and
extending various existing works in this field is proposed. A tool supporting our
assessment methodology is developed. Some preliminary results are reported to
demonstrate the effectiveness of our model.

1 Introduction

Web-based applications are nowadays widely used: reservation systems, e-
commerce sites, multi-media applications, stock exchange transactions, etc. They
allow the user to create, publish, handle, and store data. Quality assurance of these
applications is now difficult to circumvent, and quality expectations are very high
[23]. Nevertheless, Web-based applications are often developed in an ad hoc manner
resulting in poor quality systems [12].

Many authors proposed guidelines, checklists, metrics and tools, methodologies
and models [6, 10, 16, 17] to assess the quality of Web sites or pages. However,
several quality factors are subjective and the quality assessment is based, at least
partially, on human inspection and judgment [3]. Moreover, defining metrics for these
applications is still incomplete and confusing. Metrics are sometimes not rigorously
defined, nor empirically or theoretically validated [4]. Furthermore, many approaches
[3, 17] proposed hierarchical quality models, which are subjective [22].

To make things worst, Web-based applications are evolving systems. Therefore,
they often yield uncertain and incomplete measurements [1]. Structuring quality
factors comprises uncertainty. Measuring these factors involves inaccuracy and

91

subjectivity. In addition, clearly identifying the relationships that may exist between
some factors is complex.

Our objective, in this work, is to propose a framework that allows to asses more
objectively Web-based applications quality. The aim is to solve some complexity,
uncertainty and subjectivity problems when representing, structuring and measuring
factors. A well-known solution to problems involving uncertainty is Bayesian
Networks [15]. We believe that using a probabilistic approach may helps addressing
some key aspects not well considered in the existing studies. It helps supporting more
effectively causality, uncertainty and subjectivity problems inherent to the web field.

The rest of this position paper is organized as follows: Section 2 discusses the
motivation behind the use of a probabilistic approach to model Web-based
applications quality. Section 3 illustrates the application of the proposed approach to
the evaluation of the Navigability design criterion. Section 4 concludes the paper and
gives some future work directions.

2 A probabilistic approach to model Web applications quality

 A quality model is essentially a set of criteria that are used to determine if a
website reaches certain levels of quality [3]. Many work on Web applications quality
assessment [6, 17] was based on the description of the quality characteristics
suggested by the ISO/IEC 9126 standard [8] and adapted to the Web.

2.1 Critical analysis of existing studies

Nowadays, an abundance of guidelines and criteria affecting the quality of Web-
based applications can be found in the literature. Conversely, little consistency exists
between them making it difficult to know which guidelines to use [6]. However, when
looking in depth into different works many limitations can be reported:

1- Some criteria are subjective [16, 17].
2- Optimal values, as mentioned by Ivory [6], are often contradictory for many

criteria. Therefore, there is uncertainty in the determination of threshold
values for several criteria.

3- Given the various application domains in the Web, the importance of
balancing criteria emerges [13]. However, attributing different weights to
sub-criteria adds subjectivity to the evaluation.

4- Sub-Criteria and criteria have causal relationships, but can be regrouped in
different ways. Thus, it is uncertain if the retained grouping is the relevant.

5- The same criterion can affect simultaneously several criteria, other sub-
characteristics or characteristics [13]. These interdependencies are difficult to
represent in a hierarchical way.

Consequently, we aim in this proposal to develop a framework taking into account:
the subjectivity in criteria evaluation, the difficulty in balancing criteria, the
uncertainty in the determination of the threshold values, the uncertainty when
regrouping criteria and, the interdependencies between criteria. Thus, in building a

92

A Proposal of a Probabilistic Framework for Web-Based Applications Quality

quality model, reasoning with probabilities dealt with weighting criteria and
uncertainty problems. Using graphical representation provides a naturally interesting
interface by which we can model interacting sets of criteria.

2.2 Objectives through the adoption of Bayesian Networks (BNs)

A BN is a directed acyclic graph, whose nodes are the uncertain variables and
edges are the causal or influential links between variables. A conditional probability
functions model the uncertain relationship between each node and its parents [15]. In
our context, and to develop a quality model for Web applications, BNs seem offering
an interesting framework. With BNs it is possible to:

- Represent the interrelations between criteria in an intuitive and explicit way
by connecting causes to effects. Such a graph, as explained in [14], facilitates
the comprehension of the model, its validation, its evolution and its use.

- Incorporate current existing criteria gathered in our previous work [13].
- Resolve the problems of subjectivity of certain criteria and the uncertainty

when structuring and weighting criteria by the use of probabilities.
- Use this model to perform predictions about the application quality.
- Exploit expert judgments in the quality predisction.

The Bayesian approach considers the probability as being a dynamic entity that is
updated as more data arrive [1]. Therefore, a BN model can be used to evaluate,
predict, diagnose or optimize decisions when assessing Web applications quality.

Building a BN for a particular quality model can be done in two stages: build the
graph structure and define the probability tables for each node of the graph. To build
the graph structure, criteria are considered as random variables and represent the
nodes of the BN. Criteria affecting the same criterion should be independent
variables. On the other hand, the basis for conditional probabilities in a Bayesian
Network can have a different epistemological status, ranging from well-founded
theory over frequencies in a database to subjective estimates [9]. Both cases can be
used for the same network.

In the following sections, for simplification matter, we illustrate our methodology
for a BN fragment corresponding to the navigability design criterion. The Hugin tool
software [5] is used to construct and execute our BN.

3 Application of the methodology to the evaluation of the
“Navigability Design” criterion

In recent years, navigability design has become the pivot of website design and one
of the trickiest areas of website development [25]. Several works recognize the
navigability design as an important quality criterion for Web applications [6, 11, 17].
For some authors, the navigability design is a criterion of functionality [17], for others
it characterizes usability [6, 11].

93

According to many definitions, navigability design in a Web application can be
determined by: “the facility, for a given user, to recognize his position in the
application [16], to locate and link [11, 25] within a suitable time [21] required
information, via the effective use of hyper links towards the destination pages [11]”.
However, this criterion can be also assessed at the page level. In fact, many design
elements may be included in a Web page to improve the navigability design.

3.1 Regrouping and classifying criteria

In the existing work about Web navigation quality [11, 16, 17], authors propose
many design elements, directives and guidelines to ensure the quality of navigability
design. The first step in our methodology [13] consisted in gathering all the suggested
criteria that influence the quality of navigability design in a Web page.

Starting from the existing work, we attempt to collect the criteria and guidelines
proposed by different authors [11, 17, 21]. The presence of some design elements
(e.g. menus, site map) and the respect of the suggested directives (e.g. color change of
visited links) are considered as navigability design criteria.

Then, we try to figure out a kind of sub criteria that would be likely to characterize
the retained criteria, and allow a better evaluation of the latter as well. For example, it
is more accurate to estimate the quality of “Links” criterion by examining the
information that may influence it. The result is presented in Table 1.

 Table 1. Navigability Table 2. Navigability design criteria refined using
 design criteria. the GQM paradigm.

1 Navigability Design

 1.1 Links
 1.1.1 Link Number

1.1.2 Link Colors
1.1.3 Link Text
1.1.4 Link Title
1.1.5 Link to Home

1.2 N. Elements
1.2.1 Menus, Bars
1.2.2 Site Map

1.3 Others
1.3.1 Back Button
1.3.2 Search M.
1.3.3 Page Size

1.4 Feedback
 1.4.1 Breadcrumb
1.4.1 Current P.
1.4.2 URLs

relatives

 Criteria Metrics

1. Navigability Design

1.1 Localize the page Subjective
1.1.1 Presence of a site map Y/N
1.1.2 Presence of a current position label Y/N
1.1.3 Presence of breadcrumbs Y/N
1.1.4 Relative URLs Y/N

1.2 Localize the information Subjective
1.2.1 Presence of navigation elements Y/N
1.2.2 Presence of a search mechanism Y/N
1.2.3 Presence of a site map Y/N
1.2.4 Link text significant Measure
1.2.5 Presence of a link title Y/N
1.2.6 Change of color of the visited link Y/N

1.3 Access or link to the information Subjective
1.3.1 Hypertext links Subjective

1.3.1.1 Number of links per page Measure
1.3.1.2 Presence of breadcrumbs Y/N
1.3.1.3 Presence of navigation elements YN

1.3.2 Presence of a site map Y/N
1.3.3 Back button always active Y/N
1.3.4 Presence of a link to home Y/N

1.4 Revisit the page Subjective
1.4.1 Back button always active Y/N
1.4.2 Page download time Measure

94

A Proposal of a Probabilistic Framework for Web-Based Applications Quality

3.2 Refinement using the GQM paradigm

The GQM (Goals, Questions, Metrics) paradigm is based on the idea that
measurement should be goal-oriented [2]. It allows us to reorganize, extend, improve
and validate our quality model and to determine metrics for the retained criteria.
Results from applying the GQM paradigm are summarized in Table 2. By comparing
Tables 1 and 2, we notice that, after the refinement by GQM, the selected criteria
characterize better the criterion "Navigability Design". This new regrouping rises
directly from the definition of the navigability design.

We remark that a same sub criterion characterizes different super criteria at the
same time. In addition, the evaluation of some criteria is subjective (e.g. Locate,
Access). This affects the precision of measurements and thereafter the evaluation of
the navigability design quality. The majority of sub criteria can be assessed by their
occurrences as ‘Yes’ or ‘No’ (e.g. site map, link to home, etc). Some other criteria can
be directly measured, for a given Web page, by our evaluation tool [13] (e.g. number
of links per page, page download time). However, this classification represents one of
the possible ways to assign sub criteria to the super criterion.

3.3 BN construction applied to the navigability design criterion

To build the BN fragment [15] for the navigability design criterion, we construct
initially the appropriate graph. According to our proposed definition of Navigability
Design, this criterion at the level of a Web page can be determined by the presence of
some design elements and mechanisms that allows the user to:

- locate himself and recognize easily the page where he is,
- find within the page required information,
- have the possibility to access this information directly via hyper links,
- have the possibility to return easily to this page, with a suitable time.

For a selected Web page, we suppose that:

- NavigabilityDesignP: is the variable representing the quality of the
navigability design criterion at a Web page level.

- Locate: is the variable representing the facility, for a given user, to know
exactly in which page of the application he is and localize required
information within the page.

- Access: is the variable representing the facility, for a given user, to access to
the required information in the destination page from the selected page.

- Revisit: is the variable representing the possibility, for a given user, to return
to the selected page with a suitable time.

Thus, NavigabilityDesignP, Locate, Access and Revisit (Figure 1) can be
considered as four variables and represented by four nodes. As there is a definition
relation between these variables, we can apply the idiom ‘definitional / synthesis’
[15]. The node NavigabilityDesignP is defined in terms of the three other nodes. The
direction of the edges indicates the direction in which a sub criterion defines a
criterion, in combination with the other sub criteria.

95

Fig. 1. Instantiation of definitional / synthesis idiom (NavigabilityDesignP).

Furthermore, the NavigabilityDesignP node can not be specified as deterministic
function. The definition used is one of different possibilities of defining the
navigability design. There is inevitably uncertainty in the relation between the
concepts. Thus, we would need to use probabilistic functions to state the degree to
which some combination of parent nodes combine to define some child node [15].

The same process is followed to construct the sub networks for “Locate”, “Access”
and “Revisit” nodes. Then, all fragments are put it together to obtain the BN of the
Navigability design at a page level (Fig. 2).

As we can see, the graphical representation is obvious and illustrates causality and
interdependencies. The relationships between criteria, even at different levels, are
represented clearly. In the following, we exploit probability notions to deal with the
uncertainty of the structuration and the subjectivity of certain measures.

Fig. 2. Final Navigability design BN at Web page level.

3.4 Defining the probability tables for Navigability Design nodes

We build the NPTs (Nodes Probability Tables) using a mixture of empirical data
and expert judgments. However, entry nodes of the BN are criteria considered as
measurable variables that do not have parents. Intermediate nodes are synthetic nodes
defined by their parents and not directly measurable. For these later, we assign
conditional probabilities “a priori”. Yet, the attribution of probabilities is done
differently according to whether the variable is an entry node or an intermediate one.

96

A Proposal of a Probabilistic Framework for Web-Based Applications Quality

Intermediate nodes are the criteria affected by their sub-criteria and thus have
parents such as nodes TFeedback, Locate or NavigabilityDesignP. These nodes are
not directly measurable and their probability distribution is determined by expert
judgments. We need to take into account, according to experts, the importance of each
one of these variables in the quality assurance of the navigability design for the page.
The problem is to find P(TFeedback | LinkText, LinkTitle, URL), and so on for the
other nodes.

For entry nodes, the majority of measurements rest on the presence or not of the
considered criterion. According to various studies [11, 16, 21], the presence of these
sub criteria is recommended, beneficial and contributes to improve the quality of the
navigability design. Therefore, a good quality of navigability design, for a Web page,
supposes that these criteria are present. So, a probability of 99% is attributed when the
criterion is present and a probability of 1% to the contrary case [15].

0 54 108 162 216 270 324 378 432 486 540 594 648V1
000

002

004

006

008

 Fig. 3. Frequency histogram of the Fig. 4. Fuzzy clusters of the criterion

 criterion “Link number” . “Link number".

The other entry variables have measurable numerical values. In fact, threshold
values for many numerical criteria are contradictory in the literature. For instance,
considering the criterion ‘Link number’, we don’t known which value of this criterion
is optimal for a Web page in general or what are the limits. Thus, according to [18] a
solution consists of using fuzzy logic to turn the variables and the threshold values
into fuzzy ones. The fuzzy logic provides an effective conceptual framework for
dealing with the problem of knowledge representation in an environment of
uncertainty and imprecision [24]. The process used for these nodes is as follows:

1- Measure the criterion value for a large number of Web pages (it is done for
over 1700 pages with our automated evaluation tool).

2- Draw a frequency histogram of the measured data (Fig.3). When looking at
the obtained frequency histogram, it is difficult to see more than one cluster.

3- Proceed a fuzzy clustering of these data using statistical software (S-Plus)
[7]. The result, shown in Fig. 4, reveals the existence of three clusters.

4- Identify the clusters and assign them to fuzzy labels. Starting from these
clusters, we can define three fuzzy labels for the Link number criterion.

5- Define the cluster boundaries using approximation method (Fig. 4) (by
drawing intersecting lines segments tangent to the curves). Each value of

5 30 55 80 105 130 155 180 205

0.0

0.2

0.4

0.6

0.8

97

Link number may then be mapped to three membership values, one for each
label (Low, Medium, High).

6- S-Plus computes directly degrees of membership of each measurement.
These membership degrees are identified as probabilities. Indeed, Thomas
[19] indicates that the Bayesian updating procedure p(x | y) = P(y | x).P(x) /
P(y) can be reinterpreted in terms of fuzzy observations. A given measured
value of “Link number” can be reported in the graph of Fig. 4, and
probability values are derived and used in the NPT of this criterion.

3.5 Application example of the methodology to the evaluation of a Web Page

The following example reveals the feasibility of our approach using the BN for
NavigabilityDesignP. Values for entry nodes are directly measured for a chosen page
(http://channel.nationalgeographic.com/channel/programs/) with our evaluation tool.
 These values propagate through the BN via the influential links, resulting in
updated probabilities for other criteria. Figure 5 shows an application example for the
considered page. Although the quality of NavigabilityDesignP will never be known
with certainty, it has 88.15% of probability to be good. Many scenarios “What if” can
predict the improvement when some design elements are added [15]. Having entered
new “evidences” (LinkTitle, VlinkCol and Breadcrumbs), the probability distributions
are updated and we get 95.41 of goodness. This scenario demonstrates how much
NavigabilityDesignP may be enhanced when some criteria are improved or added.

Fig. 5. State of BN probabilities showing the Navigability design quality for the page.

3.6 Rapid validation

 As a first experimentation of our approach, we selected some web pages recognized
for their good quality (for example starting from Top 100 of Webby Awards). Other
web pages of poor quality (from Worst of the Web and Webby Worthy) were also
evaluated for better refining the range of suggested values. We obtained (table 4) a
good score for the pages recognized among the Webby Awards, and the others from
The Worst of the Web or Webby worthy achieve a lower score. The results of the

98

A Proposal of a Probabilistic Framework for Web-Based Applications Quality

evaluations are significant, which show that the selected and evaluated criteria seem
to be relevant.

Table 4. Partial results for the evaluation of “the probability of a good Navigability design
quality” at the page level for some selected Web pages.

We can use the ability of BNs to generate “What if “scenarios. For instance, when we
consider high speed internet connection, Download time criterion is improved, and
the quality of the Navigability Design criterion is significantly superior.

4 Conclusions and future work

Many studies on quantitative evaluation of Web-based applications quality do not
consider causality, uncertainty, inaccuracy and subjectivity problems when dealing
with criteria evaluation or regrouping. In this paper, we proposed a general
framework supporting the assessment of Web applications quality. The adoption of
Bayesian Networks helped us to deal with these weaknesses.

Starting from several studies, we gathered the proposed criteria for Navigability
Design quality assessment. Then, criteria and sub criteria were restructured, extended
and validated using the GQM paradigm. A BN graph was constructed for the
considered criterion. Many experiences, involving different Web pages, were
conducted using this BN. A rapid validation of the proposed approach demonstrated
its relevancy.

Although if, the model described in this paper was built for only Navigability
Design criterion, the proposed framework is extensible and adaptable. It can be used
for specific cases to assess a particular criterion, a super criterion, a sub characteristic,
a characteristic or the whole quality. This can be done for one page, for specific pages
or for all the Web application.

We believe that the present work constitutes an interesting starting point in this
field and represents a step up in Web Applications quality evaluation. As future work,
we plan to: (1) extend the defined network to cover all quality characteristics, (2)
complete a global evaluation for Web applications usability, and (3) validate
empirically the proposed model.

Web applications

Navigability Design

Quality
at page level

Navigability Design
Quality at page level

if High Speed Connection
85.44 % 85.44 %
85.09 % 90.68 %
80.96 % 89.40 %

Winner of Webby

Awards

84.83 % 92.81 %
59.24 % 67.84 %
51.22 % 58.26 %
74.33 % 74.33 %

The Worst of the

Web or
The Webby Worthy

57.88 % 57.88 %

99

References

1. Baldi, P., Frasconi, P., Smyth, P.: Modeling the Internet and the Web; Probabilistic
Methods and Algorithms. Wiley (2003)

2. Basili, V.R., Caldiera, G., Rombach, H.D. : The Goal Question Metric Approach. (1996)
3. Brajnik, G.: Towards Valid Quality Models for Websites. Proceedings of the 7th

Conference on Human Factors and the Web (2001)
4. Calero, C.; Ruiz, J.; Piattini, M.: A Web Metrics Survey Using WQM. Proceedings of the

International Conference on Web Engineering (2004)
5. Hugin Experts at http://www.hugin.com/
6. Ivory, M.: An Empirical Foundation for Automated Web Interface Evaluation. Doctoral

Thesis (2001)
7. Insightful: Statistical Analysis Software http://www.insightful.com/products/splus/
8. ISO/IEC (2001) ISO/IEC 9126: Quality characteristics and Guidelines for their use (2001)
9. Jensen, F.V.: Bayesian Networks and Decisions Graphs. Springer-Verlag Inc. (2001)
10. Kirakowski J., Cierlik B.: Measuring the usability of Website. HFES Annual Conference,

Chicago (1998) http://www.ucc.ie/hfrg/questionnaires/wammi/research.html
11. Koyani, S. J., Bailey, R. W., and Nall, J. R.: Research-Based Web Design & Usability

Guidelines. National Institutes of Health (2003)
12. Lee, C., Suh, W., Lee, H.: Implementing a community web site: a scenario-based

methodology. Information & Software Technology, Vol. 46(1). (2004) 17-33
13. Malak G., Badri L., Badri M., Sahraoui H.: Towards a Multidimensional Model for Web-

Based Applications Quality Assessment. Proc. of the fifth I. C. E-Commerce and Web
Technologies (EC-Web’04), Spain, LNCS Vol. 3182. Springer-Verlag, (2004) 316-327

14. Naïm, P., Wuillemin, P.H., Leray, P., Pourret, O., Becker, A.: Réseaux Bayésiens. (2004)
15. Neil, M., Fenton, N.E., Nielsen, L.,: Building large-scale Bayesian Networks. The

Knowledge Engineering Review, 15(3). (2000) 257-284
16. Nielsen, J.: 1996-2006, The Alertbox. Available on-line at www.useit.com/alertbox/
17. Olsina, L. Rossi, G.: Measuring Web Application Quality with WebQEM. IEEE

MultiMedia, Vol. 9, No. 4 (2002)
18. Sahraoui, H., Boukadoum, M., Chawiche, H. M., Mai, G. Serhani, M. A, A fuzzy logic

framework to improve the performance and interpretation of rule-based quality prediction
models for object-oriented software. In the proc. of the 26th Computer Software and
Applications Conference (COMPSAC’02). Oxford (2002)

19. Thomas, S.F.: Possibilistic uncertainty and statistical inference. ORSA/TIMS Meeting.
Houston, Texas (1981)

20. Vanderdonckt, J., Beirekdar, A.: Automated Web Evaluation By Guideline Review. Journal
of Web Engineering, Vol. 4, No.2. (2005) 102-117

21. W3C Recommendation 5-May-1999, Web Content Accessibility Guidelines 1.0.
22. Wikle, C.K.: Hierarchical Models in Environmental Science. International Statistical

Review Vol. 71, No.2, (2003) 181–199
23. Wu, Y., Offutt, J.: Modeling and Testing Web-based Applications. GMU ISE Technical

ISE-TR-02-08 (2002)
24. Zadeh, L.A.: Knowledge Representation in Fuzzy Logic, IEEE Transaction on Knowledge

and Data Engineering, vol. 1, no. 1 (1989) 89-100
25. Zhang, Y., Zhu, H., Greenwood, S.: Website Complexity Metrics for Measuring

Navigability. Proceedings of the Fourth International Conference on Quality Software
(QSIC’04) (2004)

100

Investigating Refactoring Impact through a Wider View of Software

Miguel Lopez1, Naji Habra2

1 Faculty of Computer Science

 University of Namur – FUNDP
Namur, Belgium

+32 (0)81 72 49 95
mlo@ info.fundp.ac.be

2 Faculty of Computer Science

 University of Namur – FUNDP
Namur, Belgium

+32 (0)81 72 49 95
nha@info.fundp.ac.be

Abstract
 The activity of refactoring —transforming the
source-code of a program without changing its
external behavior— is now practiced by many
software developers. If applied well, refactoring
should improve the maintainability of software. To
investigate this assumption, we propose a wider view
of the software, which includes the different well-
known artifacts (requirements, design, source code,
tests) and their relationships.
This wider view helps analyzing the impact of a given
refactoring on software quality. In this study, we
analyze the impact of the refactoring “Replace
Conditional with Polymorphsm” by using this wider
view of software. And, at the light of this global view
of software, it is more difficult to accept that the
analyzed refactoring “Replace Conditional with
Polymorphsm” improves well the maintainability of
software.

Keywords: Refactoring, Maintainability,

Dependencies Graph, Measures, Software Model.

1. Introduction

Studying the impact of software refactoring is usually
achieved by examining the properties of the software

system at only one level. Typically, either the design
product or the code product is examined to observe
and measure internal properties like coupling, and
complexity. The measurement results are then used to
assess other external qualities like maintainability.
However any change of a software system at one
product level (e.g. the code) would very probably
influence other artifacts (e.g. design, test sets …).
Classically, refactoring works require, at least, the
maintaining of the consistency between these
artifacts.
The question is to know if the observations of some
properties like “complexity” at one product level is
sufficient to capture the effect of the refactoring on
the maintainability.
The hypothesis we examine in this paper is the
possibility and the pertinence to consider a wider
view of the software. The idea is that considering a
software system as a composite product including
different artifacts (code, design, requirements,
tests…) would allow us to observe and to measure
other kind of internal properties (e.g. a “complexity”
in a wider sense) which would be more relevant to
maintainability.
The paper is not an empirical study based on data
observation. It is a first step of thought which tries
just to investigate the above hypothesis and to clarify
the related questions behind it.

101

2. Refactoring
Refactoring can be defined as “the process of
changing an object-oriented software system in such
a way that it does not alter the external behavior of
the code, yet improves its internal structure”
(Obdyke, 1992).
Following the previous definition, the main goal of
refactoring is to improve the internal structure. Such
an improvement could affect external qualities like
maintainability, performance, and reliability…
According to (Bois, 2003), (Demeyer, 2003), in most
cases, refactoring aims at improving the
maintainability of software. Indeed, restructuring a
source code should ease the capacity of the software
to be modified. Replacing a given structure in the
source code by one of the well-known design patterns
(Gamma, 1995) is widely admitted as a refactoring
which would improve the modifiability.
For instance, implementing the design pattern
Strategy that allows selecting the suitable
implementation of a method in regard with the
context would reduce the effort for adding a new
behavior. In this sense, the Strategy design pattern
increases the modifiability of software (Gamma,
1995).

Even if the research on refactoring is mostly focused
on source code and design (precisely in the object-
oriented paradigm), restructuring activities are also
applied on other software artifacts. Restructuring the
requirements document with or without changes of
the related design or the source code is a recurrent
activity in real software projects. Indeed, such
phenomenon is known as the instability of
requirements, that is, the change requests.
Those other modifications of the software artifacts
should be more investigated such as the
modifications of the test sets of given software
without changing the requirements.
So, though the usual definition of refactoring
(Obdyke, 1992) mentions the general term of
“software system”, the definition of restructuring in
general does not impose a restriction to a particular
artifact. Indeed, the changes are often performed in
the same “level of abstraction”. According to the
taxonomy of Chikofsky and Cross (Chikofsky, 1990)
restructuring is defined as the transformation from
one representation form to another at the same
relative abstraction level, while preserving the
subject system’s external behavior (functionality and
semantics).

According to (Mens, 2004), refactoring is often
described as a four steps process:

• Identifying where to apply which
refactorings (Kataoka, 2001), (Balazinska,
2000), (Simon, 2001)

• Guaranteeing that refactoring preserves
software behavior by testing the software or
verifying the formal semantics of the
program.

• Assessing the effect of refactoring on quality
(Tahvildari, 2002).

• Maintaining consistency of refactored
software (Bottoni, 2002), (Van Der Straeten
, 2003), (Rajlich , 1997)

In the current position paper, we focus on the two last
points, that is, the effect on quality and the
maintenance of the consistency between artifacts.
The developed idea is the importance of considering
these two points in conjunction.
Our starting point is the following observation: the
positive effect in quality change of a given
refactoring can be easily accepted and proved when
only one local level of abstraction is considered (that
is ignoring the other levels as well as the
relationships between the different artifacts). For
instance, one can study how the implementation of
the Strategy design pattern improves the
modifiability of the design artifact (or the source
code artifact)
Nevertheless, such a restructuring can also affect the
relationships with other artifacts, i.e., requirements,
test sets.
Therefore, once the effect on the quality is to be
assessed, it is safer to study also the impact on the
other artifacts. On the one hand, we should check
whether the consistency with other artifacts is
preserved.
And on the other hand, as the consequences of a
given refactoring can seldom affect the dependencies
between artifacts, an overhead of complexity can be
generated with a possible impact on maintainability.
This overhead can be identified when all the artifacts
and their dependencies are considered together. That
is when the product "software system" is modeled in
a more global and more integrated way than usual.

In order to investigate the above idea, the current
work aims at highlighting the possible overhead of
"complexity "which introduced by a refactoring.
Here we consider the term "complexity as a general
property that corresponds to our intuitive view, such
a property needs of course to be defined precisely but
it is undoubtedly more general than what is usually

102

measured on one artifact like Cyclomatic Complexity
suggested in (McCabe, 1976).

To do so, we will study an example taken from the
refactoring catalogue proposed by Martin Fowler in
(Fowler, 1999), and (Refactoring, 2006), that is,
Replace Conditional with Polymorphism. Precisely,
we will analyze the consequences of this refactoring
on the dependencies between artifacts in order to
determine the impact on maintainability.

3. Running Example

In this Section we describe an example that will be
used all along the paper to develop some ideas related
to refactoring. This example illustrates a trivial
refactoring of object-oriented design, that is, Replace
Conditional with Polymorphism.

Maintainability Definitions
Before describing the refactoring, we propose some
definitions related to maintainability and taken from
the ISO/IEC 9126 standard.

Software maintainability is defined as a set of
attributes that bear on the effort needed to make
specified modifications (ISO/IEC 9126, 2001). We
only consider three subcharacteristics suggested for
the maintainability characteristic in the ISO/IEC
9126 standard: Analyzability, Changeability, and
testability.
Analyzability is defined as Attributes of software that
bear on the effort needed for diagnosis of deficiencies
or causes of failures, or for identification of parts to
be modified (ISO/IEC 9126, 2001).
Changeability is defined as Attributes of software that
bear on the effort needed for modification, fault
removal or for environmental change (ISO/IEC 9126,
2001).
Testability is defined as Attributes of software that
bear on the effort needed for validating the modified
software (ISO/IEC 9126, 2001).

Replace Conditional with Polymorphism

The initial design depicted in Figure 1 represents
class Document with a Print() method. This method
takes one argument format, which allows specifying
the format of printing (PDF, RTF, HTML). A switch
statement implements the Print method.

Class Document {
 Print(format) {
 Switch(format) {
 Case ‘PDF’:
 PrintPDF();

 Case ‘RTF’:
 PrintRTF();

 Case ‘HTML’:
 PrintHTML();
 }
 }
}

Figure 1 – Code 1

Figure 2 shows the corresponding design of Code 1.

 Figure 2 - Design 1

Figure 3 shows the result of the refactoring Replace
Conditional with Polymorphism on Design 1.

Figure 3 - Design 2

The refactoring adds an abstract class called
Document within an abstract method called Print.
The switch statement is therefore replaced by three
subclasses, which correctly implement according to
the format the abstract method Print.
In design 2, the parent class Document contains an
implementation of the part of the behavior (methods)
which is shared by the three subclasses.
This type of design, which benefits from the
polymorphism of the Print method, is known as
easier to maintain than the previous design behind the
code depicted in Figure 1. For instance, it seems to
be easier to add a new feature to print new format
(like PostScript). Indeed, we must create a new

Document
Print()

PDF
Print()

RTF
Print()

HTML
Print()

Document
Print(format)

103

subclass PS which implements the Print method
according to the PostScript format. To test the new
behavior, only the new class PS must be tested, since
no modification has been performed on the rest of the
design.
So, one can reasonably affirm that design 2 is more
maintainable, more modifiable, and more
understandable than the design behind Figure 1 and
Figure 1.

Dependencies Graph

Let us now look at the software as a whole product
integrating different artifacts and let us try to
highlight the relationships (dependencies) between
those artifacts.
To model this global product, we introduce the
concept of dependencies graph.

Roughly, the dependencies graph is a model of the
software that allows navigating through the different
artifacts related to a given software by traversing the
different dependency relations between these
artifacts.
This dependencies graph eases the analysis of the
impact generated by a specific refactoring, since it
represents all the dependencies existing between
artifacts.

More formally, we introduce the concept of
dependencies graph as a graph whose nodes are the
artifacts or part of artifacts, and the edges are the
dependencies between them.

The dependency relationship (represented by an edge
in the dependencies graph) is actually a generic
relation between two artifacts. (This generic relation
can be better specified in further works but at this
level limiting this work to the UML notion of
dependency is sufficient to highlight the impact of a
given refactoring on the dependencies graph.)
So, following the UML literature a dependency is
defined as a relationship between parts of an UML
model drawn as a dashed line with an arrowhead
that indicates that if one thing changes then the
change may affect the other thing (UML, 2001). The
dependency is represented by a line without
arrowheads when both elements of the relation are
mutually dependent, that is, when one element
changes the other changes, and vice-versa.

Nodes represent artifacts or part of artifacts. In the
current paper, the artifacts considered are the
requirements (a textual description of what the

software must hold), the classes which are parts of
the software design, and the set of unit tests.
Different levels of artifacts are mixed within the
same graph: classes with set of unit tests,
requirements with classes…
The issue related to the granularity of the artifacts
modeled in the dependencies graph is not
investigated in the current paper. Therefore, a
working assumption concerned in the granularity
issue is stated in the paragraph Working Assumption.

Working Assumptions

In order to develop the purpose of the current work,
two working assumptions must be stated.
Firstly, the "maintainability" attribute (quality)
studied in this work can be described as the difficulty
a software engineer meets when he/she navigates
through the dependencies graph in order to
understand, modify and test the software as a whole.
In this representation of the maintenance
phenomenon, the structure of the dependencies graph
described above can affect this difficulty of
navigating through it. And in this sense, the more it is
difficult to traverse the dependencies graph, the more
the software will be hard to maintain, which means
that the different maintainability subcharacteristics
(understandability, modifiability, and testability) will
be negatively affected.
So, the correlation between properties of the
dependencies graph and the maintainability
subcharacteristics is actually a working assumption
that is not tested in the current work. In fact, this
assumption represents the base of the current
purpose.

Secondly, the granularity of the artifacts used in this
work is considered as the unit level. For instance, the
requirements described in this paper are seen as the
elementary part of a whole set of requirements.
This hypothetic granularity of artifacts helps
specifying the dependencies between them.
Nevertheless, it is obvious that such assumption must
be strongly investigated. In the literature, this issue is
known as the coarse granularity of traceable entities
(Gotel, 1994), (Ramamoorthy , 1986). The traceable
entities are the artifacts (requirements, class, code) of
the current work.

104

Structural Indicators of Dependencies Graph &
Maintainability

According to the working assumptions previously
stated, the more the structure of the dependencies
graph is complex, the more the software is difficult to
maintain.
By complex, we mean the number of elements and
the relations between these elements is very high. In
the current case, the structure is the dependencies
graph, the elements are the nodes within this graph,
and the relationships are the edges between the
nodes.

So, the working assumption can be rephrased as
follows: the greater the connectivity and the size
parameters of the dependencies graph, the more the
navigation through this graph is difficult, and the
more the software as a whole is difficult to
understand, modify and test, that is, to maintain.

According to the rephrasing of the working
assumption, the measures candidates to be used are:

• Amount of nodes
• Amount of edges
• Degree

In the next paragraph, we will apply these measures
to a dependencies graph before and after a refactoring
in order to have a first assessment of the impact on
the maintainability of this refactoring according to
our assumption.

Dependencies Graph of the Replace Conditional with
Polymorphism Refactoring

Figure 4 shows the dependencies graph between three
types of artifact (Requirements, Design and Unit Test
Set) before applying the refactoring Replace
Conditional with Polymorphism. In a real case, other
artifacts exist (functional tests, integration tests,
defects, different design models…). However, in
order to be as clear as possible and assure the
understandability of the current paper, we reduce the
number of dependent artifacts.

Figure 4 - Before Refactoring (Design 1)

The nodes Req1 and Req2 in Figure 4 represent the
requirements of the software. Req1 corresponds with
the capacity of editing a document and Req2 is the
capacity of printing a document. Such level of
description is certainly insufficient for developing the
software. However, it is enough for analyzing the
impact of refactoring on the maintanibality.
The Document node is the document class. And, the
UTSetDocument node is the set of unit tests related to
the document class. Now, this dependencies graph
can be read as follows: Document implements the
requirements Req1 and Req2. The unit test set
UTSetDocument tests the design element Document.
Moreover, the change of the class Document could
affect the unit tests set UTSetDocument, the
requirements Req1, and Req2.

Figure 5 shows the corresponding dependencies
graph after refactoring with the same types of artifact.

Figure 5 - After Refactoring (Design 2)

Note in Figure 5 that three new design elements
(PDF, RTF, and HTML) with the corresponding set
of unit tests have been added.

The structural complexity of the dependencies graph
seems to be increased by the refactoring. To highlight

105

this complexity increasing, we compute some
volumetric measure of the graph, previously
described.
Table A shows the amount of nodes and edges for
each design.

 Design 1 Design 2
Nodes 4 10
Edges 3 12

Table A

According to Table A, the amounts of edges and
nodes have increased from Design 1 to Design 2.
Particularly, the amount of edges of Design 2 is 4
times larger than the amount of edges of Design 1.

Table B shows the measurement of the dependencies
graph before refactoring. For each node, the degree is
given. The degree of a node in an undirected graph is
the number of edges incident to the node.

NODE DEGREE
REQ1 1
REQ2 1

Document 3
UTSetDocument 1

Table B

Table C shows the same measures after refactoring.

NODE DEGREE
REQ1 1
REQ2 4

Document 6
PDF 3
RTF 3

HTML 3
UTSetDocument 1

UTSetPDF 1
UTSetRTF 1

UTSetHTML 1

Table C

According to Tables B and C, the degrees of nodes
Req2 and Document have increased, respectively
from 1 to 4, and from 3 to 6. The degrees of the
nodes Req1 and UTSetDocument are constant.
Moreover, six new nodes have appeared in the
dependencies graph after refactoring.

So, the amount of elements (artifacts and
dependencies, or nodes and edges) has increased after
refactoring. In other words, the amount of elements

to handle during and after refactoring has increased.
Under these new conditions, it is not obvious whether
or not the refactoring has really reduced the difficulty
to maintain the software (in its global sense).

4. Conclusion

Firstly, it has not been proved neither empirically,
nor theoretically (Basili, 1996), (Zuse, 1999),
(Kitchenham, 1995) that the dependencies graph
indicators used in the previous section are positively
correlated with maintainability measures. In a further
work, we must answer the following question:
Increasing each dependencies graph indicators does it
mean that the maintainability decreases?
Nevertheless, even if the measures selected in this
first work are not valid, it should be very useful to
investigate the properties of such dependencies graph
in order to gain understanding on software
development

Secondly, the refactoring investigated under the
assumptions of this paper with this running example
can be considered as having a different effect than
one expected. The effect is no more a "reduction" of
the complexity but (at least partially) a highlighting
of a hidden complexity located in the software or a
displacing of this complexity from one artifact to
many others.
To observe this highlighting, the software is
represented by a dependencies graph. The whole
dependencies graph is a global model of the software.
And, the refactoring is therefore the operation that
reveals some structural complexity of the software
dependencies graph.
At the light of this simple example, the structure of
the dependencies graph appears to be more complete,
and in that sense restructuring can ease the
understanding, the modification, and the test.
However, the complexity of the software
dependencies graph is not reduced, but only clarified.
Any clarification can positively affect some
maintainability characteristics. But, this assertion is
still an assumption that must be verified.

Thirdly, the different software artifacts
(requirements, design, code, tests, defects) are often
considered as different entities on which some
operations can be applied in order to transform one
entity into another. For instance, the design is
considered as software entity which can be
transformed into source code if some transformation
rules are correctly applied. According to (Kleppe,
2003), this literature is currently very prolific.

106

In the current work we propose another view or
model of software. Indeed, the different artifacts
(requirements, design…) are not distinct entities, but
different parts of a more global entity that we call
software.
This global entity is made up elementary parts
(pieces of requirements, pieces of design…) that
interact with each other.
Moreover, this global entity is represented by a
dependencies graph whose nodes are the pieces of
products (i.e. a class, a requirement…), and whose
edges are the dependencies between the pieces of
products.
We suggest that the practitioners’ view of the
"complexity" is close to the complexity of such
global entity or dependencies graph.
So, it can be useful and interesting to gain
understanding of such dependencies graph, if this
represents a suitable and correct global model of
software.

5. References

1. (Basili, 1996) V.R. Basili, L.C. Briand and W.L.

Melo, `A Validation of Object-Oriented Design
Metrics as Quality Indicators', IEEE
Transactions on Software Engineering, Vol. 22,
No. 10, October 1996, pp. 751-761

2. (Balazinska , 2000) M. Balazinska, E. Merlo, M.
Dagenais, and B. Lagüe, and K. Kontogiannis,
“Advanced Clone-Analysis to Support Object-
Oriented System Refactoring,” Proc. Working
Conf. Reverse Eng., pp. 98-107, 2000

3. (Bois, 2003)B. Bois and T. Mens,” Describing
the Impact of Refactoring on Internal Program
Quality”,http://citeseer.ist.psu.edu/bois03describi
ng.html, 2003

4. (Bottoni, 2002) P. Bottoni, F. Parisi-Presicce,
and G. Taentzer, “Coordinated Distributed
Diagram Transformation for Software
Evolution,” Electronic Notes in Theoretical
Computer Science, vol. 72, no. 4, 2002.

5. (Chikofsky, 1990) E.J. Chikofsky and J.H.
Cross, “Reverse Engineering and Design
Recovery: A Taxonomy,” IEEE Software, vol. 7,
no. 1, pp. 13-17, 1990.

6. (Demeyer, 2003) S., Demeyer, “Maintainability
versus Performance: What's the Effect of
Introducing Polymorphism ?”, ICSE 2003,

September, 2003

7. (Fowler, 1999) M. Fowler, Refactoring:
Improving the Design of Existing Programs.
Addison-Wesley, 1999.

8. (Gamma, 1995), Gamma, E., et al, “Design
Patterns: Elements of Reusable Object-Oriented
Software”, Addison-Wesley Professional; 1st
edition, January 15, 1995

9. (Gill, 1991) Gill, G., and Kemerer, C.,
“Cyclomatic Complexity Density and Software
Maintenance Productivity,” IEEE Transactions
on Software Engineering, December 1991.

10. (Gotel, 1994) O. C. Z. Gotel and A. C. W.
Finkelstein, “An Analysis of the Requirements
Traceability Problem”,
http://citeseer.ist.psu.edu/gotel94analysis.html,
1994

11. (ISO/IEC 9126, 2001) ISO/IEC 9126-1:2001
“Software engineering -- Product quality -- Part
1: Quality model”, ISO, 2001

12. (Kafura , 1987) Kafura, D., and Reddy, G., “The
Use of Software Complexity Metrics in Software
Maintenance,” IEEE Transactions on Software
Engineering, March 1987.

13. (Kataoka , 2001) Y. Kataoka, M.D. Ernst, W.G.
Griswold, and D. Notkin, “Automated Support
for Program Refactoring Using Invariants,” Proc.
Int’l Conf. Software Maintenance, pp. 736-743,
2001.

14. (Kitchenham, 1995) B. Kitchenham, S. L.
Pfleeger, N. Fenton, "Towards a Framework for
Software Measurement Validation", IEEE
Transactions on Software Engineering, vol.21,
No. 12, pp. 929943, December 1995

15. (Kleppe, 2003) Anneke Kleppe and Jos Warmer
and Wim Bast, “MDA Explained. The Model
Driven Architecture: Practice and Promise”,
Addison-Wesley, 2003

16. (McCabe, 1976) Thomas J. McCabe, “A
measure of complexity”, IEEE transaction on
software engineering, Vol SE-2, No 4, December
1976

17. (Mens, 2004) Tom Mens, and Tom Tourwe, “A
Survey of Software Refactoring”, IEEE
TRANSACTIONS ON SOFTWARE
ENGINEERING, VOL. 30, NO. 2, FEBRUARY
2004

18. (Obdyke, 1992) W.F. Opdyke, “Refactoring: A

107

Program Restructuring Aid in Designing Object-
Oriented Application Frameworks,” PhD thesis,
Univ. of Illinois at Urbana-Champaign, 1992

19. (Rajlich , 1997) V. Rajlich, “A Model for
Change Propagation Based on Graph Rewriting,”
Proc. Int’l Conf. Software Maintenance, pp. 84-
91, 1997

20. (Ramamoorthy , 1986) Ramamoorthy, C.V.,
Garg, V. & Prakash, A. “Programming in the
Large”, IEEE Transactions on Software
Engineering, Vol. 12, No. 7, pp. 769-783, 1986

21. (Refactoring, 2006) http://www.refactoring.com

22. (Simon, 2001) F. Simon, F. Steinbruckner, and
C. Lewerentz, “Metrics Based Refactoring,”
Proc. European Conf. Software Maintenance and
Reeng., pp. 30-38, 2001.

23. (Tahvildari, 2002) L. Tahvildari and K.
Kontogiannis, “A Methodology for Developing
Transformations Using the Maintainability Soft-
Goal Graph,” Proc. Working Conf. Reverse
Eng., pp. 77-86, Oct. 2002.

24. (UML, 2001) UML specification (version 1.4.2,
OMG document: formal/05-04-01), ISO/IEC
19501, 2001

25. (Van Der Straeten , 2003) R. Van Der Straeten,
J. Simmonds, T. Mens, and V. Jonckers, “Using
Description Logic to Maintain Consistency
between UML Models,” Proc. Unified Modeling
Language Conf. 2003, 2003.

26. (Zuse, 1999) H. Zuse, "Validation of Measures
and Prediction Models", 9 International
Workshop on Software Measurement, Lac
Supérieur, Canada, September, 1999

108

Relative Thresholds: Case Study to Incorporate
Metrics in the Detection of Bad Smells

Yania Crespo1, Carlos López2, and Raúl Marticorena2

1 University of Valladolid
Department of Computer Science, Valladolid (Spain)

yania@infor.uva.es
2 University of Burgos

Area of Languages and Computer Systems, Burgos (Spain)
{clopezno, rmartico}@ubu.es

Abstract. To detect flaws, bad smells, etc, we often use quantitative
methods: metrics or measures. It is common in practice to use thresholds
to set the correctness of the measures. Most of the current tools use
generic values. Nevertheless, there is a certain concern about the effects
of threshold applications on obtained values.
Current research is working on case studies of thresholds for several pro-
ducts and different versions. However, product domain and size could
also affect the results, so we deal with the question of using generic vs.
relative thresholds, looking at what effects this could have in bad smell
detection.

Key Words: thresholds, metrics, flaw design, bad smells, refactoring

1 Initial Context

In previous works [3, 11], we tackled the use of frameworks in order to give
complete support in the refactoring process: to parse the code to a metamodel, to
collect metrics from a metamodel, to detect bad smells from metrics, to support
refactorings and to regenerate the transformed code.

However, in this process, there are many points not yet covered. In particular,
relations between metrics and bad smells were defined on the basis of generic
thresholds in [3]. Although thresholds could be customized, it would be a task for
the product manager. Furthermore, the use of thresholds raises certain questions:
Which values should we use? Are they correct? Are they suitable for the current
product?

This paper proposes a case study of several products of medium size, also
focusing on the evolution of some of them. The results obtained should make
clear the need to support the relative product values to be applied, in our case,
with the aim of a future integration with refactorings.

The remainder of this work is organized as follows: Section 2 shows the
current state of the art, Section 3 develops the case study focusing on several
products/projects in several versions. Section 4 proposes the application of the

109

results to bad smells detection. Section 5 concludes by showing some conclusions
of the proposed solution.

2 Related Works

Most of the current environments include metric collection. They also include
the possibility to fix thresholds on these metrics. It is the programmer who
establishes these values, using the development guides of his/her company. These
filters are, however, fixed for all products and results obtained do not always
suggest catalogued flaws.

There are works in the detection of design flaws. In [9,10] Marinescu proposes
the concept of design strategies. Strategies are defined on the basis of metrics
and are applied to the information collected in a metamodel. The metamodel
contains code information, but it is designed and implemented to allow queries
(all operations are translated to SQL sentences), but this does not work for
a complete refactoring process. In this work, the use of generic and relative
thresholds is discussed, but their suitability is not mentioned.

In [7, 8], we find a catalogue of flaws named bad smells. In order to link
them to a metric suite, this assignment suggests selecting generic thresholds in
most cases. They also point out the problem of leaving these decisions to the
subjective human intuition.

On the other hand, in [12], Tourwé and Mens propose the detection of refac-
toring opportunities using queries on a logic meta-programming environment.
They define queries to suggest the corrective actions to accomplish. Following
that work Muñoz, in [1], uses a set of logic queries that compute object-oriented
metrics to detect these bad smells with generic thresholds.

Thresholds have also been tackled in [5]. French proposes a system based
on statistical methods to determine thresholds for different products, without
applying them to bad smell inference or trying to see the effects on several
versions.

From these previous works, we want to provide answers to certain issues:

– the correctness of using generic vs. relative product thresholds to detect bad
smells in code.

– the influence of the kind and size of software products (frameworks vs. li-
braries).

– the suitability of the solution on different versions of the same product.

3 Case Study

3.1 First Phase: Compararison between Products

We make a comparative study of six products. We take different products, most
of them stable versions, used over a long period of time, with medium or large
size. We prefer these samples instead of using “toy” samples of small/tiny size,
with low functionality.

The selected products are:

110

– jfreechart-1.0.0.pre2 (629 classes)
– jhotdraw-6.0b1 (496 classes)
– struts-1.2.8 (273 classes)
– jcoverage-1.0.5 (90 classes)
– easymock-1.0.5 (47 classes)
– junit-3.8.1 (46 classes)

All these software products are written in an object-oriented language, since
extracted results will be applied to previous works on this paradigm. In the
study, we use Eclipse 3.1 and Metrics 1.3.6 plug-in as the metric collection tool.
This issue limits examples to programs written in Java, although, in our opinion,
the process is usable in other object-oriented languages3.

The selected metrics work on classes, choosing metrics related to size, com-
plexity, cohesion, inheritance and specialization [2, 6]:

– NOF number of fields
– NOM number of methods
– WMC ciclomatic complexity
– LCOM lack of cohesion of methods
– DIT depth in the inheritance tree
– NSC number of children
– SIX specialization index
– NORM number of overridden methods

For each one of them, we obtain the values for several descriptive statistics:
mean, bounded mean (removing 15% of the extreme values), standard deviation,
lower quartile (Q1), median (Q2), upper quartile (Q3), minimum and maximum.

3.2 Partial Conclusions

From the previous results, see Fig. 1, we can say that:

– distributions are not symmetrical, differences between mean and median,
and proximity of the median to Q3 quartile prove this. Most cases show
distributions with positive asymmetry (distribution tail to the right side).
These measures follow this kind of distribution as expected.

– differences between minimum and maximum values are large, and they are
also very different in each product. This suggests dispersed data, with dif-
ferent thresholds.

– product size (number of classes) is slightly correlated with some metrics.
Size could affect the thresholds. This is more noticeable in metrics such as
NOF, NOM and WMC, with a high correlation among them. On the con-
trary, metrics such as LCOM and DIT show low variations between different
products.

3 Number of classes is conditioned to the use of Metrics 1.3.6 plug-in, which does not
count the number of inner classes

111

NOF
 NOM
 WMC
 LCOM
 DIT
 NSC
 SIX
 NORM

Mean JFreeChart 1.0.0-pre2
 2,40
 10,08
 22,98
 0,21
 2,55
 0,36
 0,16
 0,69

Bounded mean (15%)
 1,41
 7,45
 15,87
 0,17
 2,47
 0,04
 0,08
 0,46

Q3
 3,00
 11,00
 25,00
 0,50
 3,00
 0,00
 0,14
 1,00

Median
 1,00
 5,00
 9,00
 0,00
 3,00
 0,00
 0,00
 0,00

Q1
 0,00
 3,00
 6,00
 0,00
 2,00
 0,00
 0,00
 0,00

Standard Deviation
 5,05
 15,01
 38,82
 0,32
 1,14
 1,48
 0,37
 1,23

Minimum
 0,00
 0,00
 0,00
 0,00
 1,00
 0,00
 0,00
 0,00

Maximum
 48,00
 166,00
 490,00
 1,00
 7,00
 16,00
 3,20
 9,00

NOF
 NOM
 WMC
 LCOM
 DIT
 NSC
 SIX
 NORM

Mean Junit-3.8,1
 2,17
 8,13
 15,70
 0,21
 2,70
 0,28
 0,18
 0,35

Bounded mean (15%)
 1,50
 6,53
 12,33
 0,18
 2,58
 0,15
 0,09
 0,28

Q3
 2,00
 9,75
 15,75
 0,50
 3,75
 0,00
 0,12
 1,00

Median
 1,00
 4,50
 8,00
 0,00
 2,00
 0,00
 0,00
 0,00

Q1
 0,00
 2,00
 4,00
 0,00
 1,00
 0,00
 0,00
 0,00

Standard Deviation
 3,59
 10,35
 20,42
 0,33
 1,84
 0,72
 0,45
 0,60

Minimum
 0,00
 0,00
 1,00
 0,00
 1,00
 0,00
 0,00
 0,00

Maximum
 18,00
 62,00
 106,00
 0,91
 6,00
 3,00
 2,00
 3,00

NOF
 NOM
 WMC
 LCOM
 DIT
 NSC
 SIX
 NORM

Mean Jcoverage-1.0.5
 1,49
 4,35
 9,56
 0,24
 1,78
 0,39
 0,81
 0,28

Bounded mean (15%)
 1,23
 3,70
 8,17
 0,20
 1,62
 0,19
 0,10
 0,21

Q3
 2,00
 5,00
 14,00
 0,50
 2,00
 0,00
 0,00
 0,00

Median
 1,00
 3,00
 5,00
 0,00
 1,00
 0,00
 0,00
 0,00

Q1
 0,00
 2,00
 3,00
 0,00
 1,00
 0,00
 0,00
 0,00

Standard Deviation
 1,87
 4,46
 9,59
 0,34
 1,05
 0,96
 0,37
 0,52

Minimum
 0,00
 0,00
 1,00
 0,00
 1,00
 0,00
 0,00
 0,00

Maximum
 7,00
 25,00
 46,00
 1,00
 5,00
 4,00
 1,67
 2,00

NOF
 NOM
 WMC
 LCOM
 DIT
 NSC
 SIX
 NORM

Mean easymock-2.0
 1,41
 5,83
 12,54
 0,15
 1,24
 0,09
 0,12
 0,33

Bounded mean (15%)
 1,24
 4,13
 8,32
 0,11
 1,08
 0,00
 0,02
 0,16

Q3
 2,00
 5,00
 13,50
 0,33
 1,00
 0,00
 0,00
 0,00

Median
 1,00
 3,00
 3,50
 0,00
 1,00
 0,00
 0,00
 0,00

Q1
 1,00
 3,00
 3,00
 0,00
 1,00
 0,00
 0,00
 0,00

Standard Deviation
 1,34
 7,51
 19,25
 0,24
 0,67
 0,46
 0,41
 0,73

Minimum
 0,00
 0,00
 0,00
 0,00
 1,00
 0,00
 0,00
 0,00

Maximum
 6,00
 38,00
 105,00
 0,85
 4,00
 3,00
 2,00
 3,00

NOF
 NOM
 WMC
 LCOM
 DIT
 NSC
 SIX
 NORM

Mean struts-1.2.8
 2,91
 8,60
 18,84
 0,28
 2,59
 0,46
 0,51
 0,96

Bounded mean (15%)
 2,09
 6,66
 13,21
 0,25
 2,45
 0,24
 0,33
 0,67

Q3
 4,00
 11,00
 22,00
 0,67
 4,00
 1,00
 0,60
 1,00

Median
 2,00
 4,00
 8,00
 0,00
 2,00
 0,00
 0,00
 0,00

Q1
 0,00
 2,00
 3,00
 0,00
 1,00
 0,00
 0,00
 0,00

Standard Deviation
 4,56
 11,02
 29,13
 0,36
 1,48
 1,13
 0,95
 2,04

Minimum
 0,00
 0,00
 0,00
 0,00
 1,00
 0,00
 0,00
 0,00

Maximum
 40,00
 82,00
 260,00
 0,98
 7,00
 10,00
 5,00
 28,00

NOF
 NOM
 WMC
 LCOM
 DIT
 NSC
 SIX
 NORM

Mean JHotDraw60b1
 1,40
 9,51
 13,36
 0,16
 2,84
 0,57
 0,31
 0,73

Bounded mean (15%)
 1,09
 7,72
 10,31
 0,11
 2,68
 0,07
 0,16
 0,38

Q3
 2,00
 11,00
 14,00
 0,00
 4,00
 0,00
 0,32
 1,00

Median
 1,00
 7,00
 9,00
 0,00
 3,00
 0,00
 0,00
 0,00

Q1
 0,00
 4,00
 5,00
 0,00
 2,00
 0,00
 0,00
 0,00

Standard Deviation
 1,86
 10,40
 16,76
 0,30
 1,49
 3,84
 0,74
 1,70

Minimum
 0,00
 0,00
 0,00
 0,00
 1,00
 0,00
 0,00
 0,00

Maximum
 19,00
 90,00
 158,00
 1,50
 9,00
 71,00
 8,00
 19,00

Fig. 1. Overall results

In previous works, we established the possibility to fix metric thresholds with
the aim of detecting flaws (in design, not in functionality). A first approximation
was to establish these thresholds on the basis of generic values. However, the
results show that values should be fitted to the concrete product.

Another factor that could influence results is the kind of product. Similar
products such as testing frameworks (junit & easymock), development frame-
works (struts & jhotdraw) and libraries (jcoverage & jfreechart), present large
differences between minimum and maximum values.

From these results, the hypothesis appears that the absence of thresholds
may generate a large change of metric measures (while products increase their
size, metrics could increase or decrease over the recommended values). To verify
this hypothesis, we carry out a second case study with different versions of some
products.

112

3.3 Second Phase: Version Evolutions

We take different versions of three products: JFreechart, JHotDraw and JUnit.
We show the versions and number of classes of each version. These versions have
evolved over a medium period of time: jfreechart-0.9.4 (326 classes, 2002-10-18),
jfreechart-0.9.7 (492 classes, 2003-04-17), jfreechart-0.9.21 (570 classes, 2004-
09-10), jfreechart-1.0.0-pre2 (629 classes, 2005-03-10) and jfreechart-1.0.1 (691
classes, 2006-01-27).

NOF
 NOM
 WMC
 LCOM
 DIT
 NSC
 SIX
 NORM

Mean jfreechart-0.9.4
 2,69
 7,77
 18,00
 0,26
 3,02
 0,40
 0,27
 0,61

Bounded mean (15%)
 1,71
 6,13
 13,51
 0,22
 2,85
 0,08
 0,11
 0,32

Q3
 3,00
 11,00
 24,00
 0,62
 4,00
 0,00
 0,16
 1,00

Median
 1,00
 4,00
 8,00
 0,00
 3,00
 0,00
 0,00
 0,00

Q1
 0,00
 1,00
 3,00
 0,00
 1,00
 0,00
 0,00
 0,00

Standard Deviation
 4,87
 9,70
 25,11
 0,35
 1,95
 1,49
 0,70
 1,34

Minimum
 0,00
 0,00
 1,00
 0,00
 1,00
 0,00
 0,00
 0,00

Maximum
 39,00
 60,00
 195,00
 1,00
 7,00
 16,00
 6,00
 8,00

NOF
 NOM
 WMC
 LCOM
 DIT
 NSC
 SIX
 NORM

Mean jfreechart-0.9.7
 2,14
 7,03
 15,63
 0,20
 3,21
 0,31
 0,17
 0,49

Bounded mean (15%)
 1,22
 5,06
 11,08
 0,15
 3,07
 0,04
 0,07
 0,28

Q3
 2,00
 9,00
 19,00
 0,50
 4,00
 0,00
 0,09
 1,00

Median
 0,00
 3,00
 6,00
 0,00
 3,00
 0,00
 0,00
 0,00

Q1
 0,00
 1,00
 3,00
 0,00
 2,00
 0,00
 0,00
 0,00

Standard Deviation
 4,55
 10,65
 24,45
 0,32
 1,97
 1,34
 0,44
 1,02

Minimum
 0,00
 0,00
 0,00
 0,00
 1,00
 0,00
 0,00
 0,00

Maximum
 39,00
 87,00
 203,00
 1,00
 7,00
 15,00
 3,00
 7,00

NOF
 NOM
 WMC
 LCOM
 DIT
 NSC
 SIX
 NORM

Mean jfreechart-0.9.21
 2,38
 9,99
 22,47
 0,21
 2,52
 0,36
 0,16
 0,66

Bounded mean (15%)
 1,41
 7,33
 15,44
 0,17
 2,45
 0,05
 0,08
 0,44

Q3
 2,00
 12,75
 26,00
 0,50
 3,00
 0,00
 0,16
 1,00

Median
 1,00
 5,00
 9,00
 0,00
 3,00
 0,00
 0,00
 0,00

Q1
 0,00
 3,00
 6,00
 0,00
 2,00
 0,00
 0,00
 0,00

Standard Deviation
 4,93
 15,20
 38,66
 0,32
 1,12
 1,47
 0,37
 1,20

Minimum
 0,00
 0,00
 0,00
 0,00
 1,00
 0,00
 0,00
 0,00

Maximum
 47,00
 155,00
 473,00
 0,96
 7,00
 16,00
 3,00
 8,00

NOF
 NOM
 WMC
 LCOM
 DIT
 NSC
 SIX
 NORM

Mean JFreeChart-1.0.0-pre2
 2,40
 10,08
 22,98
 0,21
 2,55
 0,36
 0,16
 0,69

Bounded mean (15%)
 1,41
 7,45
 15,87
 0,17
 2,47
 0,04
 0,08
 0,46

Q3
 3,00
 11,00
 25,00
 0,50
 3,00
 0,00
 0,14
 1,00

Median
 1,00
 5,00
 9,00
 0,00
 3,00
 0,00
 0,00
 0,00

Q1
 0,00
 3,00
 6,00
 0,00
 2,00
 0,00
 0,00
 0,00

Standard Deviation
 5,05
 15,01
 38,82
 0,32
 1,14
 1,48
 0,37
 1,23

Minimum
 0,00
 0,00
 0,00
 0,00
 1,00
 0,00
 0,00
 0,00

Maximum
 48,00
 166,00
 490,00
 1,00
 7,00
 16,00
 3,20
 9,00

NOF
 NOM
 WMC
 LCOM
 DIT
 NSC
 SIX
 NORM

Mean jfreechart-1.0.1
 2,22
 9,94
 22,42
 0,19
 2,53
 0,33
 0,16
 0,69

Bounded mean (15%)
 1,27
 7,27
 15,25
 0,15
 2,46
 0,03
 0,09
 0,48

Q3
 2,00
 11,00
 23,00
 0,40
 3,00
 0,00
 0,17
 1,00

Median
 1,00
 5,00
 9,00
 0,00
 3,00
 0,00
 0,00
 0,00

Q1
 0,00
 4,00
 7,00
 0,00
 2,00
 0,00
 0,00
 0,00

Standard Deviation
 4,86
 15,18
 39,39
 0,31
 1,12
 1,41
 0,35
 1,18

Minimum
 0,00
 0,00
 0,00
 0,00
 1,00
 0,00
 0,00
 0,00

Maximum
 46,00
 173,00
 513,00
 1,00
 7,00
 14,00
 3,33
 8,00

Fig. 2. JFreeChart evolution results

In the case of JHotDraw, version, number of classes and dates are: jhotdraw-
5.2 (149 classes, 2001-02-18), jhotdraw-5.3 (208 classes, 2002-01-20), jhotdraw-
5.4b1 (478 classes, 2004-01-31) and jhotdraw-6.0b1 (497 classes, 2004-02-01).

In the case of JUnit, versions and number of classes are4: junit-2.1 (19
classes), junit-3.8.1 (47 classes) and junit-3.2 (32 classes).

For each of these products, we collected previously mentioned metrics, obtain-
ing mean, bounded mean, standard deviation, Q1, median (Q2), Q3, minimum
4 Product release dates are not available

113

NOF
 NOM
 WMC
 LCOM
 DIT
 NSC
 SIX
 NORM

Mean jhotdraw52
 1,83
 8,30
 13,53
 0,26
 2,81
 0,68
 0,56
 1,28

Bounded mean (15%)
 1,52
 6,37
 10,25
 0,23
 2,60
 0,24
 0,48
 1,06

Q3
 3,00
 10,00
 15,25
 0,60
 3,00
 0,00
 1,00
 2,00

Median
 1,00
 5,00
 8,00
 0,00
 2,00
 0,00
 0,28
 1,00

Q1
 0,00
 3,00
 4,00
 0,00
 2,00
 0,00
 0,00
 0,00

Standard Deviation
 2,19
 9,82
 16,84
 0,33
 1,70
 1,91
 0,66
 1,69

Minimum
 0,00
 0,00
 1,00
 0,00
 1,00
 0,00
 0,00
 0,00

Maximum
 14,00
 61,00
 108,00
 1,50
 8,00
 12,00
 3,11
 12,00

NOF
 NOM
 WMC
 LCOM
 DIT
 NSC
 SIX
 NORM

Mean jhotdraw53
 1,83
 9,12
 15,51
 0,27
 2,65
 0,86
 0,51
 1,21

Bounded mean (15%)
 1,46
 7,07
 11,60
 0,23
 2,43
 0,20
 0,41
 0,97

Q3
 3,00
 10,00
 18,00
 0,63
 3,00
 0,00
 0,75
 2,00

Median
 1,50
 6,50
 12,50
 0,00
 1,00
 0,00
 0,00
 0,00

Q1
 0,00
 3,00
 4,75
 0,00
 2,00
 0,00
 0,00
 0,00

Standard Deviation
 2,38
 10,87
 20,54
 0,35
 1,66
 3,53
 0,66
 1,66

Minimum
 0,00
 0,00
 1,00
 0,00
 1,00
 0,00
 0,00
 0,00

Maximum
 17,00
 72,00
 146,00
 1,50
 8,00
 40,00
 3,00
 12,00

NOF
 NOM
 WMC
 LCOM
 DIT
 NSC
 SIX
 NORM

Mean jhotdraw54b1
 1,41
 9,67
 13,89
 0,16
 2,90
 0,58
 0,32
 0,73

Bounded mean (15%)
 1,12
 7,85
 10,80
 0,11
 2,75
 0,08
 0,17
 0,39

Q3
 2,00
 11,00
 15,00
 0,00
 4,00
 0,00
 0,33
 1,00

Median
 1,00
 7,00
 9,00
 0,00
 3,00
 0,00
 0,00
 0,00

Q1
 1,00
 4,00
 6,00
 0,00
 2,00
 0,00
 0,00
 0,00

Standard Deviation
 1,81
 10,33
 16,88
 0,30
 1,48
 3,89
 0,75
 1,71

Minimum
 0,00
 0,00
 0,00
 0,00
 1,00
 0,00
 0,00
 0,00

Maximum
 16,00
 88,00
 148,00
 1,50
 9,00
 71,00
 8,00
 19,00

NOF
 NOM
 WMC
 LCOM
 DIT
 NSC
 SIX
 NORM

Mean JHotDraw60b1
 1,40
 9,51
 13,36
 0,16
 2,84
 0,57
 0,31
 0,73

Bounded mean (15%)
 1,09
 7,72
 10,31
 0,11
 2,68
 0,07
 0,16
 0,38

Q3
 2,00
 11,00
 14,00
 0,00
 4,00
 0,00
 0,32
 1,00

Median
 1,00
 7,00
 9,00
 0,00
 3,00
 0,00
 0,00
 0,00

Q1
 0,00
 4,00
 5,00
 0,00
 2,00
 0,00
 0,00
 0,00

Standard Deviation
 1,86
 10,40
 16,76
 0,30
 1,49
 3,84
 0,74
 1,70

Minimum
 0,00
 0,00
 0,00
 0,00
 1,00
 0,00
 0,00
 0,00

Maximum
 19,00
 90,00
 158,00
 1,50
 9,00
 71,00
 8,00
 19,00

Fig. 3. JHotDraw evolution results

and maximum, as can be seen in Fig. (2, 3, 4). In Fig. 5, the JFreeChart evolu-
tion example (using mean value) shows that the five versions have similar values
over four years. This suggests that stable products maintain their thresholds,
even after increasing their size (duplicating the size in all cases).

3.4 Conclusions of the Study

These are the conclusions extracted from the study on several versions:

– Thresholds should be relative to the product.
– Thresholds could be maintained between different stable versions.
– The kind of product (framework / library) does not determine how we should

fix its thresholds.

From these conclusions, we settle new issues. To develop new products we
need to tune new initial thresholds. As a first option, we can estimate values
from similar products (same domain, similar functionality and similar size) by
taking into account our previous results. If several product versions are available,
we can collect values from them to calculate an initial estimation. In both cases,
we probably need to fix the values.

114

NOF
 NOM
 WMC
 LCOM
 DIT
 NSC
 SIX
 NORM

Mean Junit 2.1
 2,16
 8,11
 14,05
 0,22
 2,53
 0,32
 0,31
 0,58

Bounded mean (15%)
 1,35
 7,18
 12,41
 0,19
 2,41
 0,18
 0,17
 0,47

Q3
 2,00
 8,50
 18,00
 0,50
 3,00
 0,00
 0,26
 1,00

Median
 1,00
 4,00
 6,00
 0,00
 2,00
 0,00
 0,00
 0,00

Q1
 0,00
 4,00
 4,00
 0,00
 1,00
 0,00
 0,00
 0,00

Standard Deviation
 4,06
 8,52
 15,30
 0,31
 1,61
 0,82
 0,70
 0,84

Minimum
 0,00
 1,00
 1,00
 0,00
 1,00
 0,00
 0,00
 0,00

Maximum
 18,00
 31,00
 55,00
 0,89
 6,00
 3,00
 3,00
 3,00

NOF
 NOM
 WMC
 LCOM
 DIT
 NSC
 SIX
 NORM

Mean Junit 3.2
 2,72
 7,94
 14,75
 0,25
 2,56
 0,19
 0,13
 0,34

Bounded mean (15%)
 1,68
 5,96
 11,29
 0,22
 2,43
 0,04
 0,09
 0,25

Q3
 3,00
 11,00
 18,50
 0,50
 3,50
 0,00
 0,19
 1,00

Median
 1,00
 3,50
 5,50
 0,00
 2,00
 0,00
 0,00
 0,00

Q1
 0,00
 2,00
 2,00
 0,00
 1,00
 0,00
 0,00
 0,00

Standard Deviation
 4,85
 11,65
 21,05
 0,34
 1,93
 0,64
 0,24
 0,65

Minimum
 0,00
 0,00
 1,00
 0,00
 1,00
 0,00
 0,00
 0,00

Maximum
 20,00
 60,00
 103,00
 0,92
 6,00
 3,00
 0,75
 3,00

NOF
 NOM
 WMC
 LCOM
 DIT
 NSC
 SIX
 NORM

Mean Junit 3.8.1
 2,17
 8,13
 15,70
 0,21
 2,70
 0,28
 0,18
 0,35

Bounded mean (15%)
 1,50
 6,53
 12,33
 0,18
 2,58
 0,15
 0,09
 0,28

Q3
 2,00
 9,75
 15,75
 0,50
 3,75
 0,00
 0,12
 1,00

Median
 1,00
 4,50
 8,00
 0,00
 2,00
 0,00
 0,00
 0,00

Q1
 0,00
 2,00
 4,00
 0,00
 1,00
 0,00
 0,00
 0,00

Standard Deviation
 3,59
 10,35
 20,42
 0,33
 1,84
 0,72
 0,45
 0,60

Minimum
 0,00
 0,00
 1,00
 0,00
 1,00
 0,00
 0,00
 0,00

Maximum
 18,00
 62,00
 106,00
 0,91
 6,00
 3,00
 2,00
 3,00

Fig. 4. JUnit evolution results

4 Applying Relative Thresholds

In previous works, we tackled the usefulness of using metrics as symptoms of
bad smells. This term is restricted to refactoring, although it could be gener-
alized to software flaws. We posed the use of thresholds to suggest them. We
defined a framework which supports all these concepts. Nevertheless, threshold
definition is an open question [5]. In Fig. 6, we have the box plot diagrams of
two data distributions: ideal distribution (positive gamma distribution without
outlaiers) and actual distribution of WMC metric in JFreeChart 1.0.1. We con-
sider as low and high values those below and above Q1 and Q3 respectively.
More concretely, in these subsets, the outliers are the main candidates to point
to problematic components. In an ideal process, outliers should be removed by
applying detection and correction of bad smells.

We formerly concluded that the application of the same values to different
products does not seem to be adequate. Tuning values should be helped. Next,
we show a review of previous works, applying the results obtained so far.

4.1 Detection of “Lazy Classes”

Reviewing again the definition [4], there are classes that “are not doing enough
to pay by themselves should be eliminated”. The established criteria are a low
number of methods and fields, low complexity and a high level (low value) in

115

JFreeChart Evolution

0,00

5,00

10,00

15,00

20,00

25,00

Mean jfreechart-

0.9.4

Mean jfreechart-

0.9.7

Mean jfreechart-

0.9.21

Mean JFreeChart-

1.0.0-pre2

Mean jfreechart-

1.0.1

NOF

NOM

WMC

LCOM

DIT

NSC

SIX

NORM

Fig. 5. JFreeChart evolution

the inheritance hierarchy. Furthermore, an additional criterion could be added,
such as a low number of children.

In this approach, the problem is: What is considered low in this system? As
pointed out in previous works [8,10], certain systems are particular and general
conclusions may not be correct. In our case, we work with quartiles to associate
low values with classes below the Q1 quartile. We have the three Q1 quartiles of
NOF, NOM and WMC as limits.

As can be seen, there are certain disagreements in the filters to be used
(NOF<=Q1 AND NOM<=Q1 AND WMC<=Q1). For instance, what happens
if we apply the JUnit collected values to JFreeChart? In this case, we mark as
suspect 63 classes, whereas, using its own values, 97 classes are selected. The
difference in numbers explains why we should not apply the same criteria to the
two products.

Ideal Situation

-60
 -40
 -20
 0
 20
 40
 60
 80
 100
 120

WMC JFreeChart

-100
 0
 100
 200
 300
 400
 500
 600

extremes

outliers
X

Fig. 6. Box Plot diagrams

116

4.2 Detection of “Large Classes”

At first, it seemed to be the easiest bad smell to detect. However, as we saw
above, each system has its own particularities. More concretely, if we establish
the same threshold for all of them, it is possible to fix a high value that does not
return any result. On the other hand, if we choose a low value, too many classes
are selected in other sets.

Using the knowledge about data distribution, we look for extreme values. We
work with quartiles to associate high values with classes above the Q3 quartile.
We establish the Q3 quartile as the threshold value for each product, combining
NOF/NOM/WMC metrics.

From the study of the values, we infer the problem of applying the filter values
to JFreeChart vs. jcoverage, or vice versa. Those metric values in the righthand
tail of the distribution will verify the filter (NOF>=Q3 AND NOM>=Q3 AND
WMC>=Q3). It should be possible to fit values to find outliers. If we repeat the
process, for example the JUnit filter to JFreeChart, we find 148 suspect classes.
However, applying the filter to JFreeChart we have just 108 classes.

Results show large differences between applying one or other threshold. The
final accuracy, however, depends on manual tuning, taking into account the
number of false positives and true negatives.

5 Conclusions and Future Works

Current work fixes, from a case study, the suitability of using generic vs. relative
product thresholds. The former solution, generic thresholds, has not been com-
pletely abandoned. We continue to give support with metric profiles, although
each product usually has its own limits.

Highly different results among software products lead us to assume it is not
completely correct to use them as discriminants in the detection of bad smells.
Product size, in many cases, limits the values of the metrics. Nevertheless, other
metrics seem to be less sensitive to these effects.

In this work, we do not pretend to obtain new thresholds, or new methods to
define them. We want to check out, empirically, the suitability of their definition
for each kind of product. This detection process should be repeated until stable
distributions are achieved, so as to reduce the number of outliers. These results
could also help in the systematic software maintenance, as long as we have
previous stable versions. Obviously, further analysis on larger samples should be
completed to confirm these results.

Finally, we propose to include the current solution in bad smell detection,
alongside our metric collection framework. Final tools should be able to aid the
users to establish their own criteria in an objective way.

Obviously, there are many lines of work still open:

– We need to validate results, increasing the number of products under study.
– We should check the language influence on the results.
– Experience, knowledge and culture of the programmer could influence the

software evolution.

117

References

1. Francisca Muñoz Bravo. A Logic Meta-Programming Framework for Supporting
the Refactoring Process. PhD thesis, Vrije Universiteit Brussel, Belgium, 2003.

2. Shyam R. Chimdaber and Chris F. Kemerer. A metrics suite for object oriented
design. IEEE Transactions On Software Engineering, 20:476–493, 1994.

3. Yania Crespo, Carlos López, Raul Marticorena, and Esperanza Manso. Language
independent metrics support towards refactoring inference. In 9th ECOOP Work-
shop on QAOOSE 05 (Quantitative Approaches in Object-Oriented Software En-
gineering). Glasgow, UK. ISBN: 2-89522-065-4, pages 18–29, jul 2005.

4. Martin Fowler. Refactoring. Improving the Design of Existing Code. Number 0-
201-48567-2. Addison-Wesley, 2000.

5. V.A. French. Establishing software metric thresholds. 9th International Workshop
on Software Measurement, 1999.

6. Mark Lorenz and Jeff Kidd. Object-oriented software metrics: a practical guide.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1994.

7. Mika Mäntylä. Bad Smells in Software - a Taxonomy and an Empirical Study.
PhD thesis, Helsinki University of Technology, 2003.

8. Mika Mäntylä, Jari Vanhanen, and Casper Lassenius. Bad smells - humans as code
critics. In 20th IEEE International Conference on Software Maintenance, 2004.

9. Radu Marinescu. Detecting design flaws via metrics in object-oriented systems. In
Proceedings of the TOOLS, USA 39, Santa Barbara, USA, 2001.

10. Radu Marinescu. Measurement and Quality in Object-Oriented Design. PhD thesis,
Faculty of Automatics and Computer Science, october, 2002.

11. Raul Marticorena. Analysis and definition of a language independent refac-
toring catalog. In 17th Conference on Advanced Information Systems Engi-
neering (CAiSE 05). Doctoral Consortium, Porto, Portugal., page 8, jun 2005.
http://gnomo.fe.up.pt/ caise/.

12. Tom Tourwé and Tom Mens. Identifying Refactoring Opportunities Using Logic
Meta Programming. In Proc. 7th European Conf. on Software Maintenance and
Reengineering, pages 91 – 100, Benvento, Italy, 2003. IEEE Computer Society.

118

