
Spatial Logic Model Checker User’s Guide

version 1.15

Hugo Vieira and Lúıs Caires

Departamento de Informática, FCT/UNL

June 2009

1

1 Introduction

Spatial logics support the specification not only of behavioral properties but also of struc-
tural properties of concurrent systems, in a fairly integrated way. Spatial properties arise
naturally in the specification of distributed systems. In fact, many interesting properties
of distributed systems are inherently spatial, for instance connectivity, stating that there
is always an access route between two different sites, unique handling, stating that there
is at most one server process listening on a given channel name, or resource availability,
stating that a bound exists on the number of channels that can be allocated at a given
location. Secrecy can also be sometimes understood in spatial terms, since a secret is a
piece of data whose knowledge of is restricted to some parts of a system, and unforgeable
by other parts. Spatial logics have been used in the definition of several core languages,
calculi, and data models [1, 7, 14, 4, 6].

The Spatial Logic Model Checker is a tool allowing the user to automatically verify
behavioral and spatial properties of distributed and concurrent systems expressed in a
pi-calculus. The algorithm implemented (currently using on-the-fly model-checking tech-
niques) is provably correct for all processes, and complete for the class of bounded pro-
cesses [2], an abstract class of processes that includes the finite control fragment of the
pi-calculus. The tool itself is written in ocaml, and runs on any platform supported by
the ocaml distribution.

For background on spatial logics for concurrency, see [7, 4, 5, 2] and other references
therein. Forthcoming releases of this manual will include a short tutorial on the subject,
some examples on how to use the tool, and a presentation of the underlying algorithms.

In this report, we specify the syntax of the version of the pi-calculus currently supported
in the tool, which is the synchronous polyadic pi-calculus, and the syntax of the spatial
logic considered, which currently is in essence the logic described in [2], a spatial logic
with behavioral and spatial operators and recursive formulas.

2 A Glimpse at Spatial Logics for Concurrency

In behavioral models of concurrency, a process is identified with its observable behavior,
roughly, the sequence of actions it can perform in the course of time. Modalities of a
purely behavioral logic support the specification of processes by allowing us to talk about
their actions; logics of this kind [17, 10, 11] are extensions of those introduced by Mathew
Hennessy and Robin Milner [15]. Besides the usual set of propositional connectives, HML
offers action modalities allowing us to observe potentiality of interaction, essentially these
are action-labeled modalities, where the labels are extracted from the canonical labeled
transition system for the pi-calculus. We have thus the dual formulas 〈α〉A and [α]A,
whose satisfaction with relation to a process P is defined by

P |= 〈α〉A if there is a process P ′ such that P
α→ P ′ and P ′ |= A

P |= [α]A if for all processes P ′ if P
α→ P ′ then P ′ |= A

A crucial property of HML is that the logical equivalence it induces on processes coin-
cides with bisimulation. Bisimulation is the standard notion of behavioral equivalence for

2

concurrent processes; depending on the particular modalities adopted by a given version
of HML, one can capture various flavours of bisimulation [17]). Algorithms and tools for
model-checking pi-calculus processes against several variants of HML have been already
developed, for example, the Mobility Workbench, building on work by Bjorn Victor and
Mads Dam.

Spatial logics offer an enhanced power of observation, when compared with purely
behavioral logics, because they can distinguish between systems that differ on their dis-
tributed structure, although possibly not on their behavior.

Typically, a spatial logic adds to a given set of behavioral modalities a set of spatial
operators, closely related to the static operators of the process calculus, as in [1]. For
nominal process calculi, the static operators are the composition P | Q, its identity el-
ement 0 (denoting the empty system), and the name restriction (νn)P . These process
constructors give rise to the composition formula A | B, that holds of a process that can
be separated into a process that satisfies formula A and a process that satisfies formula B,
to the void formula 0, that holds of the void process, and to the hidden name quantifier
Hx.A. Satisfaction for these connectives is defined thus:

P |= 0 if P ≡ 0
P |= A | B if there are P ′ and P ′′ such that

P ≡ P ′ | P ′′ and P ′ |= A and P ′′ |= B
P |= Hx.A if there is P ′ and a fresh name n such that

P ≡ (νn)P ′ and P ′ |= A{x←n}

The hidden name quantifier turns out to be definable by combining the revelation
connective nrA [8] and the freshness quantifier Ix.A. Revelation allows us to quantify
over restricted channel names, understood as local resources.

P |= Ix.A if there is a fresh name n such that P |= A{x←n}
P |= nrA if there is P ′ such that P ≡ (νn)P ′ and P ′ |= A

Alternatively, a spatial logic can put a stronger emphasis on structure, and allow the
observation of the behavior of processes in a more indirect way, using spatial adjuncts,
and a minimal “next step” (corresponding to the 〈τ 〉A formula) or a “eventually” behav-
ioral modality. The first proposal in this vein is the ambient logic of [7], also adopted
in the π-calculus logic of [4, 3]. An advantage of this approach is its generality, more-
over, it is easily adaptable to any process calculus whose operational semantics can be
presented by a simple unlabeled reduction relation. Adjuncts are very expressive. For in-
stance, composition adjunct A.B supports an internal definition of validity, and makes it
possible to express quite general context/system specifications. However, model-checking
of logics with composition adjunct, and including either quantification over names [9] or
revelation [13] turns out to be undecidable, even for the simplest process languages.

The logic supported by the Spatial Logic Model Checker is a π-calculus logic based
on purely structural spatial and behavioral observations. By “purely structural” we mean
observations that can be determined by inspection of the local structure of the processes;
therefore the logic does not include adjuncts operators. As a consequence, we obtain
decidability of model-checking on interesting and pragmatically useful classes of processes,

3

while preserving the ability to express context-dependent behavioral and spatial properties
of distributed systems.

For the spatial fragment we consider the connectives of composition, void, and reve-
lation. For the behavioral fragment we consider a few simple modalities. A behavioral
modality is defined either from the label τ , that denotes an internal communication, or
from one of the labels n〈m〉 and n(m), denoting respectively the action of sending name
m on channel n, and the action of receiving name m on channel n. To this basic set of
connectives, we then add propositional operators, first-order and freshness quantifiers, and
recursive definitions, along the lines of [4].

To illustrate in an informal way the expressiveness of the logic, we run through a
sequence of examples. First, we show that by combining the fresh and hidden name
quantifiers with the behavioral operators we can define modalities for name extrusion and
intrusion (cf.,[17]).

n〈νx〉.A , Hx.n〈x〉.A (Bound Output)
n(νx).A , Ix.n(x).A (Bound Input)

The definition of bound output uses the hidden name quantifier [1, 4]. The hidden name
quantifier is derived ([8]) from the fresh name quantifier and the revelation operator:
Hx.A , Ix.xrA. Using these two operators we can define the formula Comm below:

Comm , m〈νx〉.A | m(νx)B ⇒ τ .Hx.(A | B)
Pair , ((νn)m〈n〉.n〈m〉.0) | m(q).q〈q〉.0

The formula Comm talks about name extrusion: it says that after interacting, two sep-
arate parts of the system can become “connected” by a shared secret. For example,
the process Pair defined above satisfies the formula Comm. It also satisfies the formula
(¬0 | ¬0) ∧ τ .¬(¬0 | ¬0): this formula says that the process has two separate threads
initially, that become tied by a private shared channel after a reduction step. This illus-
trates the fact that the logic has the power to count resources (e.g., threads, restricted
names). Combining spatial operators and recursive formulas we can define other useful
operators, e.g., H∗A , µX.(A ∨ Hx.X). The formula H∗A means that A holds under a
(finite) number of restricted names [4]. For example, the formula

¬H∗∃y.(∃x.y(x).T | ∃x.y(x).T)

expresses a unique handling property [16]: it says that there are no separate processes
listening on the same (public or private) channel name. Using recursive formulas and
behavioral modalities, we can also define a formula �A stating that A will hold in all
future states of the system, even when it interacts with an arbitrary environment (e.g., an
attacker). Then, the formula

�¬∃y.Hx.((P (x) | T) ∧ y〈x〉.T)

expresses a secrecy property: it asserts that it will never be the case that the system
reaches a state where the identity x of a secret resource that satisfies P (x) is about to be
sent to the environment.

4

lower ::= [’a’ – ’z’]
upper ::= [’A’ – ’Z’]
letter ::= lower | upper
digit ::= [’0’ – ’9’]
name ::= lower (letter | digit | ‘ ’)*
namelist ::= ε | name (’,’ name)*
prefix ::= name!(namelist)

| name?(namelist)
| [name = name]
| [name != name]
| τ

process ::= 0
| process | process
| new namelist in process
| prefix.process
| select {prefix.process (’;’ prefix.process)*}
| CapsId(namelist)
| (process)

Figure 1: Syntax of Processes.

3 Syntax of Processes

Pi-calculus processes are specified according to the concrete syntax definition in Figure 1.
Understanding our syntax for the standard polyadic pi-calculus operators is straight-

forward. Note that restriction allows for the declaration of more than one restricted name
in a row.

We adopt a CSP-like notation for input/output, so that in our syntax an output prefix
xy1y2 . . . yn is written x!(y1,y2,. . .,yn), and an input prefix x(y1, y2, . . . , yn) is written
x?(y1,y2,. . .,yn). The test operator allows to test name equality [name = name] and
name inequality [name != name]. We also consider the τ prefix that, as usual, stands
for an internal invisible computation step. To note that in the select construct, which
refers to the sum operator, all alternative branches are prefixed processes.

Priority of process operators is defined as usual (restriction is more binding that com-
position), so that e.g the process

new secret in hand!<secret>.0 | erase?(x).0

is parsed as

(new secret in hand!<secret>.0) | erase?(x).0

rather than as

new secret in (hand!<secret>.0 | erase?(x).0)

The form CapsId(namelist) refers to a process defined using the defproc command in
the toplevel command interpreter of the model-checker. This command, described below,
allows the definition of sets of mutually recursive parametric processes.

5

4 Syntax of Formulas

Formulas of the spatial logic are specified according to the concrete syntax definition
presented in Figure 2. Several of the connectives available are not primitive from a logical
viewpoint, but have been directly implemented for the sake of efficiency.

The boolean connectives are negation not, conjunction and, disjunction or, implication
=>, and equivalence (bi-implication) <=>.

Spatial connectives are void void, composition (or separation) |, decomposition ||
(de Morgan dual of composition), and revelation reveal (usually written r [8]). We also
include as a primitive connective the de Morgan dual of revelation revealall, and the
occurrence connective @.

Names can be tested for equality and inequality by the == and != operators.
We then have quantifiers over names; the universal quantifier forall, the existential

quantifier exists, the freshness quantifier fresh, and the hidden name quantifier hidden.
Behavioral modalities are <label>, expressing possibility of action (cf., diamond modal-

ity of Hennessy-Milner logic), and its dual [label], expressing necessity of action (cf., the
box modality of Hennessy-Milner logic). The argument label of the behavioral modalities
specifies the (set of) actions considered. We have:

• tau | ε, that denote the silent action (an internal reduction step);

• name, that denotes any action (input or output) on subject name;

• ?, that denotes any input action;

• !, that denotes any output action;

• name!, that denotes any output action on subject name;

• name?, that denotes any input action on subject name;

• name?(namelist), that denotes a particular input action;

• name!(namelist), that denotes a particular output action;

• *, that denotes any of the actions specified above.

It is also possible to define properties by recursion, as in the mu-calculus and the
spatial logics of [4, 2]: minfix denotes the least fixpoint operator, and maxfix denotes the
greatest fixpoint operator. We also consider parametric recursive properties.

Other built-in connectives are the k construct, being k an integer constant, that denotes
processes that have k components, and inside that allows for the inspection of a formula
under all restrictions, meaning that all restrictions are revealed using fresh names.

Two other primitive formulas are the always and the eventually constructs that
can be expressed as ’for every possible configuration’ and ’there will be a configuration’,
respectively, with regard to the system’s internal evolution.

Last, but not least, formulas can be introduced by (non recursive) parametric defini-
tions, by a mechanism described below (top level command defprop). Then Id(namelist,formulalist)
denotes a defined property.

6

formula ::= formula | formula
| formula || formula
| formula => formula
| formula <=> formula
| formula and formula
| formula or formula
| (formula)
| not formula
| void
| true
| false
| name == name
| name != name
| @ name
| exists name . formula
| forall name . formula
| reveal name . formula
| revealall name . formula
| hidden name . formula
| fresh name . formula
| <label>formula
| [label]formula
| minfix CapsId.formula
| (minfix CapsId (namelist).formula)(namelist)
| maxfix CapsId.formula
| (maxfix CapsId (namelist).formula)(namelist)
| CapsId
| CapsId(namelist)
| k
| inside formula
| always formula
| eventually formula
| Id(namelist,formulalist)

label ::= tau
| name
| ?
| !
| name?
| name!
| name?(namelist)
| name!(namelist)
| *

Figure 2: Syntax of Formulas.

7

5 Running the Tool

After installation, the tool can be executed by issuing the command

% sl-mc_<version>

in the operating system shell prompt. Currently, only a minimal command line interface
is available.

6 Top level commands

In this section, we list the various commands that can be issued at the top level command
prompt of the model checking tool.

Process definition

defproc CapsId(namelist) = process [and CapsId(namelist) = process]* ;

Process identifiers always start with an upper case letter. An important remark is that
the and construct enables mutually recursive definitions.

Example

> defproc
EchoServer(chan) =

chan?(data,reply).(reply!(data).0 | EchoServer(chan))
and

Client(chan) =
new callback in

(chan!(data,callback) | callback?(x).Client(chan))
and

System() =
new private in (Client(private) | EchoServer(private));

Property definition

defprop Id(idlist) = formula;

Formula identifiers start with a lower case letter. Note that parameters of property iden-
tifiers can be either name or formula parameters, but necessarily in that order and dis-
tinguished by lower and upper case letters, respectively. When given a namelist and a
formulalist, in accordance to the specification, the formula is obtained through textual
substitution of the parameters by the given arguments.

Example

> defprop sImp(A,B)= not (A | not B);

8

Checking

check CapsId(namelist) |= formula;

To make the check command the most user friendly possible two special constructs can be
used in the formulas, show succeed and show fail, being their effect simply the listing of
the process that holds or does not hold the formula defined within these special constructs.

Example

> check System() |= hidden x.sImp(<x!>true,[x!]false);
* yes *

Trace

trace [on | off] ;

Switches the trace level on or off. When trace is on and a check command is executed a
listing of the process representation is printed to standard output.

Parameter

parameter [ParamId [new value]];

Shows and defines the values for the model checker parameters. Currently there are
three parameters: max threads that bounds the size of processes being evaluated, defined
through an integer; show time that defines a mode where the time elapsed in the check
procedure is shown, defined through on and off, that are also used to define parameter
check counter, again a mode definition, this one for printing the number of state visits.

Load

load "filename";

Executes the declarations and commands in the file whose pathname is obtained by the
current path name by appending filename.

Change Path

cd "pathname";

Changes the current pathname to pathname.

Show Path

pd;

Shows the current pathname.

9

Clear

clear;

Clears the current session, erasing all process and formula definitions.

List

list [procs | props];

Lists the defined processes (procs) or properties (props).

Show

show Id;

Shows the process or formula assigned to the identifier Id.

Help

help;

Lists available commands.

Quit

quit;
Terminates the session.

7 Examples

In this section we illustrate loadable specifications.

Gossiping System

/* GOSSIPING SYSTEM */

defproc
Gossiper(info) = gossip!(info).Gossiper(info);

defproc
Listener = gossip?(info).Gossiper(info);

defproc
System =

new secret in
(

Gossiper(secret)

10

| Listener
| Listener
| Listener

);

/* PROPERTIES */

check System |= 4 and (<> 3) and (<><> 2) and (<><><>1);

/***/

defprop everywhere(A) = (false || (1 => A));

defprop everybody_knows(secret) = everywhere(@secret);

defprop everybody_gets_to_know =
hidden secret.eventually everybody_knows(secret);

check System |= everybody_gets_to_know;

/* ---------- */

defprop gossiper_forever = maxfix X.(< gossip! > true and [*]X);

defprop all_gossipers = eventually
inside everywhere(gossiper_forever);

check System |= all_gossipers;

This toy example considers a system that illustrates how name passing can influence
the evolution of the structure of a system, and shows how one can specify simple properties
using the spatial logic to observe this structural evolution.

We start off by defining the simpler kinds of behavior in our system. Firstly a Gossiper
process that is always able to spread some information around, by means of taking this
information as a name parameter and trying to emit it on public channel gossip, after
which continuing with the dissemination intent considering the same piece of information.

defproc
Gossiper(info) = gossip!(info).Gossiper(info);

Then we define the Listener process that is eager to learn some information, using a
reception on channel gossip to that end, after which wanting to spread this received name
around and hence becoming a gossiper.

defproc
Listener = gossip?(info).Gossiper(info);

11

Finally we define the System which is made of three Listeners and one Gossiper,
considering a restricted name to be the piece of information to be disseminated by the
Gossiper which initially is the only process to know this secret.

defproc
System =

new secret in
(

Gossiper(secret)
| Listener
| Listener
| Listener

);

This system will clearly evolve at each step by a synchronization between a Listener
and a Gossiper being this secret disclosured to one more Listener at a time. Since the
secret is a restricted name each time that happens the Listener joins in the circle of trust
of the secret, and the spatial bound created by the sharing of a restricted name makes the
processes indivisible. Hence if at the starting point there where 4 distinct processes after
one internal synchronization there are only 3, then 2 after two steps and finally 1 after
three steps when all processes share the secret. We check to see if our system specification
satisfies this description.

check System |= 4 and (<> 3) and (<><> 2) and (<><><>1);

We then specify concretely this name sharing property, starting by defining a formula
that states that the argument property is true in every single point of the system.

defprop everywhere(A) = (false || (1 => A));

We reuse this last property to define another that states that a given name is present
everywhere.

defprop everybody_knows(secret) = everywhere(@secret);

After that we define a property that says that there is a restricted name which will be
at some point in time known everywhere in the system. The hidden quantification reveals
the restricted name, i.e. opens up the spatial bound induced by it, therefore allowing the
observation of the inner distinct components that were bound together.

defprop everybody_gets_to_know =
hidden secret.eventually everybody_knows(secret);

Finally we check our system specification to see if it satisfies this specification.

check System |= everybody_gets_to_know;

12

Going one step further we now intend to specify that our system will be, at some point
in time, made exclusively out of Gossipers. We start by defining what is a gossiper and
that amounts to say that it is a process that is always able to emit on channel gossip.

defprop gossiper_forever = maxfix X.(< gossip! > true and [*]X);

Then we specify systems that internally, i.e. underneath all restricted names, are made
exclusively out of Gossipers.

defprop all_gossipers = eventually
inside everywhere(gossiper_forever);

Finally we check to see if our system satisfies this specification.

check System |= all_gossipers;

Token Ring System

/* TOKEN RING SYSTEM */

defproc Exit(inCh,outCh) =
select {[outCh=inCh].0; outCh!(inCh).0};

defproc IdleNode(inCh,outCh) =
inCh?(newInCh).TokenOwner(newInCh,outCh)

and TokenOwner(inCh,outCh) =
select {

tau.Exit(inCh,outCh);
outCh!(outCh).IdleNode(inCh,outCh)};

defproc System =
(new l1,l2,l3,l4,l5 in

(IdleNode(l1,l2) |
IdleNode(l2,l3) |
IdleNode(l3,l4) |
IdleNode(l4,l5) |
TokenOwner(l5,l1)));

/* PROPERTIES */

check System |= always eventually 0;

/***/

defprop exiting(inl,outl) =
1 and (((inl != outl) or <>0) and < outl!(inl) > 0);

13

defprop node(inl,outl) =
1 and
(exiting(inl,outl) or
(maxfix X(inLnk).

((< inLnk?(newInLnk) > X(newInLnk))
or ((<> exiting(inLnk,outl))

and (< outl!(outl) > X(inLnk)))))
(inl));

defprop ring =
0 or
(hidden lnk.
(minfix Y(x).

(node(x,lnk) or
(hidden y. (node(x,y) | Y(y)))))

(lnk));

check System |= always ring;

This simple example shows a system holding a set of nodes that communicate in a token
ring fashion, hence they are connected circularly and they are either idle and waiting for
the token or active while holding the token. Being active in this case just means that they
are able to exit the system or pass along the token.

The structure of the system is determined by the names that are shared between the
nodes, being these processes responsible for updating the links when they intend to leave
the system. Each node receives information in one channel - the input channel - and emits
in another - the output channel. Getting the token is represented by the reception while
emitting stands for passing the token to the next node.

We start off by defining the exit procedure for the nodes. There are two possible
alternate behaviors: if the output channel is the same as the input channel that means
that this is the only node in the ring and therefore there is nothing left to be done; the
other possibility occurs when there is a node waiting for the token, so there is a possible
communication. The emitted information consists of the entry link of the node that is
exiting so that the next node can update it’s entry point, something like a short circuit in
the links that existed for the exiting node.

defproc Exit(inCh,outCh) =
select {[outCh=inCh].0; outCh!(inCh).0};

We now define the behavior of the nodes starting by the IdleNode that consists in a
process waiting on a reception on it’s input channel, being the received name considered as
the new input channel. After the reception the process symbolically holds the token and
hence becomes a TokenOwner. This process can either make an internal silent action and
then exit the system or just pass the token along, maintaining the linkage information,
after which losing the token and becoming an IdleNode.

14

defproc IdleNode(inCh,outCh) =
inCh?(newInCh).TokenOwner(newInCh,outCh)

and TokenOwner(inCh,outCh) =
select {

tau.Exit(inCh,outCh);
outCh!(outCh).IdleNode(inCh,outCh)};

Finally we define the system consisting in a set of five nodes, four idle and obviously
one holding the token, linked in a circular fashion by restricted names known only to the
nodes that hold them as links.

defproc System =
(new l1,l2,l3,l4,l5 in

(IdleNode(l1,l2) |
IdleNode(l2,l3) |
IdleNode(l3,l4) |
IdleNode(l4,l5) |
TokenOwner(l5,l1)));

On the verification side, we start off by checking to see if our system, for every config-
uration, will at some point become the empty system, something along the lines of is it
always possible for the system to terminate.

check System |= always eventually 0;

We now intend to verify that the set of nodes in our system are always connected
circularly. We start off by characterizing the behavior of a node that is exiting, something
that can be precisely expressed by the fact that it is a single point in space, and it holds
either two different names or it can perform an internal action and become the empty
system, and it is willing to emit it’s input link on it’s output link and become the empty
system.

defprop exiting(inl,outl) =
1 and (((inl != outl) or <>0) and < outl!(inl) > 0);

We now characterize a node by saying that it is a single point in space and it is either an
exiting process or it has the possible infinite behavior of receiving a name and continuing
considering this new name as the new input channel, which captures the behavior of the
idle node, or of being able to perform an internal action after which exiting and an output
in the output link carrying the output channel name and continuing with the same input
link, which describes the active node.

defprop node(inl,outl) =
1 and
(exiting(inl,outl) or
(maxfix X(inLnk).

15

((< inLnk?(newInLnk) > X(newInLnk))
or ((<> exiting(inLnk,outl))

and (< outl!(outl) > X(inLnk)))))
(inl));

Finally we define the circularity property by stating that it is either the empty system
or it consists of only one node that has it’s output connected to it’s input, or there spatially
co-exist a node and a chain of nodes with one ore more elements, being the node connected
to the chain which in turn leads back to the initial node.

defprop ring =
0 or
(hidden lnk.
(minfix Y(x).

(node(x,lnk) or
(hidden y. (node(x,y) | Y(y)))))

(lnk));

We then check to see if the system holds this property in all possible configurations.

check System |= always ring;

Handover protocol (from Milner’s book [16])

/* HANDOVER PROTOCOL */

defproc
Mobile(talk,switch)=

select {
talk?().Mobile(talk, switch);
switch?(talkn, switchn).Mobile(talkn,switchn)

};

defproc
BaseStation(talk, switch, give, alert) =

select {
talk!().BaseStation(talk, switch, give, alert);
give?(talkn, switchn).switch!(talkn,switchn).

BaseStationIdle(talk,switch, give, alert)
}

and
BaseStationIdle(talk, switch, give, alert) =

alert?().BaseStation(talk, switch, give, alert);

defproc
Central(talk, talkNxt,

16

switch, switchNxt,
give, giveNxt,
alert, alertNxt) =

give!(talkNxt, switchNxt).alertNxt!().Central(talkNxt, talk,
switchNxt, switch,
giveNxt, give,
alertNxt, alert);

/* --- */

defproc
System = (new talk1, talk2,

switch1, switch2,
give1, give2,
alert1, alert2

in (
Mobile(talk1, switch1) |
BaseStation(talk1,switch1,give1,alert1) |
BaseStationIdle(talk2,switch2,give2,alert2) |
Central(talk1, talk2,

switch1, switch2,
give1, give2,
alert1, alert2)

));

/* PROPERTIES */

defprop deadLockFree = maxfix X. (<>true and []X);

check System |= deadLockFree;

/* ---------- */

defprop write(x) = (1 and < x! >true);

defprop read(x) = (1 and < x? >true);

defprop hasRace =
inside (exists x.(write(x) | write(x) | read(x) | true));

defprop raceFree = maxfix X.((not hasRace) and []X);

check System |= raceFree;

This example simulates the interaction going on between cell phones, the stations that
directly communicate to the cell phones and the centrals that regulate which station is

17

to be used for the communications. The general idea is to represent cell phone mobility,
considering the shifting connectivity to the stations.

Starting by the definition of the behavior of a cell phone, it consists in either talking
and continuing with the initial communication links or switching to new communication
links, which represents a change of the station used for communication.

defproc
Mobile(talk,switch)=

select {
talk?().Mobile(talk, switch);
switch?(talkn, switchn).Mobile(talkn,switchn)

};

Now it is possible to define the station’s behavior simply by saying that it can either
communicate to the cell phone or pass away the connectivity to another base station, by
means of a communication with the central, and become idle after which waiting for the
next cell phone assignment coming from the central.

defproc
BaseStation(talk, switch, give, alert) =

select {
talk!().BaseStation(talk, switch, give, alert);
give?(talkn, switchn).switch!(talkn,switchn).

BaseStationIdle(talk,switch, give, alert)
}

and
BaseStationIdle(talk, switch, give, alert) =

alert?().BaseStation(talk, switch, give, alert);

Finally we have the central whose job is simply to inform a base station that it has
to give the connectivity to other station after which alerting this newly appointed station
that it has to operate this connection, alternating the roles of the stations in the next step.

defproc
Central(talk, talkNxt,

switch, switchNxt,
give, giveNxt,
alert, alertNxt) =

give!(talkNxt, switchNxt).
alertNxt!().Central(talkNxt, talk,

switchNxt, switch,
giveNxt, give,
alertNxt, alert);

To finish off the process definitions a very simple system is defined having just one cell
phone, the two alternating base stations and a central.

18

defproc
System = (new talk1, talk2,

switch1, switch2,
give1, give2,
alert1, alert2
in (

Mobile(talk1, switch1) |
BaseStation(talk1,switch1,give1,alert1) |
BaseStationIdle(talk2,switch2,give2,alert2) |
Central(talk1, talk2,

switch1, switch2,
give1, give2,
alert1, alert2)

));

We now define a standard behavioral property that expresses that the system is never
deadlocked, i.e., has a possible reduction in every possible configuration.

defprop deadLockFree = maxfix X. (<>true and []X);

And we check to see if the system satisfies this property.

check System |= deadLockFree;

We now intend to verify that our system is race free, or in other words, does not have
two processes trying to write on a channel while another one is trying to read on it. We
start by saying that a writer is a single point in space and is willing to do an output in a
determined channel. Analogously for the reader considering a read instead of a write.

defprop write(x) = (1 and < x! >true);

defprop read(x) = (1 and < x? >true);

We now state that the existence of a race can be specified by looking underneath all
restrictions and finding a channel name such that the system can be divided in three our
more parts, being two of these parts writers on that channel and a third part a reader
that uses that channel.

defprop hasRace =
inside (exists x.(write(x) | write(x) | read(x) | true));

Finally we state that race freeness is not having a race in any possible configuration.

defprop raceFree = maxfix X.((not hasRace) and []X);

We check to see if our system satisfies this property.

check System |= raceFree;

19

Arrow Distributed directory protocol [12]

/* THE ARROW DISTRIBUTED DIRECTORY PROTOCOL */

defproc
TerminalOwner(find,move,obj) =

find?(mymove,myfind).Owner(find,move,myfind,mymove,obj)
and

Owner(find,move,link,queue,obj) =
select {

find?(mymove,myfind).(Owner(find,move,myfind,queue,obj) |
link!(mymove,find));

tau.(Idle(find,move,link) | queue!(obj))
}

and
Idle(find,move,link) =

select {
find?(mymove,myfind).(Idle(find,move,myfind) |

link!(mymove,find));
tau.(TerminalWaiter(find,move) | link!(move,find))

}
and

TerminalWaiter(find,move) =
select {

find?(mymove,myfind).Waiter(find,move,myfind,mymove);
move?(obj).TerminalOwner(find,move,obj)

}
and

Waiter(find,move,link,queue) =
select {

find?(mymove,myfind).(Waiter(find,move,myfind,queue) |
link!(mymove,find));

move?(obj).Owner(find,move,link,queue,obj)
};

/* --- */

defproc
Dir =

new find1,move1,find2,move2,find3,move3,obj in
(obj!() |

TerminalOwner(find1,move1,obj) |
Idle(find2,move2,find1) |
Idle(find3,move3,find2));

/* PROPERTIES */

20

defprop deadlockfree = always(<>true);

check Dir |= deadlockfree;

/* ---------- */

defprop object(s) = < s! > 0;

defprop node(f) = 1 and (fresh a. fresh b. < f?(a,b) > true);

defprop owns(i,obj) = (node(i) and @obj);

defprop exclusive(i,obj) = (owns(i,obj) | not @obj);

defprop live = hidden obj.
inside (object(obj) |

forall i. ((node(i) | true) =>
eventually exclusive(i,obj)));

check Dir |= always(live);

This interesting example describes a protocol used in systems that share a unique
resource, like for instance a token that gives privileges to it’s owner. Working on a deter-
mined connectivity structure, a minimal spanning tree, the nodes in the system evolve by
requesting, waiting, getting and releasing the object. The connectivity structure evolves
along with the nodes in such a way that the links give the direction to either the object or
the nodes that are waiting for it. Since there can be several nodes requesting the object
in parallel a waiting queue can be established, distributed throughout the system.

First off the nodes behavior is defined: A TerminalOwner that waits for requests for
the object, being that no request has arrived to it; an Owner that either accepts requests
for the object or releases it to the head of the waiting queue; An Idle that passes along
requests for the object or makes it’s own request for it; A TerminalWaiter that either
passes along requests for the object or receives it and a Waiter that has the same choice,
differing only on the necessary update of the connectivity links.

defproc
TerminalOwner(find,move,obj) =

find?(mymove,myfind).Owner(find,move,myfind,mymove,obj)
and

Owner(find,move,link,queue,obj) =
select {

find?(mymove,myfind).(Owner(find,move,myfind,queue,obj) |
link!(mymove,find));

tau.(Idle(find,move,link) | queue!(obj))
}

21

and
Idle(find,move,link) =

select {
find?(mymove,myfind).(Idle(find,move,myfind) |

link!(mymove,find));
tau.(TerminalWaiter(find,move) | link!(move,find))

}
and

TerminalWaiter(find,move) =
select {

find?(mymove,myfind).Waiter(find,move,myfind,mymove);
move?(obj).TerminalOwner(find,move,obj)

}
and

Waiter(find,move,link,queue) =
select {

find?(mymove,myfind).(Waiter(find,move,myfind,queue) |
link!(mymove,find));

move?(obj).Owner(find,move,link,queue,obj)
};

A very simple system is then defined, considering only three nodes.

defproc
Dir =

new find1,move1,find2,move2,find3,move3,obj in
(obj!() |

TerminalOwner(find1,move1,obj) |
Idle(find2,move2,find1) |
Idle(find3,move3,find2));

We then check to see if the system has always a reduction in every possible configura-
tion.

defprop deadlockfree = always(<>true);

check Dir |= deadlockfree;

We now intend to verify that the object will be possibly acquired, in exclusive mode,
by any node. First off we specify that an object has as behavior a possible emission on a
channel after which it becomes the empty process. We also define a node as being a single
point in space that is able to receive two names in a channel, since all nodes are able to
accept requests for the object.

defprop object(s) = < s! > 0;

defprop node(f) = 1 and (fresh a. fresh b. < f?(a,b) > true);

22

We then state that for a node to own the object it just has to contain an occurrence
of the object’s name, and to own the object exclusively the node has to own it while the
rest of the system has no occurrences of the object’s name.

defprop owns(i,obj) = (node(i) and @obj);

defprop exclusive(i,obj) = (owns(i,obj) | not @obj);

Finally we specify our liveness property by stating that all nodes in the system can
come to acquire exclusive access to the object at some point in time.

defprop live = hidden obj.
inside (object(obj) |

forall i. ((node(i) | true) => eventually exclusive(i,obj)));

We check to see if the system satisfies this property for every possible configuration.

check Dir |= always(live);

Acknowledgements All ongoing work on the Spatial Logic Model Checker has been
funded by IP Sensoria, and POSI/EIA/55582/2004 Space-Time Types, and IST-2001-
33100 Profundis.

References

[1] L. Caires. A Model for Declarative Programming and Specification with Concurrency
and Mobility. PhD thesis, Dept. de Informática, FCT, Universidade Nova de Lisboa,
1999.

[2] L. Caires. Behavioral and spatial properties in a logic for the pi-calculus. In Igor
Walukiwicz, editor, Proc. of Foundations of Software Science and Computation Struc-
tures’2004, Lecture Notes in Computer Science. Springer Verlag, 2004.

[3] L. Caires and L. Cardelli. A Spatial Logic for Concurrency (Part II). In CONCUR
2002 (13th International Conference), Lecture Notes in Computer Science. Springer-
Verlag, 2002.

[4] L. Caires and L. Cardelli. A Spatial Logic for Concurrency (Part I). Information and
Computation, 186(2):194–235, 2003.

[5] L. Caires and L. Cardelli. A Spatial Logic for Concurrency (Part II). Theoretical
Computer Science, to appear.

[6] L. Cardelli, P. Gardner, and G. Ghelli. Manipulating Trees with Hidden Labels. In
A. D. Gordon, editor, Proceedings of the First International Conference on Founda-
tions of Software Science and Computation Structures (FoSSaCS ’03), Lecture Notes
in Computer Science. Springer-Verlag, 2003.

23

[7] L. Cardelli and A. D. Gordon. Anytime, Anywhere. Modal Logics for Mobile Ambi-
ents. In 27th ACM Symp. on Principles of Programming Languages, pages 365–377.
ACM, 2000.

[8] L. Cardelli and A. D. Gordon. Logical Properties of Name Restriction. In S. Abram-
sky, editor, Typed Lambda Calculi and Applications, number 2044 in Lecture Notes
in Computer Science. Springer-Verlag, 2001.

[9] W. Charatonik and J.-M. Talbot. The decidability of model-checking mobile ambients.
In D. Metayer, editor, 11th European Symposium on Programming (ESOP 2002),
number 2305 in Lecture Notes in Computer Science. Springer-Verlag, 2001.

[10] M. Dam. Model checking mobile processes. Information and Computation, 129(1):35–
51, 1996.

[11] M. Dam. Proof systems for π-calculus logics. In de Queiroz, editor, Logic for Con-
currency and Synchronisation, Studies in Logic and Computation. Oxford University
Press, To appear.

[12] M. J. Demmer and M. P. Herlihy. The Arrow Distributed Directory Protocol. In Pro-
ceedings of the 12th International Symposium on Distributed Computing (DISC’98),
volume 1499 of LNCS, 1998.

[13] G. Ghelli and G. Conforti. Decidability of freshness, undecidability of revelation.
Technical Report 03–11, Dipartimento di Informatica, Universita di Pisa, 2003.

[14] S. Ishtiaq and P. O’Hearn. BI as an Assertion Language for Mutable Data Structures.
In 28th ACM Symp. on Principles of Programming Languages, 2001.

[15] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[16] R. Milner. Communicating and Mobile Systems: the π-calculus. Cambridge University
Press, 1999.

[17] R. Milner, J. Parrow, and D. Walker. Modal logics for mobile processes. Theoretical
Computer Science, 114:149–171, 1993.

24

