
Spatial Logic Model Checker User’s Guide

version 0.9

Hugo Vieira and Lúıs Caires

Departamento de Informática, FCT/UNL

March 2004

1

1 Introduction

Spatial logics support the specification not only of behavioral properties but
also of structural properties of concurrent systems, in a fairly integrated way.
Spatial properties arise naturally in the specification of distributed systems.
In fact, many interesting properties of distributed systems are inherently
spatial, for instance connectivity, stating that there is always an access route
between two different sites, unique handling, stating that there is at most
one server process listening on a given channel name, or resource availability,
stating that a bound exists on the number of channels that can be allocated
at a given location. Secrecy can also be sometimes understood in spatial
terms, since a secret is a piece of data whose knowledge of is restricted
to some parts of a system, and unforgeable by other parts. Spatial logics
have been used in the definition of several core languages, calculi, and data
models [1, 6, 9, 3, 5].

The Spatial Logic Model Checker is a tool allowing the user to automat-
ically verify behavioral and spatial properties of distributed and concurrent
systems expressed in a pi-calculus. The algorithm implemented (currently
using on-the-fly model-checking techniques) is provably correct for all pro-
cesses, and complete for the class of bounded processes [2], an abstract class
of processes that includes the finite control fragment of the pi-calculus. The
tool itself is written in ocaml, and runs on any platform supported by the
ocaml distribution.

For background on spatial logics for concurrency, see [6, 3, 4, 2] and
other references therein. Forthcoming releases of this manual will include a
short tutorial on the subject, some examples on how to use the tool, and a
presentation of the underlying algorithms.

In this report, we specify the syntax of the version of the pi-calculus cur-
rently supported in the tool, which is the synchronous polyadic pi-calculus,
and the syntax of the spatial logic considered, which currently is in essence
the logic described in [2], a spatial logic with behavioral and spatial opera-
tors and recursive formulas.

2 Syntax of Processes

Pi-calculus processes are specified according to the concrete syntax definition
in Figure 1.

Understanding our syntax for the standard polyadic pi-calculus operators
is straightforward. Note that restriction allows for the declaration of more
than one restricted name in a row.

We adopt a CSP-like notation for input/output, so that in our syntax an
output prefix xy1y2 . . . yn is written x!(y1,y2,. . .,yn), and an input prefix
x(y1, y2, . . . , yn) is written x?(y1,y2,. . .,yn). The select construct refers

2

lower ::= [’a’ – ’z’]
upper ::= [’A’ – ’Z’]
letter ::= lower | upper
digit ::= [’0’ – ’9’]
name ::= lower (letter | digit | ‘ ’)*
namelist ::= ε | name (’,’ name)*
action ::= name!(namelist)

| name?(namelist)
process ::= 0

| process | process
| new namelist in process
| action.process
| select {action.process (’;’ action.process)*}
| [name = name].process
| Id(namelist)
| (process)

Figure 1: Syntax of Processes.

to the sum operator, being all alternatives either input or output prefixed
processes. The test operator is present in it’s usual form [name = name].

Priority of process operators is defined as usual (restriction is more bind-
ing that composition), so that e.g the process

new secret in hand!<secret>.0 | erase?(x).0

is parsed as

(new secret in hand!<secret>.0) | erase?(x).0

rather than as

new secret in (hand!<secret>.0 | erase?(x).0)

The form Id(namelist) refers to a process defined using the defproc

command in the toplevel command interpreter of the model-checker. This
command, described below, allows the definition of sets of mutually recursive
parametric processes.

3 Syntax of Formulas

Formulas of the spatial logic are specified according to the concrete syntax
definition presented in Figure 2. Several of the connectives available are not
primitive from a logical viewpoint, but have been directly implemented for
the sake of efficiency.

3

The boolean connectives are negation not, conjunction and, disjunction
or, implication =>, and equivalence (bi-implication) <=>.

Spatial connectives are void void, composition (or separation) |, de-
composition || (de Morgan dual of composition), and revelation reveal

(usually written r [7]). We also include as a primitive connective the de
Morgan dual of revelation revealall, and the occurrence connective @.

Names can be tested for equality and inequality by the == and != oper-
ators.

We then have quantifiers over names; the universal quantifier forall,
the existential quantifier exists, the freshness quantifier fresh, and the
hidden name quantifier hidden.

Behavioral modalities are <label>, expressing possibility of action (cf.,
diamond modality of Hennessy-Milner logic), and its dual [label], expressing
necessity of action (cf., the box modality of Hennessy-Milner logic). The
argument label of the behavioral modalities specifies the (set of) actions
considered. We have:

• tau | ε, that denote the silent action (an internal reduction step);

• name, that denotes any action (input or output) on subject name;

• ?, that denotes any input action;

• !, that denotes any output action;

• name!, that denotes any output action on subject name;

• name?, that denotes any input action on subject name;

• name?(namelist), that denotes a particular input action;

• name!(namelist), that denotes a particular output action;

• *, that denotes any of the actions specified above.

It is also possible to define properties by recursion, as in the mu-calculus
and the spatial logics of [3, 2]: minfix denotes the least fixpoint operator,
and maxfix denotes the greatest fixpoint operator.

Other connectives that are considered as primitive are the k construct,
being k an integer constant, that denotes processes that have k components,
and inside that allows for the inspection of a formula under all restrictions,
meaning that all restrictions are revealed using fresh names.

Two other primitive formulas are the always and the eventually con-
structs that can be expressed as ’for every possible configuration’ and ’there
will be a configuration’, respectively, with regard to the system’s internal
evolution.

Last, but not least, formulas can be introduced by (non recursive) para-
metric definitions, by a mechanism described below (top level command
defprop). Then Id(namelist,formulalist) denotes a defined property.

4

formula ::= formula | formula
| formula || formula
| formula => formula
| formula <=> formula
| formula and formula
| formula or formula
| (formula)

| not formula
| void

| true

| false

| name == name
| name != name
| @ name
| exists name . formula
| forall name . formula
| reveal name . formula
| revealall name . formula
| hidden name . formula
| fresh name . formula
| <label>formula
| [label]formula
| minfix Id.formula
| maxfix Id.formula
| k
| inside formula
| always formula
| eventually formula
| Id(namelist,formulalist)

label ::= tau

| name
| ?

| !

| name?
| name!
| name?(namelist)
| name!(namelist)
| *

Figure 2: Syntax of Formulas.

5

4 Running the Tool

After installation, the tool can be executed by issuing the command

% sl-mc_<version>

in the operating system shell prompt. Currently, only a minimal command
line interface is available.

5 Top level commands

In this section, we list the various commands that can be issued at the top
level command prompt of the model checking tool.

Process definition

defproc Id(namelist) = process [and Id(namelist) = process]* ;

Process identifiers always start with an upper case letter. An important
remark is that the and construct enables mutually recursive definitions.

Example

> defproc

EchoServer(chan) =

chan?(data,reply).(reply!(data).0 | EchoServer(chan))

and

Client(chan) =

new callback in

(chan!(data,callback) | callback?(x).Client(chan))

and

System() =

new private in (Client(private) | EchoServer(private));

Property definition

defprop Id(idlist) = formula;

Formula identifiers start with a lower case letter. Note that parameters
of property identifiers can be either name or formula parameters, but nec-
essarily in that order and distinguished by lower and upper case letters,
respectively. When given a namelist and a formulalist, in accordance to the
specification, the formula is obtained through textual substitution of the
parameters by the given arguments.

6

Example

> defprop sImp(A,B)= not (A | not B);

Checking

check Id(namelist) |= formula;

To make the check command the most user friendly possible two special
constructs can be used in the formulas, show succeed and show fail, being
their effect simply the listing of the process that holds or does not hold the
formula defined within these special constructs.

Example

> check System() |= hidden x.sImp(<x!>true,[x!]false);

* yes *

Trace

trace [on | off] ;

Switches the trace level on or off. When trace is on and a check command
is executed a listing of the process representation is printed to standard
output.

Parameter

parameter [ParamId [new value]];

Shows and defines the values for the model checker parameters. Currently
there are three parameters: max threads that bounds the size of processes
being evaluated, defined through an integer; show time that defines a mode
where the time elapsed in the check procedure is shown, defined through
on and off, that are also used to define parameter check counter, again a
mode definition, this one for printing the number of state visits.

Load

load "filename";

Executes the declarations and commands in the file whose pathname is ob-
tained by the current path name by appending filename.

7

Change Path

cd "pathname";

Changes the current pathname to pathname.

Show Path

pd;

Shows the current pathname.

Clear

clear;

Clears the current session, erasing all process and formula definitions.

List

list [procs | props];

Lists the defined processes (procs) or properties (props).

Show

show Id;

Shows the process or formula assigned to the identifier Id.

Help

help;

Lists available commands.

Quit

quit;

Terminates the session.

6 Examples

In this section we illustrate loadable specifications.

8

Gossiping System

/* SYSTEM */

defproc Gossiper(info) = gossip!(info).Gossiper(info);

defproc Listener = gossip?(info).Gossiper(info);

defproc System =

new secret in

(

Gossiper(secret)

| Listener

| Listener

| Listener

);

/* PROPERTIES */

defprop everywhere(A) = (false || (1 => A));

defprop everybody_knows(secret) = everywhere(@secret);

defprop everybody_gets_to_know =

hidden secret.eventually everybody_knows(secret);

check System |= everybody_gets_to_know;

/* ---------- */

defprop gossiper_forever = maxfix X.(<gossip!> true and [*]X);

defprop all_gossipers =

eventually inside everywhere(gossiper_forever);

check System |= all_gossipers;

Handover protocol (from Milner’s book [10])

/* SYSTEM */

defproc Mobile(talk,switch)=

select {

talk?().Mobile(talk, switch);

9

switch?(talkn, switchn).Mobile(talkn,switchn)

};

defproc BaseStation(talk, switch, give, alert) =

select {

talk!().BaseStation(talk, switch, give, alert);

give?(talkn, switchn).switch!(talkn, switchn).

BaseStationIdle(talk,switch, give, alert)

}

and

BaseStationIdle(talk, switch, give, alert) =

alert?().BaseStation(talk, switch, give, alert);

defproc Central1(talk1, talk2,

switch1, switch2,

give1, give2,

alert1, alert2) =

give1!(talk2, switch2).alert2!().

Central2(talk1, talk2,

switch1, switch2,

give1, give2,

alert1, alert2)

and

Central2(talk1, talk2,

switch1, switch2,

give1, give2,

alert1, alert2) =

give2!(talk1, switch1).alert1!().

Central1(talk1, talk2,

switch1, switch2,

give1, give2,

alert1, alert2);

/* --- */

defproc System = (new talk1, talk2,

switch1, switch2,

give1, give2,

alert1, alert2

in (

Mobile(talk1, switch1) |

BaseStation(talk1,switch1,give1,alert1) |

BaseStationIdle(talk2,switch2,give2,alert2) |

Central1(talk1, talk2,

10

switch1, switch2,

give1, give2,

alert1, alert2)

));

/* PROPERTIES */

defprop deadLockFree = maxfix X. (<>true and []X);

check System |= deadLockFree;

/* ---------- */

defprop write(x) = (1 and <x!>true);

defprop read(x) = (1 and <x?>true);

defprop hasRace =

inside (exists x.(write(x) | write(x) | read(x) | true));

defprop raceFree = maxfix X.((not hasRace) and []X);

check System |= raceFree;

Arrow Distributed directory protocol [8]

/* SYSTEM */

defproc

TerminalOwner(find,move,obj) =

find?(mymove,myfind).Owner(find,move,myfind,mymove,obj)

and

Owner(find,move,link,queue,obj) =

new iask in (iask!() |

select {

find?(mymove,myfind).iask?().

(Owner(find,move,myfind,queue,obj)

| link!(mymove,find));

iask?().(Idle(find,move,link) | queue!(obj))

})

and

Idle(find,move,link) =

new iask in (iask!() |

select {

11

find?(mymove,myfind).iask?().(Idle(find,move,myfind)

| link!(mymove,find));

iask?().(TerminalWaiter(find,move) | link!(move,find))

})

and

TerminalWaiter(find,move) =

select {

find?(mymove,myfind).Waiter(find,move,myfind,mymove);

move?(obj).TerminalOwner(find,move,obj)

}

and

Waiter(find,move,link,queue) =

select {

find?(mymove,myfind).(Waiter(find,move,myfind,queue)

| link!(mymove,find));

move?(obj).Owner(find,move,link,queue,obj)

}

;

/* --- */

defproc Dir =

new find1,move1,find2,move2,find3,move3,obj in

(obj!() |

TerminalOwner(find1,move1,obj) |

Idle(find2,move2,find1) |

Idle(find3,move3,find2));

/* PROPERTIES */

defprop deadlockfree = always(<>true);

check Dir |= deadlockfree;

/* ---------- */

defprop object(s) = <s!>0;

defprop node(f) = 1 and (<> fresh a. fresh b. <f?(a,b)>true);

defprop owns(i,obj) = (node(i) and @obj);

defprop exclusive(i,obj) = (owns(i,obj) | not @obj);

12

defprop live = hidden obj.

inside (object(obj) | forall i. ((node(i) | true) =>

eventually exclusive(i,obj)));

check Dir |= always(live);

Acknowledgements Work on the Spatial Logic Model Checker is funded
by the EU project FET IST-2001-33100 Profundis.

References

[1] L. Caires. A Model for Declarative Programming and Specification with
Concurrency and Mobility. PhD thesis, Dept. de Informática, FCT,
Universidade Nova de Lisboa, 1999.

[2] L. Caires. Behavioral and spatial properties in a logic for the pi-calculus.
In Igor Walukiwicz, editor, Proc. of Foundations of Software Science
and Computation Structures’2004, Lecture Notes in Computer Science.
Springer Verlag, 2004.

[3] L. Caires and L. Cardelli. A Spatial Logic for Concurrency (Part I).
Information and Computation, 186(2):194–235, 2003.

[4] L. Caires and L. Cardelli. A Spatial Logic for Concurrency (Part II).
Theoretical Computer Science, to appear.

[5] L. Cardelli, P. Gardner, and G. Ghelli. Manipulating Trees with Hid-
den Labels. In A. D. Gordon, editor, Proceedings of the First Inter-
national Conference on Foundations of Software Science and Compu-
tation Structures (FoSSaCS ’03), Lecture Notes in Computer Science.
Springer-Verlag, 2003.

[6] L. Cardelli and A. D. Gordon. Anytime, Anywhere. Modal Logics for
Mobile Ambients. In 27th ACM Symp. on Principles of Programming
Languages, pages 365–377. ACM, 2000.

[7] L. Cardelli and A. D. Gordon. Logical Properties of Name Restric-
tion. In S. Abramsky, editor, Typed Lambda Calculi and Applications,
number 2044 in Lecture Notes in Computer Science. Springer-Verlag,
2001.

[8] M. J. Demmer and M. P. Herlihy. The Arrow Distributed Directory
Protocol. In Proceedings of the 12th International Symposium on Dis-
tributed Computing (DISC’98), volume 1499 of LNCS, 1998.

13

[9] S. Ishtiaq and P. O’Hearn. BI as an Assertion Language for Mutable
Data Structures. In 28th ACM Symp. on Principles of Programming
Languages, 2001.

[10] R. Milner. Communicating and Mobile Systems: the π-calculus. Cam-
bridge University Press, 1999.

14

