
Conversation Types

Lúıs Caires and Hugo Torres Vieira

CITI, Departamento de Informática, Faculdade de Ciências e Tecnologia,
Universidade Nova de Lisboa, 2829-516 Caparica, Portugal

Abstract

We present a type theory for analyzing concurrent multiparty interactions as found in service-
oriented computing. Our theory introduces a novel and flexible type structure, able to uni-
formly describe both the internal and the interface behavior of systems, referred respectively
as choreographies and contracts in web-services terminology. The notion of conversation
builds on the fundamental concept of session, but generalizes it along directions up to now
unexplored; in particular, conversation types discipline interactions in conversations while
accounting for dynamical join and leave of an unanticipated number of participants. We
prove that well-typed systems never violate the prescribed conversation constraints. We also
present techniques to ensure progress of systems involving several interleaved conversations,
a previously open problem.

Key words: Behavioral Types, Distributed Systems, Program Analysis, Service-Based
Systems, Session Types

1. Introduction

While most issues arising in the context of communication-based software systems do not
appear to be new when considered in isolation, the analysis of loosely-coupled distributed
systems involving type-based discovery, and multiparty collaborations such as those sup-
ported by web-services technology raises many challenges and calls for new concepts, spe-
cially crafted models, and formal analysis techniques (e.g., [1, 2, 4, 5, 6, 10, 12, 16, 19, 22]).
In previous work [28] we introduced the Conversation Calculus (CC), a π-calculus based
model for service-oriented computing that builds on the concepts of process delegation,
loose-coupling, and, crucially, conversation contexts.

A key concept for the organization of service-oriented computing systems is the notion of
conversation. A conversation is a structured, not centrally coordinated, possibly concurrent,
set of interactions between several participants. Then, a conversation context is a medium
where partners may interact in a conversation. It can be distributed in many pieces, and
processes in any piece may seamlessly talk to processes in the same or any other piece
of the same conversation context. Intuitively a conversation context may be seen as a
virtual chat room where remote participants exchange messages according to some discipline,
while simultaneously engaged in other conversations. Conversation context identities can be
passed around, allowing participants to dynamically join conversations. To join an ongoing
To appear in Theoretical Computer Science October 19, 2010

conversation, a process may perform a remote conversation access using the conversation
context identifier. It is then able to participate in the conversation to which it has joined,
while being able to interact back with the caller context through the access point. To
discipline multiparty conversations we introduce conversation types, a novel and flexible
type structure, able to uniformly describe both the internal and the interface behavior of
systems, referred respectively as choreographies and contracts in web-services terminology.

We give substantial evidence that our minimal extension to the π-calculus is already ef-
fective enough to model and type sophisticated service-based systems, at a fairly high level of
abstraction. Examples of such systems include challenging scenarios involving simultaneous
multiparty conversations, with concurrency and access to local resources, and conversations
with a dynamically changing and unanticipated number of participants, that fall out of the
scope of other approaches for modeling and typing of service-based systems.

On the opposite direction, we show that the key ideas behind conversation types can
already be developed in much more canonic models (without explicit conversation contexts,
and thus with some loss of expressiveness) such as a simple labeled π-calculus, thus demon-
strating the generality and essence of our approach to typing multi-party interactions.

1.1. Conversation Contexts and Conversation Types

We explain the key ideas of our development by going through a motivating example.
Consider the following composition of two conversation contexts, named Buyer and Seller ,
modeling a typical service collaboration:

Buyer J [new Seller · startBuy⇐ buy!(prod).price?(v)]

|
Seller J [PriceDB |

def startBuy⇒ buy?(prod).askPrice�!(prod).
readVal�?(v).price!(v)]

Notice that in the core CC, the bounded communication medium provided by a conversation
context may also be used to model a partner’s local context, avoiding the introduction of
a primitive notion of site. The code in Buyer starts a new conversation by calling service
startBuy located at Seller using the service instantiation idiom new Seller · startBuy ⇐
buy!(prod).price?(v). The code buy!(prod).price?(v) describes the role of Buyer in the
conversation: a buy message is sent, and afterwards a price message should be received.
Upon service instantiation, the system evolves to:

(νc)(Buyer J [c J [buy!(prod).price?(v)]]

|
Seller J [PriceDB |

c J [buy?(prod).askPrice�!(prod).
readVal�?(v).price!(v)])

where c is the fresh name of the newly created conversation (with two pieces). The code:

buy?(prod).askPrice�!(prod).readVal�?(v).price!(v)
2

describes the participation of Seller in the conversation c: a buy message is received, and
in the end, a price message should be sent. In between, database PriceDB located in the
Seller context is consulted through a pair of � directed message exchanges (askPrice and
readVal). Such messages are targeted to the parent conversation (Seller), rather than to
the current conversation (c).

In our theory, message exchanges inside and at the interface of subsystems are captured
by conversation types, which describe both internal and external participation of processes
in conversations. The Buyer and Seller conversation is described by type:

BSChat , τ buy(Tp).τ price(Tm)

specifying the two interactions that occur sequentially within the conversation c, first a
message buy and after a message price (Tp and Tm represent basic value types).

The τ in, e.g., τ buy(Tp) means that the interaction is internal. A declaration such as
τ buy(Tp) is like an assertion such as buy(Tp) : Buyer → Seller in a message sequence chart,
or in the global types of [19], except that in our case participant identities are abstracted
away, increasing flexibility. In general, the interactions described by a type such as BSChat
may be realized in several ways, by different participants. Technically, we specify the several
possibilities by a (ternary) merge relation between types, noted B = B1 ./ B2, stating how
a behavior B may be projected in two independent matching behaviors B1 and B2. In
particular, we have (among others) the projection:

BSChat = ! buy(Tp).? price(Tm) ./ ? buy(Tp).! price(Tm)

The type ! buy(Tp).? price(Tm) will be used to type the Buyer participation, and the
type ? buy(Tp).! price(Tm) will be used to type the Seller participation (in conversation
BSChat). Thus, in our first example, the conversation type BSChat is decomposed in a
pair of “dual” conversation types, as in classical session types [17, 18]; this does not need to
be always the case, however. In fact, the notion of conversation builds on the fundamental
concept of session but extends it along unexplored directions, as we now discuss. Consider
a three-party variation (from [10]) of the example above:

Buyer J [new Seller · startBuy⇐ buy!(prod).price?(p).details?(d)]

|
Seller J [PriceDB |

def startBuy⇒ buy?(prod).askPrice�!(prod).
readVal�?(p).price!(p).
join Shipper · newDelivery⇐ product!(prod)]

|
Shipper J [def newDelivery⇒ product?(p).details!(data)]

The role of Shipper is to inform the client on the delivery details. The code is composed
of three conversation contexts, representing the three partners Buyer , Seller and Shipper .
The system progresses as in the first example: messages buy and price are exchanged

3

buy

product

details

price

Buyer Seller Shipper

Figure 1: BSSChat Message Sequence Chart.

between Buyer and Seller in the fresh conversation. After that, Shipper is asked by Seller ,
using idiom join Shipper · newDelivery⇐ · · · , to join the ongoing conversation (until then
involving only Buyer and Seller). The system then evolves to:

(νa)(Buyer J [a J [details?(d)]]

|
Seller J [a J [product!(prod)] | . . .] |
|
Shipper J [a J [product?(p).details!(data)]])

Notice that Seller does not lose access to the conversation after asking service Shipper ·
newDelivery to join in the current conversation a (partial session delegation). In fact,
Seller and Shipper will interact later on in the very same conversation, by exchanging a
product message. Finally, Shipper sends a message details directly to Buyer . In this case,
the global conversation a is initially assigned type:

BSSChat , τ buy(Tp).τ price(Tm).τ product(Tp).τ details(Td)

BSSChat type may be depicted as the message sequence chart shown in Figure 1. We
decompose type BSSChat in three “projections” (Bbu , Bse , and Bsh), by means of the merge
./, first by BSSChat = Bbu ./ Bss , and then by Bss = Bse ./ Bsh , where:

Bbu , ! buy(Tp).? price(Tm).? details(Td)

Bss , ? buy(Tp).! price(Tm).τ product(Tp).! details(Td)

Bse , ? buy(Tp).! price(Tm).! product(Tp)

Bsh , ? product(Tp).! details(Td)

These various “local” types are merged by our type system in a compositional way, allowing
e.g., service startBuy to be assigned type ? startBuy([Bss]), and the contribution of each

4

partner in the conversation to be properly determined. At the point where join operation
above gets typed, the (residual) conversation type corresponding to the participation of
Seller is typed τ product(Tp).! details(Td). At this stage, extrusion of the conversation
name a to service Seller · newDelivery will occur, to enable Shipper to join in. Notice
that the global conversation BSSChat discipline will nevertheless be respected, since the
conversation fragment delegated to Shipper is typed ? product(Tp).! details(Td) while
the conversation fragment retained by Seller is typed ! product(Tp). Also notice that
since conversation types abstract away from participant identities, the overall conversation
type can be projected into the types of the individual roles in several ways, allowing for
different implementations of the roles of a given conversation (cf. loose-coupling). It is even
possible to type systems with an unbounded number of different participants, as needed to
type, e.g., a service broker.

Our type system combines techniques from linear, behavioral, session and spatial types
(see [7, 18, 20, 21]): the type structure features prefix M.B, parallel composition B1 | B2,
and other operators. Messages M describe external (receive ? / send !) exchanges in two
views: with the caller / parent conversation (�), and in the current conversation (�). They
also describe internal message exchanges (τ). Key technical ingredients in our approach to
conversation types are the amalgamation of global types and of local types (in the general
sense of [19]) in the same type language, and the definition of a merge relation ensuring, by
construction, that participants typed by the projected views of a type will behave well under
composition. Merge subsumes duality, in the sense that for each τ-free B there are types
B, B′ such that B ./ B = τ(B′) (where τ(B′) is a type defined exclusively on τ message
types), so sessions are special cases of conversations. But merge of types allows for extra
flexibility on the manipulation of projections of conversation types, in an open-ended way,
as illustrated above. In particular, our approach allows fragments of a conversation type
(e.g., a choreography) to be dynamically distributed among participants, while statically
ensuring that interactions follow the prescribed discipline.

The technical contributions of this work may be summarized as follows. First, we define
the new notion of conversation type. Conversation types are a generalization of session types
to loosely-coupled, possibly concurrent, multiparty conversations, allowing mixed global /
local behavioral descriptions to be expressed at the same level, while supporting the analy-
sis of systems with dynamic delegation of fragments of ongoing conversations. Second, we
advance new techniques to certify safety and liveness properties of service-based systems.
We propose a type system for assigning conversation types to core CC systems. Processes
that get past our typing rules are ensured to be free of communication errors, and races on
plain messages (Corollary 3.24): this also implies that well-typed systems enjoy a conver-
sation fidelity property (i.e., all conversations follow the prescribed protocols). Finally, we
present techniques to establish progress of systems with several interleaved conversations
(Theorem 4.7), exploiting the combination of conversation names with message labels in
event orderings, and, more crucially, propagation of orderings in communications, solving a
previously open problem. Before concluding and discussing related work, we demonstrate
that our concepts and techniques—both the conversation type system and the progress
analysis—are not specific to the core CC model, by showing they can be smoothly adapted

5

and applied to systems specified in a simple labeled π-calculus.
This paper is an extended revised version of [8]. The main difference with respect to

the original presentation in [8] is the inclusion of Section 5, where we demonstrate the
applicability of our techniques to a simple labeled π-calculus.

2. The Core Conversation Calculus

In this section, we present the syntax of our calculus, and formally define its opera-
tional semantics, by means of a labeled transition system. The core Conversation Calculus
(core CC) extends the static fragment of the π-calculus [24] with the conversation construct
n J [P], and replaces channel based communication with context-sensitive message based
communication. For simplicity, we present a monadic version of the calculus.

Definition 2.1 (Core CC Syntax). The syntax of core CC processes (P, Q, . . .), message
directions (d, d′, . . .), and actions (α, α1, . . .) is given in Figure 2.

We assume given an infinite set of names Λ, an infinite set of variables V , an infinite set
of labels L, and an infinite set of process variables χ. The static fragment is defined by the
inaction 0, parallel composition P | Q, name restriction (νa)P and recursion recX .P . The
conversation access construct n J [P], allows a process to initiate interactions, as specified
by P , in the conversation n.

Communication is expressed by the guarded choice construct Σi∈I αi.Pi, meaning that
the process may select some initial action αi and then progress as Pi. Communication
actions are of two forms: ld!(n) for sending messages (e.g., askPrice�!(prod)) and ld?(x) for
receiving messages (e.g., price�?(p)). Thus, message communication is defined by the label
l and the direction d. There are two message directions: � (read “here”) meaning that the
interaction should take place in the current conversation or � (read “up”) meaning that the
interaction should take place in the caller’s conversation. N.B.: to lighten notation we omit
the � in messages, without any ambiguity. A basic action may also be of the form this(x),
allowing the process to dynamically access the identity of the current conversation.

Notice that message labels (from l ∈ L) are not names but free identifiers (cf. record
labels or XML tags), and therefore not subject to fresh generation, restriction or binding.
Only conversation names may be subject to binding, and freshly generated via (νa)P .

The distinguished occurrences of a, x, x and X are binding occurrences in (νa)P ,
ld?(x).P , this(x).P , and recX .P , respectively. The sets of free (fn(P)) and bound (bn(P))
names, free variables (fv(P)), and free process variables (fpv(P)) in a process P are defined
as usual. We implicitly identify α-equivalent processes. We denote by P{x← a} the process
obtained by replacing all free occurrences of x by a (likewise for P{X ← Q}).

2.1. Operational Semantics

The operational semantics of the core CC is defined by a labeled transition system. For
clarity, we split the presentation into two sets of rules, one (in Figure 3) containing the rules

6

a, b, c, . . . ∈ Λ (Names)
x, y, z, . . . ∈ V (Variables)
n, m, o . . . ∈ Λ ∪ V
l, s . . . ∈ L (Labels)
X ,Y , . . . ∈ χ (Process Vars)

P, Q ::= 0 (Inaction)
| P | Q (Parallel Composition)
| (νa)P (Name Restriction)
| recX .P (Recursion)
| X (Variable)
| n J [P] (Conversation Access)
| Σi∈I αi.Pi (Prefix Guarded Choice)

d ::= � | � (Directions)
α ::= ld!(n) (Output)
| ld?(x) (Input)
| this(x) (Conversation Awareness)

Figure 2: The Core Conversation Calculus Syntax.

for the basic operators, which are essentially identical to the corresponding ones in the π-
calculus (see [27]), and the other (in Figure 4) grouping the rules specific to the Conversation
Calculus.

A transition P λ−→ Q states that process P may evolve to process Q by performing the
action represented by the transition label λ. We define transition labels and actions.

Definition 2.2 (Transition Labels and Actions). Transition labels and actions are de-
fined as follows:

σ ::= τ | ld!(a) | ld?(a) | this (Actions)
λ ::= c σ | σ | (νa)λ (Transition Labels)

An action τ denotes an internal communication, actions ld!(a) and ld?(a) represent com-
munications with the environment, and this represents a conversation identity access. To
capture the observational semantics of processes, transition labels need to register not only
the action but also the conversation where the action takes place. So, a transition label λ
containing c σ is said to be located at conversation c (or just located), otherwise is said to
be unlocated. In (νa)λ the distinguished occurrence of a is bound with scope λ (cf., the
π-calculus bound output actions). For a communication label λ we denote by λ the dual
matching label obtained by swapping inputs with outputs, such that, e.g., ld!(a) = ld?(a)
and ld?(a) = ld!(a). We denote by fn(λ) and bn(λ) (respectively) the free and bound names
of a transition label, and by na(λ) both free and bound names of a transition label.

7

The this transition label represents a conversation identity access. Processes can explic-
itly access the identity of the conversation in which they are located (which is captured by a
this label), and synchronizations between processes may also require such contextual infor-
mation. Since messages do not explicitly refer the conversation to which they pertain, the
operational semantics of the core CC must locally account for synchronizations which may
arise depending on the surrounding context. For example, consider the following process:

l�!().P | n J
[
l�?().Q

]
(1)

which specifies that a message l is to be sent at the current conversation, after which P is
activated, and that a message l is to be received at conversation n, after which Q is activated.
If such a process is to be placed in a piece of conversation n, yielding the following process:

n J
[
l�!().P | n J

[
l�?().Q

]]
then both input and output refer to the same conversation n and therefore the message may
be exchanged under conversation n. Thus, we can observe the following τ transition:

n J
[
l�!().P | n J

[
l�?().Q

]] τ−→ n J [P | n J [Q]]

When locally describing the behavior of the process shown in (1) we must account for the
possible synchronization if the current conversation is the n conversation. This is realized
by means of a n this transition, which may only progress under a piece of conversation n.
We then have the following transition:

l�!().P | n J
[
l�?().Q

] n this−→ P | n J [Q]

We may now define the transition relation.

Definition 2.3 (Transition Relation). The transition relation (P
λ−→ Q) is the least

relation that satisfies the rules of Figure 3 and of Figure 4.

Remark 2.4. Given processes P and Q, if P
λ−→ Q then either λ = τ or λ = ld!(a) or

λ = (νa)ld!(a) or λ = ld?(a) or λ = c this or λ = c l�!(a) or λ = (νa)c l�!(a) or λ = c l�?(a).

Transition rules presented in Figure 3 closely follow the ones for the π-calculus and should
be fairly clear to a reader familiar with mobile process calculi. For example, rule (Open)
corresponds to the bound output or extrusion rule, in which a bound name a is extruded to
the environment in an output message λ: we define out(λ) = a if λ = ld!(a) or λ = c ld!(a)
and c 6= a. We omit the rules symmetric to (Par-l) and (Close-l). In rule (Par -l) we use
predicate # to denote disjoint sets: A # B iff A ∩B = ∅.

It would be useful however to discuss the intuitions behind the rules for conversation
contexts (Figure 4). In rule (Here) an � directed message (to the enclosing conversation) be-
comes � (in the current conversation), after passing through the conversation access bound-
ary . We note by λd a transition label containing the direction d (�, �), and by λd ′

the label
obtained by replacing d by d ′ in λd (e.g., if λ� is askPrice�?(a) then λ� is askPrice�?(a)).

8

ld!(a).P
ld!(a)−→ P (Out) ld?(x).P

ld?(a)−→ P{x← a} (In)
αj.Pj

λ−→ Q j ∈ I

Σi∈I αi.Pi
λ−→ Q

(Sum)

P
λ−→ Q a ∈ out(λ)

(νa)P
(νa)λ−→ Q

(Open)
P

λ−→ Q a 6∈ na(λ)

(νa)P
λ−→ (νa)Q

(Res)

P
λ−→ Q bn(λ) # fn(R)

P | R
λ−→ Q | R

(Par -l)
P

λ−→ P ′ Q
λ−→ Q′

P | Q
τ−→ P ′ | Q′

(Comm)

P
(νa)λ−→ P ′ Q

λ−→ Q′ a 6∈ fn(Q)

P | Q
τ−→ (νa)(P ′ | Q′)

(Close-l)
P{X ← recX .P} λ−→ Q

recX .P
λ−→ Q

(Rec)

Figure 3: Basic Operators (π-calculus).

In rule (Loc) an unlocated � message (in the current conversation) gets explicitly located
at the conversation c in which it originates. Given an unlocated label λ, we represent
by c · λ the label obtained by locating λ at c (e.g., if λ� is askPrice�?(p) then c · λ� is
c askPrice�?(p)). In rule (Through) an already located communication label transparently
crosses some other conversation boundary (by a λ� we denote a transition located at a),
and likewise for a τ label in rule (Tau). In rule (This) a this label reads the current
conversation identity, and originates a c this label. A c this labeled transition may only
progress inside the c conversation, as expressed by the rule (ThisLoc), where a this label
matches the enclosing conversation. In rules (ThisComm-r) and (ThisClose-r) an unlocated
communication matches a communication located at c, originating a c this label, thus
ensuring the interaction occurs in the given conversation c, as required. We omit the rules
symmetric to (ThisComm-r) and (ThisClose-r).

The reduction relation is defined on top of the labeled transition system.

Definition 2.5 (Reduction). The relation of reduction on processes, noted P → Q, is
defined as P

τ−→ Q.

In the next section we describe how the basic set of primitives of the core CC can already
be used to model useful service-oriented primitives.

2.2. Representing Service-Oriented Primitives

Our core model focuses on the fundamental notions of conversation context and message-
based communication. From these basic mechanisms, useful programming abstractions for
service-oriented systems may be idiomatically defined, namely service definition and in-
stantiation constructs (defined as primitives in [28]), and the conversation join construct
(introduced in [8]), which is crucial to our approach to multiparty conversations. These

9

P
λ�

−→ Q

c J [P]
λ�
−→ c J [Q]

(Here)
P

λ�

−→ Q

c J [P]
c·λ�
−→ c J [Q]

(Loc)

P
a λ�

−→ Q

c J [P]
a λ�
−→ c J [Q]

(Through)
P

τ−→ Q

c J [P]
τ−→ c J [Q]

(Tau)

this(x).P
c this−→ P{x← c} (This)

P
c this−→ Q

c J [P]
τ−→ c J [Q]

(ThisLoc)

P
σ−→ P ′ Q

c σ−→ Q′

P | Q
c this−→ P ′ | Q′

(ThisComm-r)
P

σ−→ P ′ Q
(νa)c σ−→ Q′

P | Q
c this−→ (νa)(P ′ | Q′)

(ThisClose-r)

Figure 4: Conversation Operators.

def s⇒ P , s?(x).x J [P]

new n · s⇐ Q , (νc)(n J [s!(c)] | c J [Q])

join n · s⇐ Q , this(x).(n J [s!(x)] | Q)

?def s⇒ P , recX .s?(x).(X | x J [P])

Figure 5: Service Idioms.

constructs may be embedded in a simple way in the minimal calculus, without hindering
the flexibility of modeling and analysis.

We show in Figure 5 the derived forms along with their translation in the core CC.
A service definition has the form def s ⇒ P where s is the service name, and P is the
process to be launched at the server side endpoint of the freshly created conversation (the
service protocol). Service definitions must be placed in appropriate contexts (cf. methods
in objects), e.g.:

Shipper J [def newDelivery ⇒ P | · · ·]

A new instance of a service s is created by new n · s ⇐ Q , where n indicates the context
where the service named s is published, and Q specifies the client protocol. For instance, a
service definition as shown above may be instantiated by:

new Shipper · newDelivery ⇐ Q

The process Q describes the client protocol that will run inside the freshly created conversa-
tion. The interaction between service instantiation (new) and service definition (def) results
in the creation of a new conversation context n, in which the service interactions will take
place. Such context is initially split in two pieces, one piece c J [Q] residing in the context

10

of the client, the other piece c J [P] placed in the context of the server. These newly created
conversation access points appear to their caller contexts as any other local processes, as
P and Q are able to continuously interact by means of � directed messages. As expected,
P and Q will interact in the new conversation by means of � directed messages. Thus,
conversation initiation via new and def is similar to session initiation in session calculi [18].
Typically, service definitions may also be replicated, written ?def s ⇒ P , in order to be
usable an unbounded number of times.

In the core CC, conversation identifiers may be manipulated by processes if needed (via
the this(x).P), passed around in messages and subject to scope extrusion: this corresponds,
in our setting, to a generalization of session delegation, in which multiparty conversations
are modeled by the progressive access of multiple, dynamically determined partners, to an
ongoing conversation. Joining of another partner to an ongoing conversation is a frequent
programming idiom, that may be conveniently abstracted by the join n · s ⇐ Q construct.
The semantics of the join expression is similar to the service instantiation construct new:
the key difference is that while new creates a fresh new conversation, join allows a service s
defined at n to join in the current conversation, and continue interacting as specified by Q.
Next, we illustrate typical reduction steps of systems involving the service oriented idioms.

n J [def s1 ⇒ P] | · · · | m J [new n · s1 ⇒ Q] →
(νc)(n J [c J [P]] | · · · | m J [c J [Q]])

Here, the service instantiation results in the creation of a new conversation c. The two
partners n and m may then interact in the new conversation c by � messages, exchanged by
the processes P and Q. These processes while performing the conversation may also interact
with their parent conversations n and m via � messages.

o J [def s2 ⇒ P] | · · · | c J [join o · s2 ⇒ Q] →
o J [c J [P]] | · · · | c J [Q]

This reduction step illustrates the situation where an ongoing conversation c asks a new
partner o to join in c according to a published service definition s2. It should be clear how
building on these simple mechanisms, multiparty conversations may be progressively and
dynamically formed, starting from dyadic ones created by service instantiation.

In the next section we will develop a fairly rich type theory for conversation contexts,
using the core CC as the intended model. Our type system may be used to discipline
and specify communication patterns in systems with complex interactive behavior including
systems with dynamically assembled multiparty conversations, ensuring absence of certain
kinds of erroneous behaviors as already mentioned in the Introduction.

3. Type System

In this section we formally present our type system for the core Conversation Calculus.
As already motivated in the Introduction, our types specify the message protocols that flow
between and within conversations.

11

B ::= B1 | B2

∣∣ 0
∣∣ recX .B

∣∣ X∣∣ �i∈I{Mi.Bi}
∣∣ Ni∈I{Mi.Bi} (Behavioral)

M ::= p ld(C) (Message)

p ::= !
∣∣ ?

∣∣ τ (Polarity)

C ::= [B] (Conversation)

L ::= n : C
∣∣ L1 | L2

∣∣ 0 (Located)

T ::= L | B (Process)

Figure 6: Syntax of Types.

Definition 3.1 (Conversation Types). The syntax of the conversation type language is
given in Figure 6.

Typing judgments have the form P :: T , where T is a process type. Intuitively, a type
judgement P :: T states that if process P is placed in an environment where a process
of type T is expected, then the resulting system is safe, in a sense to be made precise
below (Corollary 3.24). In general, a process type T has the form L | B, where L is a
located type and B is a behavioral type which specifies the behavior of P in the current
conversation (taking place in the context where P resides). An atomic located type associates
a conversation type C to a conversation name n. Conversation types C are given by [B],
where B specifies the message interactions that may take place in the conversation.

Behavioral types B include the branch and the choice constructs (Ni∈I{Mi.Bi} and
�i∈I{Mi.Bi}, respectively), specifying processes that can branch in either of the Mi.Bi

behaviors and choose between one of the Mi.Bi behaviors, respectively. Prefix M.B specifies
a process that sends, receives, or internally exchanges a message M before proceeding with
behavior B. We also have parallel composition B1 | B2, inaction 0, and recursion. Message
types M are specified by a polarity p (either output !, input ? or internal action τ), a pair
label-direction ld, and the type C of the name communicated in the message. Notice that
a message M may refer to an internal exchange between two partners, if it is of the form
τ ld(C). We write M for M.0, where appropriate, and p l(C) for p l�(C). The Mis in a
branch type Ni∈I{Mi.Bi} are of polarity ? and in a choice type �i∈I{Mi.Bi} of polarity !

or τ (so as to represent internal choice). We abbreviate �{M.B} and N{M.B} with M.B.
For typing purposes, we split the set of labels L into shared L? and plain Lp labels.

Messages which are to be used linearly are defined with plain labels, and messages which
are to be used exponentially are defined with shared labels. In such a way we distinguish
two common interaction patterns in service-oriented computing: a service is expected to be
available exponentially in the sense that there can be multiple clients trying to use the same
service simultaneously. On the other hand during an ongoing service interaction messages
that flow between collaborating partners are expected to be used linearly, in the sense that
there should be a unique pair of parties that can interact on a specific message at a given
moment (race absence).

12

Our types are related by a subtyping relation <:, which relies on some auxiliary op-
erations we now introduce. The key ones are predicate apartness B1 # B2 and direction
projection d(B). Intuitively, two types are apart when they may type subsystems that
may be safely composed without undesirable interferences. Essentially, apartness ensures
disjointness of plain (“linear”) types, and consistency of shared (“exponential”) types (cf.
[21]). To characterize the plain and shared label sets of a type we introduce the set of mes-
sage types (M) of a behavioral type B, noted MsgL(B), and the set of directed labels (ld)
of a behavioral type B, noted LabL(B).

Definition 3.2 (Message Set). We denote by MsgL(B) the set of message types defined
with labels in L of a behavioral type B, defined as follows:

MsgL(0) , ∅
MsgL(B1 | B2) , MsgL(B1) ∪MsgL(B2)

MsgL(X) , ∅
MsgL(recX .B) , MsgL(B)

MsgL(p ld(C).B) , {(p ld(C)) | l ∈ L} ∪MsgL(B)

MsgL(�i∈I{Mi.Bi}) ,
⋃

i∈I MsgL(Mi.Bi)

MsgL(Ni∈I{Mi.Bi}) ,
⋃

i∈I MsgL(Mi.Bi)

Definition 3.3 (Label Set). We denote by LabL(B) the set of labels from L of a behavioral
type B, defined as follows:

LabL(B) , {ld | (p ld(C)) ∈ MsgL(B)}

For example, given some behavioral type B, MsgLp
(B) is the set of all plain (in Lp)

message types (p ld(C)) occurring in B, leaving out message types defined on shared labels
(those belonging to L?).

To capture the consistency of shared types we introduce conformance �. Given behav-
ioral types B1 and B2, we let B1 � B2 state that message types with shared labels occur
both in B1 and B2 with identical argument types (so that B1 and B2 are compatible on
shared labels).

Definition 3.4 (Conformance). We say two behavioral types B1, B2 are conformant, noted
B1 � B2, if for any two message types p1 ld(C1) and p2 ld(C2) such that

(p1 ld(C1)) ∈ MsgL?
(B1) and (p2 ld(C2)) ∈ MsgL?

(B2)

then C1 = C2 and if pi = ? then pj = τ for {i, j} = {1, 2}.

Conformance is also determined based on the polarities of the messages. For instance,
two message types defined on shared labels and polarity ! are conformant as they represent
compatible calls to the same service. We exclude the cases of messages presenting dual

13

polarities (! and ?) and when both messages present ? polarities: the former will be used
to force such messages to synchronize, which means a τ will be introduced in the type
to represent the possible synchronization; the latter is used to check the compatibility of
two service definitions. In both cases the combination of such types is explained by the
behavioral merge (Definition 3.11). We may now define apartness.

Definition 3.5 (Apartness). Behavioral types B1, B2 are apart, noted B1#B2, if their
plain label sets are disjoint (LabLp(B1) #LabLp(B2)) and they are conformant (B1 � B2).

Two types are apart with respect to messages defined on plain labels if they are defined
on disjoint sets of plain labeled messages (LabLp), and with respect to messages defined on
shared labels if they are conformant �.

The direction projection d(B) is another important operation used in our subtyping rules.
The projection d(B) in the direction d of a behavioral type B consists in the selection of all
messages that have the given direction d while filtering out the ones in the other direction,
offering a partial view of behavior B from the viewpoint of d. We also write, e.g., � B for
� (B), to lighten the notation. Informally, we sometimes refer to �B as the “here interface”
of B, and likewise for �B as the “up interface”. We show an example and define direction
projection.

Example 3.6. We illustrate the projection of choice and branch types. Consider type:

N{? bookA�().! book�(); ? cancelA�().! cancel�()}
which describes a process that can either input message bookA or message cancelA in the en-
closing conversation, and afterwards output message book or message cancel, respectively.
Projecting the type in the � direction then results in the branch type of the two � messages:

� (N{? bookA�().! book�(); ? cancelA�().! cancel�()}) = N{? bookA�(); ? cancelA�()}
On the other hand, the � projection describes that the process chooses one of the � behaviors
of the continuations (since the first branch is invisible from this view), as follows:

� (N{? bookA�().! book�(); ? cancelA�().! cancel�()}) = �{! book�(); ! cancel�()}
Definition 3.7 (Direction Projection). For each direction d, the projection d(B) of be-
havioral type B along direction d is inductively defined as follows:

d(0) , 0

d(X) , X
d(recX .B) , recX .d(B)

d(B1 | B2) , d(B1) | d(B2)

d(! ld
′
(C).B) , d(B) (if d 6= d′)

d(�i∈I{pi l
d
i (Ci).Bi}) , �i∈I{pi l

d
i (Ci).d(Bi)}

d(�i∈I{! ld
′

i (Ci).Bi}) , �i∈I{d(Bi)} (if d 6= d′ and d(Bi) = ! ld(C).B, i ∈ I)

d(? ld
′
(C).B) , d(B) (if d 6= d′)

d(Ni∈I{? ldi (Ci).Bi}) , Ni∈I{? ldi (Ci).d(Bi)}
d(Ni∈I{? ld

′
i (Ci).Bi}) , �i∈I{d(Bi)} (if d 6= d′ and d(Bi) = ! ld(C).B, i ∈ I)

14

Our subtyping rules rely on some auxiliary notation used in characterizing our admissible
recursive types. We introduce B? which denotes a “shareable” behavioral type defined
(exclusively) with shared labels (from L?), hence not referring any plain label (from Lp).
Also we use B〈X 〉 to represent a behavioral type where the recursion variable X may occur
as a leaf, and all its plain labels appear in messages that prefix the recursion variable. We
define B? and B〈X 〉.

Definition 3.8. Shared messages, noted M?, shared behavioral types, noted B?, and recur-
sive behavioral types, noted B〈X 〉, are defined as follows (l? ranges over labels in L?):

M? ::= ! l?d(C)

B? ::= B?
1 | B?

2

∣∣ 0
∣∣ �i∈I{M?

i .B?
i }

B〈X 〉 ::= B〈X 〉 | B?
∣∣ 0

∣∣ X ∣∣ �i∈I{Mi.Bi〈X 〉}
∣∣ Ni∈I{Mi.Bi〈X 〉}

Type B〈X 〉 thus characterizes recursive processes that can safely have several active
concurrent instances, where by “safely” we intend that the concurrent instances share only
a message alphabet from L?, hence do not share any (linear) message alphabet from Lp. Also,
when characterizing persistent messages we use ?M as an abbreviation of rec X .M.X .

We may now present the subtyping relation. Intuitively, we say type T1 is a subtype
of type T2, noted T1 <: T2, when a process of type T1 can safely be used in a context
where a process of type T2 is expected. Subtyping provides a way to generalize the typing
characterization of processes, by its use in the subsumption rule:

P :: T1 T1 <: T2

P :: T2

Our subtyping rules express the expected relationships of types, such as the commutative
monoid rules for (− | −,0), congruence principles, and the split rule:

n : [B1 | B2] ≡ n : [B1] | n : [B2]

which captures the notion that the behavior in a single conversation can be described through
distinct pieces. For types T1 and T2 we write T1 ≡ T2 if T1 <: T2 and T2 <: T1. We adopt
an equi-recursive approach to recursive types [26], based on simple unfoldings of recursive
type terms:

recX .T ≡ T{X ← recX .T}
We could also have adopted a more flexible theory via coinductive definitions, along the
lines of [15]. Rule:

0 <: n : [0]

allows us to introduce names in the type that are not (yet) used by the process.
The following rule expresses a contraction principle for shared messages:

M? | ? M? <: ?M?

15

T1 | T2 ≡ T2 | T1 (1) T1 | (T2 | T3) ≡ (T1 | T2) | T3 (2) T | 0 ≡ T (3)

recX .T ≡ T{X ← recX .T} (4) n : [B1 | B2] ≡ n : [B1] | n : [B2] (5)

Mi.Bi <: M ′
i .B
′
i (i ∈ I)

�i∈I{Mi.Bi} <: �i∈I{M ′
i .B
′
i}

(6)
Mi.Bi <: M ′

i .B
′
i (i ∈ I)

Ni∈I{Mi.Bi} <: Ni∈I{M ′
i .B
′
i}

(7)

B1 <: B2

M.B1 <: M.B2

(8)
B1 <: B2

recX .B1 <: recX .B2

(9)
T1 <: T2

T3 | T1 <: T3 | T2

(10)

B1 <: B2

n : [B1] <: n : [B2]
(11)

T1 <: T3 T3 <: T2

T1 <: T2

(12) T <: T (13)

B <: �B | �B (14) M? | ? M? <: ?M? (15)

recX .(M?
1 | . . . | M?

k | B〈X 〉) <: ?M?
1 | . . . | ? M?

k | recX .B〈X 〉 (16)

M.(B1 | B2) <: M.B1 | B2 (M # B2, fv(B2) = ∅) (17) 0 <: n : [0] (18)

Figure 7: Subtyping Rules.

which describes that a process that independently outputs a message once and infinitely
often can be safely used in a context where a process that sends such message infinitely
often is expected.

The following rule allows for recursive types to export their shared interface separately:

recX .(M?
1 | . . . | M?

k | B〈X 〉) <: ?M?
1 | . . . | ? M?

k | recX .B〈X 〉

The rule then allows for a process that specifies a number of shared messages in between
its repeated executions to be characterized by the type that separately specifies the shared
message interface and the recursive behavior. A key subtyping rule that introduces some
flexibility at the level of protocol specification is the following:

M.(B1 | B2) <: M.B1 | B2 (M # B2, fv(B2) = ∅)

which allows for sequential protocols to export a more general concurrent interface, provided
the behaviors specified in parallel are apart (M # B2). The intuition is that if a process
performs action M and after which exhibits behavior B2 then it can safely be used in a
context that expects a process that exhibits simultaneously action M and behavior B2. We
use fv(B) to denote the set of recursion variables of type B.

The following rule expresses a crucial subtyping principle, where we allow a behavioral
type to be decomposed in its two projections according to the message directions:

B <: �B | �B
16

The rule characterizes that a process that specifies some, possibly interleaved, behavior in
the current and enclosing conversations, can safely be used in a context where a process that
exhibits such behaviors independently is expected. Figure 7 presents the subtyping rules
and axioms.

We now introduce a key operation in which our typing rules rely: the ternary relation
merge B = B1 ./ B2. The merge relation is used to define the composition of two types, so
that if B = B1 ./ B2 then B is a particular (in general not unique) behavioral combination
of the types B1 and B2. Merge is defined not only in terms of spatial separation, but also,
and crucially, in terms of merging behavioral “traces”. Notice also that it is not always the
case that there is B such that B = B1 ./ B2. On the other hand, if some such B exists, we
use B1 ./ B2 to non-deterministically denote any such B (e.g., in conclusions of type rules).
Intuitively, B = B1 ./ B2 holds if B1 and B2 may safely synchronize or interleave so as to
produce behavioral type B.

Before presenting the definition of the merge relation we introduce some auxiliary opera-
tions: the initial label set of a behavioral type B, noted I(B), and message type substitution,
noted B{M1 ← M2}. The initial label set of a behavioral type B collects the set of labels
of the actions immediately active in B.

Definition 3.9 (Message Type Substitution). We denote by B{M1 ← M2} the type
obtained by replacing all occurrences of message type M1 with message type M2 in type B,
defined inductively in the structure of types as follows:

0{M1 ←M2} , 0

(B1 | B2){M1 ←M2} , (B1{M1 ←M2}) | (B2{M1 ←M2})
X{M1 ←M2} , X
(recX .B){M1 ←M2} , recX .(B{M1 ←M2})
(M1.B){M1 ←M2} , M2.(B{M1 ←M2})
(M.B){M1 ←M2} , M.(B{M1 ←M2}) (if M 6= M1)

(�i∈I{Mi.Bi}){M1 ←M2} , �i∈I{(Mi.Bi){M1 ←M2}}
(Ni∈I{Mi.Bi}){M1 ←M2} , Ni∈I{(Mi.Bi){M1 ←M2}}

Definition 3.10 (Initial Label Set). The initial label set of a behavioral type B, noted
I(B), is defined as follows:

I(0) , ∅ I(B1 | B2) , I(B1) ∪ I(B2)

I(X) , ∅ I(recX .B) , I(B)

I(�i∈I{Mi.Bi}) ,
⋃

i∈I I(Mi.Bi) I(Ni∈I{Mi.Bi}) ,
⋃

i∈I I(Mi.Bi)

I(p ld(C).B) , {ld}

We discuss the key rules of the merge relation, then present its definition. Rule:

B1 # B2

B1 | B2 = B1 ./ B2

(Apart)

17

captures the composition of two independent behaviors B1 and B2, by specifying them in
parallel in the resulting merge. The behaviors are independent since they are apart #.
The merge of behaviors which are not independent must synchronize the actions that are
not independent. There are two rules that explain such synchronizations, one for messages
defined on plain labels, and the other for messages defined on shared labels. For plain
message synchronization we have the following rule:

∀i∈I(Bi = B−i ./ B+
i li ∈ Lp)

�i∈I{τ l�i (Ci).Bi} = Ni∈I{? l�i (Ci).B
−
i } ./ �i∈I{! l�i (Ci).B

+
i }

(Plain-r)

that merges a branch and choice type which are dual in an “internal” choice type, i.e., a
choice between messages with polarity τ. The continuations are merges of the corresponding
continuations of the branches and choices. Rule (Plain-r) thus allows for τ l� plain message
types (“here” internal interactions) to be separated into send ! and receive ? capabilities in
respective choice and branch constructs.

Shared message synchronization is captured by rule:

B � ! ld(C) l ∈ L?

B{! ld(C)← τ ld(C)} | ? ? ld(C) = B ./ ? ? ld(C)
(Shared -r)

which synchronizes a persistently available input message type with all the corresponding
output message types. The resulting merge is then the type obtained replacing all ! ld

message types with τ ld in B, in parallel with the persistent input message type: shared
labels synchronize and leave open the possibility for further synchronizations, expecting
further outputs from the environment, while plain message synchronization characterizes
the uniquely determined synchronization on that plain label.

The following rule ensures compatibility of persistent shared input specifications:

l ∈ L?

?? ld(C) = ?? ld(C) ./ ?? ld(C)
(SharedInp)

Thus, two persistent shared inputs may be merged if they are characterized by exactly the
same type. The following rule allows for the merge to interleave a message prefix:

M # B2 B′ | B′′ ≡ B1 ./ B2 M # B′′ I(B′) ⊆ I(B1) I(B′′) ⊆ I(B2)

M.B′ | B′′ = M.B1 ./ B2

(Shuffle-l)

Rule (Shuffle-l) explains the composition of behaviors M.B1 and B2 by first composing
B1 and B2 (since M is apart from B2 it does not interfere with B2) and second by placing
the message prefix M.B′ so as to maintain (some of) the sequentiality information originally
specified in M.B1. On one hand, no extra sequentiality may be imposed by prefixing B′

with M in the resulting merge, with respect to the one originally specified in M.B1. This
is guaranteed by condition I(B′) ⊆ I(B1), which says that the labels of the immediately
active messages of B′ are a subset of the labels of the immediately active messages of B1. On
the other hand the behavior B′′ which is specified in parallel with M has its initial actions

18

defined by a subset of the ones specified by B2, so no behaviors that occurred only in the
continuation of M will be exposed in parallel. In such way, we allow for type synchronizations
to occur in the continuation of message prefixes. The following rule:

M �# B1 B′ = B1 ./ M.B2 B = B′ ./ B3

B = B1 ./ M.B2 | B3

(MsgPar -r)

explains the merge of the parallel composition M.B2 | B3 with type B1 by first merging B1

with M.B2 then merging the resulting type with B3, provided M is not apart �# from B1.
This rule allows for several messages that are originally specified in parallel to merge with
the same thread, e.g., in the merge:

τ askPrice�(Tp).τ readVal�(Tm) =
! askPrice�(Tp).? readVal�(Tm) ./ ? askPrice�(Tp) | ! readVal�(Tm)

We may now define the behavioral types merge relation.

Definition 3.11 (Behavioral Types Merge Relation). The merge ternary relation, de-
fined on behavioral types B = B1 ./ B2, is inductively defined in Figure 8.
N.B. We omit from the Figure rules symmetric to (MsgPar -r), (MsgPar -l) and (Par).

We state some properties of the behavioral types merge relation.

Lemma 3.12. The behavioral types merge relation is commutative and associative:

(1). If B = B1 ./ B2 then B = B2 ./ B1.

(2). If B′ = B1 ./ B2 and B = B′ ./ B3 then there is B′′ such that B′′ = B2 ./ B3 and
B = B1 ./ B′′.

Proof. (1): follows immediately from the definition. (2) by induction on the derivation of
B′ = B1 ./ B2 and B = B′ ./ B3 (see Appendix A).

We show a couple of examples that illustrate how types may be merged.

Example 3.13. Consider type:

? buy�(Tp).! price�(Tm).? accept�().τ product�(Tp).! details�(Td)

which describes a process that inputs message buy, then outputs message price, then inputs
messages accept, then internally exchanges message product, and finally outputs message
details. When merged with the type:

? price�(Tm).! accept�()

specifying the dual polarities for price and accept, it yields the type:

? buy�(Tp).τ price�(Tm).τ accept�().τ product�(Tp).! details�(Td)

which specifies the composite behavior that inputs message buy, then has internal interactions
on messages price, accept and product, and finally outputs message details.

19

l ∈ L?

?? ld(C) = ?? ld(C) ./ ?? ld(C)
(SharedInp)

B � ! ld(C) l ∈ L?

B{! ld(C)← τ ld(C)} | ? ? ld(C) = B ./ ? ? ld(C)
(Shared -r)

B � ! ld(C) l ∈ L?

B{! ld(C)← τ ld(C)} | ? ? ld(C) = ? ? ld(C) ./ B
(Shared -l)

∀i∈I(Bi = B−i ./ B+
i li ∈ Lp)

�i∈I{τ l�i (Ci).Bi} = Ni∈I{? l�i (Ci).B
−
i } ./ �i∈I{! l�i (Ci).B

+
i }

(Plain-r)

∀i∈I(Bi = B+
i ./ B−i li ∈ Lp)

�i∈I{τ l�i (Ci).Bi} = �i∈I{! l�i (Ci).B
+
i } ./ Ni∈I{? l�i (Ci).B

−
i }

(Plain-l)

M # B1 B′ | B′′ ≡ B1 ./ B2 M # B′ I(B′′) ⊆ I(B2) I(B′) ⊆ I(B1)

B′ | M.B′′ = B1 ./ M.B2

(Shuffle-r)

M # B2 B′ | B′′ ≡ B1 ./ B2 M # B′′ I(B′) ⊆ I(B1) I(B′′) ⊆ I(B2)

M.B′ | B′′ = M.B1 ./ B2

(Shuffle-l)

M �# B1 B′ = B1 ./ M.B2 B = B′ ./ B3

B = B1 ./ M.B2 | B3

(MsgPar -r)

M �# B3 B′ = M.B2 ./ B3 B = B1 ./ B′

B = B1 | M.B2 ./ B3

(MsgPar -l)

B = B1 ./ B2

recX .B = recX .B1 ./ recX .B2

(Rec)
X = X ./ X

(Var)

B′ = B1 ./ B2 B′′ = B3 ./ B4 B′# B′′

B′ | B′′ = (B1 | B3) ./ (B2 | B4)
(Par)

B1 # B2

B1 | B2 = B1 ./ B2

(Apart)

Figure 8: Behavioral Type Merge Relation Rules.

20

Example 3.14. Consider the type:

! buy(Tp).? price(Tm).? details(Td)

which characterizes a process that outputs message buy, then inputs messages price and
details. When merged with the type:

? product(Tp).! details(Td)

which characterizes a process that inputs message product and then outputs message details,
we obtain type (among other possibilities):

! buy(Tp).? price(Tm) | ? product(Tp).τ details(Td)

where message details is specified to be internally exchanged after the reception of message
product. In such case, the original sequentiality information tells us that the reception of
message details happens after the reception of message price and also that the emission
of message details happens after the reception of message product. Since product and
price are temporally unrelated, details will be specified after one or the other. Thus, the
above merge may also yield:

! buy(Tp).? price(Tm).τ details(Td) | ? product(Tp)

Such merges are explained by rule (Shuffle) which allow us to shuffle messages on the left-
and right-hand sides, while making sure that no extra sequentiality is imposed.

The type system relies on a merge relation between process types, which lifts the merge
between behavioral types by realizing per conversation behavioral type merges. We first
define the domain of a located type.

Definition 3.15 (Domain of a Process Type). The domain of a process type T , noted
dom(T), is defined as follows:

dom(T) , {n | T ≡ T ′ | n : C}

Definition 3.16 (Process Types Merge Relation). The merge relation T = T1 ./ T2

between process types is inductively defined as follows:

B = B1 ./ B2

n : [B] = n : [B1] ./ n : [B2]
T = T ./ 0 T = 0 ./ T

dom(L1) # dom(L2)

L1 | L2 = L1 ./ L2

∀i∈1,2 Li = L+
i ./ L−i dom(L1) # dom(L2)

L1 | L2 = L+
1 | L+

2 ./ L−1 | L−2

B = B1 ./ B2 L = L1 ./ L2

L | B = L1 | B1 ./ L2 | B2

We define closed behavioral types which characterize processes that have matching re-
ceives for all sends.

21

Definition 3.17 (Closed Types). We say a behavioral type B is closed, noted closed(B),
if for any message type (p ld(C)) such that (p ld(C)) ∈ MsgL(B) then either p = τ, or p = ?

and l ∈ L? and B <: B′ | ? ? ld(C). We say a process type T is closed, noted closed(T), if
for any type B such that T ≡ T ′ | n : [B] we have closed(B).

Figure 9 presents our typing rules. Rule (Par) types the parallel composition by merging
the types of the branches. In rule (Res) we use closed(B), to avoid hiding conversation names
where unmatched communications still persist (necessary to ensure deadlock absence). In
rule (Rec) by LM we denote a located type of the form n1 : [M?

1] | . . . | nk : [M?
k], then by

?LM we denote n1 : [?M?
1] | . . . | nk : [?M?

k]. The rule states that the process is well-typed
under an environment that offers persistent messages Mi under conversations ni, and offers
persistent behavior B in the current conversation. Recursive processes define the intended
shared behavior using shared messages, in such a way to allow several instances of the
(shared part) of the recursive process to be concurrently active - the types of these several
instances must be apart # (see Definition 3.5).

Rule (Piece) types a (piece of a) conversation. Process P expects some behavior located
in conversations L, and some behavior B in the current conversation. The type in the
conclusion is obtained by merging the process type L with a type that describes the behavior
of the new conversation piece, in parallel with the type of the top-level conversation, the
now current conversation. Essentially the type of each projection (along the two directions)
is collected appropriately: the “here” behavior projection �B is the behavior in conversation
n, and the “up” behavior projection � of P becomes the “here” behavior at the top-level
conversation, via loc(� B). Type loc(B) is obtained from B by setting the direction of all
messages in B to �.

In rule (Input) the premise states that processes Pi require some located behavior L,
some current conversation behavior Bi, and some behavior at conversation xi. Then, the
conclusion states that the input summation process is well-typed under type L, with the
behavior interface becoming the branch of the types of the continuations prefixed by the
messages ? ldi (Ci). In rule (Output) notice that the context type is a separate ./ view of
the context, which means that the type being sent may actually be some separate part of
the type of some conversation, which will be (partially) delegated away. This mechanism is
crucial to allow external partners to join in on ongoing conversations in a disciplined way.
The behavioral interface of the output prefixed process is a choice type, where one of the
choices corresponds to the message specified in the output prefix, and after which proceeds
as specified in the type of the continuation of the output prefix.

Notice the asymmetry between the (Output) and (Input) rules: while we can safely
consider that the process chooses the specified action in between any set of choices that
contains it, we cannot forget some branches in the branch type, since this would allow
undesired matches between choice and branch types. If a process does not fully reveal the
branches it offers, then placing such process in an environment that may actually choose the
“forgotten” branch may give rise to unexpected behaviors, i.e., behaviors not described by
the type (cf., [12] where a similar problem arises in contract compliance).

22

P :: T1 Q :: T2

P | Q :: T1 ./ T2

(Par)
0 :: 0

(Stop)

P :: T | a : [B] (closed(B), a 6∈ dom(T))

(νa)P :: T
(Res)

P :: LM | B〈X 〉
recX .P :: ?LM | recX .B〈X 〉

(Rec)
X :: X

(RecVar)

P :: L | B

n J [P] :: (L ./ n : [�B]) | loc(�B)
(Piece)

∀i∈I(Pi :: L | Bi | xi : Ci (xi 6∈ dom(L)))

Σi∈I ldi ?(xi).Pi :: L | Ni∈I{? ldi (Ci).Bi}
(Input)

P :: L | B (∃j ∈ I.Mj.Bj = ! ld(C).B)

ld!(n).P :: (L ./ n : C) | �i∈I{Mi.Bi}
(Output)

P :: L | B1 | x : [B2] (x 6∈ dom(L))

this(x).P :: L | (B1 ./ B2)
(This)

P :: T1 T1 <: T2

P :: T2

(Sub)

Figure 9: Typing Rules.

Rule (This) types the conversation awareness primitive, requiring behavior B2 of con-
versation x to be a separate (in general, just partial) view of the current conversation. This
allows to bind the current conversation to name x, and possibly send it to other parties that
may need to join it.

Our subject reduction result (Theorem 3.20) relies on a notion of reduction on types,
since each reduction step at the process level may require a modification in the typing, as
expected from a behavioral type system.

Definition 3.18 (Type Reduction). The type reduction relation between process types,
noted T1 → T2, is the least relation that satisfies the rules of Figure 10.

We describe type reduction. Essentially, a synchronization at the process level is char-
acterized by the reduction of the corresponding τ message type (1). The reduction can take
place at the level of a choice type (2) (we use B̃ to abbreviate B1; B2; . . . ; Bk). We also have
the expected congruence rules (3) and (4), and a rule that closes type reduction under type
equivalence (5). The type reduction relation is reflexive (6): in such way we characterize
reductions in a part of the type which is not visible (i.e., under a restricted conversation).

23

τ ld(C).B → B (1)
B → B′

�{B̃1; B; B̃2} → B′
(2)

B1 → B2

n : [B1]→ n : [B2]
(3)

T1 → T2

T1 | T3 → T2 | T3

(4)
T1 ≡ T ′1 → T ′2 ≡ T2

T1 → T2

(5) T → T (6)

Figure 10: Type Reduction.

We may now present our main soundness results. We state a Substitution Lemma, the
main auxiliary result to Subject Reduction (Theorem 3.20).

Lemma 3.19 (Substitution). Let P be a well-typed process such that P :: T | x : C,
for x 6∈ dom(T) and types T,C. If there is type T ′ such that T ′ = T ./ a : C then
P{x← a} :: T ′.

Proof. By induction on the length of the derivation of P :: T | x : C (see Appendix A).

We may now state our Subject Reduction result.

Theorem 3.20 (Subject Reduction). Let P be a process and T a type such that P :: T .
If P → Q then there is type T ′ such that T → T ′ and Q :: T ′.

Proof. By induction on the derivation of the reduction P → Q (see Appendix A).

Our safety result asserts certain error processes are unreachable from well-typed pro-
cesses. To define error processes we introduce static process contexts.

Definition 3.21 (Static Context). Static process contexts, noted C[·], are defined as fol-
lows:

C[·] ::= (νa)C[·]
∣∣ P | C[·]

∣∣ c J [C[·]]
∣∣ recX .C[·]

∣∣ ·
We also use w(λ) to denote the sequence c ld of elements in the action label λ, for example
w((νa)c ld!(a)) = c ld and w((νa)ld!(a)) = ld.

Definition 3.22 (Error Process). P is an error process if there is a static context C with

P = C[Q | R] and there are Q′, R′, λ1, λ2 such that Q λ1−→ Q′, R λ2−→ R′ and w(λ) = w(λ′),

λ 6= λ′ and w(λ) is not defined with a shared label.

A process is not an error only if for each possible immediate interaction in a plain message
there is at most a single sender and a single receiver.

Proposition 3.23 (Error Freeness). Let P be a process. If there is T such that P :: T
then P is not an error process.

24

Proof. The result follows from the definition of merge ./. A parallel composition is well typed
if the types of the parallel branches can be merged. Since it is not possible to synchronize
message types with the same polarity (which is the case for competing messages) and such
types are not apart # (the label sets are not disjoint) it is not possible to merge them.
Hence the composition of processes that exhibit competing messages is not typable.

By subject reduction (Theorem 3.20), we conclude that any process reachable from a

well-typed process P :: T is not an error (
∗→ denotes the reflexive transitive closure of →).

Corollary 3.24 (Type Safety). Let P be a process such that P :: T for some T . If there

is Q such that P
∗→ Q, then Q is not an error process.

Proof. Immediate from Theorem 3.20 and Proposition 3.23.

Our type safety result ensures that, in any reduction sequence arising from a well-typed
process, for each plain-labeled message ready to communicate there is always at most a
unique input / output outstanding synchronization. More: arbitrary interactions in shared
labels do not invalidate this invariant. Another consequence of subject reduction (Theo-
rem 3.20) is that any message exchange inside the process must be explained by a τM prefix
in the related conversation type (via type reduction), thus implying conversation fidelity,
i.e., all conversations follow the prescribed protocols.

Corollary 3.25 (Conversation Fidelity). Let P be a process such that P :: T for some
T . Then all conversations in P follow the protocols prescribed by T .

Example 3.26. Consider for instance the typing for the purchase conversation presented
in the Introduction:

τ buy(Tp).τ price(Tm).τ product(Tp).τ details(Td)

Such a (closed) type characterizes the global interaction scheme (the choreography) of the
interaction between parties Buyer, Seller and Shipper. In the light of Theorem 3.20 we then
have that each interaction in the process is explained by a reduction of a τ message type. For
instance, when message buy is exchanged between Buyer and Seller, such synchronization
in the process is explained by the following reduction in the type:

τ buy(Tp).τ price(Tm).τ product(Tp).τ details(Td)
→
τ price(Tm).τ product(Tp).τ details(Td)

after which the synchronization in message price is explained by the following type reduction:

τ price(Tm).τ product(Tp).τ details(Td)
→
τ product(Tp).τ details(Td)

and so on and so forth in the successive synchronizations. Thus, the type reductions actually
capture the evolution of the choreographies throughout system execution.

25

P :: L | B

def s⇒ P :: L | ? s�([�B]).(loc(�B))
(Def)

P :: L | B (closed(�B ./ B1))

new n · s⇐ P :: L | n : [! s�([B1])] | loc(�B)
(New)

P :: L | B

join n · s⇐ P :: L | n : [! s�([B1])] | (B ./ B1)
(Join)

def s⇒ P :: LM | ? s�(C).B

?def s⇒ P :: ?LM | recX .? s�(C).(B | X)
(RepDef)

Figure 11: Derived Typings.

In the expected polyadic extension of core CC and type system, considering also basic
values and basic types, we would also exclude arity mismatch and type mismatch errors.

Remark 3.27. Extending the conversation type language with basic types at the level of
argument message types (e.g., C ::= [B]

∣∣ Int ∣∣ String ∣∣ . . .) would directly allow us to
exclude systems where message argument types mismatch (via conformance � and merge
./). To type identifiers which carry basic types we would impose a conformance check—such
identifiers are always used with the same type—and exclude their use as conversation names.

An essential property of any type system is the ability to automate the type checking
procedure. Although we have not yet fully addressed the implementation issues, we may
already state a crucial property that asserts the existence of such a type checking procedure.

Theorem 3.28 (Decidability of Type Checking). Let P be a process where all bound
names are type annotated. Then checking if P :: T for some T is decidable.

Proof. By induction on the derivation of P :: T , following expected lines.

We prove decidability of our system, if binders are type annotated. This is an expected
result, since our typing rules are syntax-directed, our merge relation is finitary, and typability
is witnessed by a proof tree (as usual).

3.1. Derived Typings for Service Idioms

We show in Figure 11 the typing rules for the service idioms defined in Figure 5. Notice
that these are admissible rules, mechanically derived from the typings of the encodings, not
primitive rules. It is remarkable that the typings of these idiomatic constructs, defined from
the small set of primitives in the core CC, admit the intended high level typings. Ignoring
the continuation loc(�B), the type of a service definition def has the form ? s([S]), where S
describes the service behavior. The dual type is required for a service instantiation, of the
form ! s([S]). However, such type must be located at some context n, cf. the semantics of the

26

Bc , τ buy(Tp).τ price(Tm).τ product(Tp).τ details(Td)

Bbu , ! buy(Tp).? price(Tm).? details(Td)

Bss , ? buy(Tp).! price(Tm).τ product(Tp).! details(Td)

Bse , ? buy(Tp).! price(Tm).! product(Tp)

Bsh , ? product(Tp).! details(Td)

Tbu , Seller : [! startBuy([Bss])]

Tse , Seller : [? startBuy([Bss]).Bdb]
| Shipper : [! newDelivery([Bsh])]

Tsh , Shipper : [? newDelivery([Bsh])]

Tsys , Seller : [τ startBuy([Bss]).Bdb]
| Shipper : [τ newDelivery([Bsh])]

Buyer :: Tbu Seller :: Tse Shipper :: Tsh

BuySystem :: Tsys

Figure 12: Typings for the Buy System.

new idiom. The typing for join clearly displays the partial delegation of a conversation type
fragment: B1 represents the conversation type defining the participation of the incoming
partner, while B specifies the residual that remains owned by the current process.

3.2. Typing Conversations

We illustrate the expressiveness of our type system by typing a couple of examples.

3.2.1. The Purchase Conversation

In Figure 12 we depict the types for the Buyer -Seller -Shipper example shown in Sec-
tion 1.1. The type Bc describes all the interactions that take place under the three-party
conversation, which consist in the sequence of internal actions on messages buy, price,
product and details. Upon startBuy service instantiation the overall conversation type
Bc is separated, so that Buyer retains its role in the conversation (Bbu) and Seller gets the
rest of the conversation’s behavioral type (Bss). The separation is such that Bc = Bbu ./ Bss .

The type of the Buyer role in the conversation is then given by type Bbu , which specifies
that Buyer first outputs message buy, then receives messages price and details. Notice
that the type makes no explicit mention of who is the communicating partner, allowing
for whoever to fulfill the intended protocol. Type Bss , which specifies the behavior of the
subsystem consisting of Seller and Shipper , is dual to Bbu in messages buy, price and
details, and accounts for the internal interaction between Seller and Shipper in message
product. Type Bss is further separated in the type of the Seller role in the conversation
(Bse) and the type of the Shipper role in the conversation (Bsh), such that Bss = Bse ./ Bsh .
When Shipper is asked to join in on the ongoing conversation it will be assigned the type of
its own role in the conversation Bsh .

27

Client J [
new NewsSite · Newsfeed⇐

rec X .post?(info).X]
|
NewsSite J [

?def Newsfeed⇒
rec X .join NewsPortal · NewsService⇐ X]

|
BBC J [

NewsPortal J [
?def NewsService⇒ post!(info)]]

|
CNN J [

NewsPortal J [
?def NewsService⇒ post!(info)]]

Figure 13: The Newsfeed Conversation CC Code.

The types of each individual party are then Tbu , Tse and Tsh , for Buyer , Seller and
Shipper , respectively. The type specified in the service message startBuy is then the type
of the Seller -Shipper subsystem Bss and the type of the service message newDelivery is
the type of the Shipper role in the conversation Bsh . To type the Seller participant we
consider the type of the PriceDB process to be ? askPrice(Tp).! readVal(Tm) so that
the merge with the startBuy service “up” interface results in type Bdb , such that Bdb ,
τ askPrice(Tp).τ readVal(Tm). The type of the whole system is then given by Tsys which
specifies the two service instantiations as internal interactions τ.

3.2.2. The Newsfeed Conversation

Our next example shows a scenario where an unbounded number of parties may join
a single conversation. We consider a Newsfeed service that, upon instantiation, asks an
undetermined number of news service providers to join the conversation. Each one of the
news service providers that joins the conversation sends a message post (containing some
news information) that is picked up by the Newsfeed service client.

The CC implementation of this scenario is given in Figure 13. We define two particular
news service providers (BBC and CNN) but the system is open to an unbounded number
of such news providers. Notice that the Newsfeed service code continuously calls external
news services to join in the conversation, and, in particular, countless copies of BBC and
CNN news services may get to join the conversation. Notice also that the Newsfeed service
client is continuously able to receive post messages, regardless of who is sending them.

The conversation types that capture the Newsfeed interaction are shown in Figure 14.
The type of the Newsfeed conversation (given by NewsfeedConversationT) says that in-
finitely many post messages are exchanged, and that the system is still open to receive
further post messages. Type NewsfeedConversationT is split in the types of the Newsfeed

28

NewsfeedConversationT , ?? post(infoT) | ?τ post(infoT)

NewsfeedClientT , ?? post(infoT)

NewsfeedServiceT , ?! post(infoT)

NewsServiceT , ! post(infoT)

Client :: NewsSite : [! Newsfeed([NewsfeedServiceT])]

NewsSite :: NewsSite : [?? Newsfeed([NewsfeedServiceT])]
| NewsPortal : [?! NewsService([NewsServiceT])]

BBC :: NewsPortal : [?? NewsService([NewsServiceT])]

CNN :: NewsPortal : [?? NewsService([NewsServiceT])]

NewsfeedSystem
::
NewsSite : [τ Newsfeed([NewsfeedServiceT]) | ?? Newsfeed([NewsfeedServiceT])]
|
NewsPortal : [?τ NewsService([NewsServiceT]) | ?? NewsService([NewsServiceT])]

Figure 14: The Newsfeed System Typing.

client and provider, where the first specifies the reception and the second the emission (both
infinitely many times) of message post. The contribution of each NewsService is charac-
terized by type NewsServiceT which specifies the output of a single post message.

The typings of the four participants individually specify that: the Client expects a
Newsfeed service is available at conversation NewsSite; the NewsSite publishes a Newsfeed

service and uses (an infinite number of times) service NewsService available at the conversa-
tion NewsPortal ; both BBC and CNN publish NewsService in the conversation NewsPortal .
The typing for the whole system (NewsfeedSystem) specifies the interactions in the services
Newsfeed and NewsService in the conversations NewsSite and NewsPortal , respectively.

4. Progress

In this section, we develop an auxiliary proof system to enforce progress properties
on systems. As most traditional deadlock detection methods (e.g., see [14, 23, 25]), we
build on the construction of a well-founded ordering on events. In our case, events are
message synchronizations occurring under conversations. Thus the ordering must relate
pairs (conversation identifier,message label), which allows us to cope with systems with
multiple interleaved conversations, and back and forth communications between two or more
conversations in the same thread. Since references to conversations can be passed in message

29

synchronization, the ordering also considers for each message the ordering associated to the
conversation which is communicated in the message. These ingredients allow us to check
that all events in the continuation of a prefix are of greater rank than the event of the prefix,
thus guaranteeing that the event dependencies are acyclic.

We motivate our development with an example. Consider the following specification:

Amazon J [buy�?(product).price�!(price).eBay J [buy�!(product).price�?(p)]]

representing an application that is trying to sell some product at Amazon and then uses
eBay to restock the bought item. Consider another application performing a similar task:

eBay J [buy�?(product).price�!(price).Amazon J [buy�!(product).price�?(p)]]

The only difference with respect to the previous process is that this one is working the
other way around: selling at eBay and restocking at Amazon. When considering the system
obtained by composing these two processes in parallel we may observe that the system is
deadlocked since both processes are waiting to receive a message. Notice, however, that
well-defined conversation protocols are followed (τ buy�(Tp).τ price�(Tm) in each conver-
sation). For the first process we have that the underlying event ordering is such that event
Amazon.buy is smaller than Amazon.price, and so forth, which we denote by:

Amazon.buy ≺ Amazon.price ≺ eBay .buy ≺ eBay .price

Instead for the second process the event ordering is such that

eBay .buy ≺ eBay .price ≺ Amazon.buy ≺ Amazon.price

Thus, to satisfy the requirements of both processes, an ordering would have to be such that:

Amazon.buy ≺ . . . ≺ eBay .buy ≺ . . . ≺ Amazon.buy ≺ . . .

which is not well-founded. In fact there is no well-founded ordering for the parallel compo-
sition of the two processes given above. In this simple example the deadlock is perhaps easy
to detect, however when the interleaving is performed over conversations which will only
be dynamically instantiated then detecting such deadlocked configurations is harder, as the
next example illustrates. Consider a variation of the previous code:

eBayReseller J [
sellAt�?(x).

x J [buy�?(product).price�!(price).eBay J [buy�!(product).price�?(p)]]]

that specifies a purchase broker eBayReseller that performs the previously described func-
tionality: sell in a conversation, restock in another. However, the conversation in which the
broker is to sell at is now instructed by a user of the broker, by means of message sellAt,

30

while the restocking is performed at eBay . The code for a similar broker that restocks at
Amazon is:

AmazonReseller J [
sellAt�?(x).

x J [buy�?(product).price�!(price).Amazon J [buy�!(product).price�?(p)]]]

If we consider the system obtained by composing the two brokers in parallel then the problem
is not evident anymore, since it depends on the conversations where the brokers will sell at,
namely if placed in parallel with the process:

eBayReseller J [sellAt�!(Amazon)] | AmazonReseller J [sellAt�!(eBay)]

then the system will end up in a deadlocked configuration similar to the one shown before.
The problem in this example can only be detected if we analyze how the conversation

references being passed along must be ordered. The event ordering for the eBayReseller must
be such that x .buy ≺ x .price ≺ eBay .buy ≺ eBay .price so any name instantiation of x
must respect this ordering. Likewise for AmazonReseller we have the following prescribed
ordering: x .buy ≺ x .price ≺ Amazon.buy ≺ Amazon.price. Technically, we proceed by
attaching such orderings to the events where the conversation references are passed, e.g.,:

eBayReseller .sellAt.(x)(x .buy ≺ x .price ≺ eBay .buy ≺ eBay .price)
and

AmazonReseller .sellAt.(x)(x .buy ≺ x .price ≺ Amazon.buy ≺ Amazon.price)

which then allows us to check if the name that is actually sent in such a message re-
spects (or not) the ordering expected by the process that receives the name. We may
thus exclude the resellers system with our technique, since there is no such well-founded
ordering for the events in the system: name Amazon is sent in event eBayReseller .sellAt
where a conversation x is expected such that x.buy ≺ . . . ≺ eBay .buy, and name eBay
is sent in event AmazonReseller .sellAt where a conversation x is expected such that
x.buy ≺ . . . ≺ Amazon.buy.

The proof system, depicted in Figure 15, is presented by means of judgments of the
form Γ `` P . The judgment Γ `` P states that the communications of process P follow a
well-determined order, specified by Γ. In such a judgment we note by Γ an event ordering: a
well-founded partial order of events. Events consist of both a pair (name,label) ((Λ∪V)×L)
and an event ordering abstraction, i.e., a parameterized event ordering, noted (x)Γ (where
x is a binding occurrence with scope Γ), which represents the ordering of the conversation
which is to be communicated in the message. We range over events with e, e1, . . . and denote
by n.l.(x)Γ an event where n is the conversation name, l is the message label and (x)Γ is the
event ordering abstraction. In Γ `` P , we use ` to keep track of the names of the current
conversation (`(�)) and of the enclosing conversation (`(�)); if ` = (n, m) then `(�) = n
and `(�) = m. We reserve variables z′, z to represent the top-level conversation, so initial
judgments are of the form Γ `(z′,z) P . We define some operations over event orderings Γ.

31

Γ `` P Γ `` Q

Γ `` P | Q
(Par)

Γ `` 0
(Stop)

Γ `` P

Γ \ a `` (νa)P
(Res)

Γ `(`(�),n) P

Γ `` n J [P]
(Piece)

Γ `` P

Γ `` recX .P
(Rec)

X ∈ χu

Γ `` recX .P
(RecUnfold)

Γ `` X
(RecVar)

∀i∈I((`(d).li.(y)Γ′i⊥Γ) ∪ Γ′i{y ← xi} `` Pi)

Γ `` Σi∈I ldi ?(xi).Pi

(Input)

(`(d).l.(x)Γ′⊥Γ) `` P Γ′{x← n} ⊆ (`(d).l.(x)Γ′⊥Γ)

Γ `` ld!(n).P
(Output)

Γ ∪ {(e1 ≺ e2) | (e1{x← `(�)} ≺Γ e2{x← `(�)})} `` P (`(�) 6= z)

Γ `` this(x).P
(This)

Figure 15: Proof Rules for Progress.

Definition 4.1. Given event ordering Γ and conversation name n we denote by Γ \ n the
event ordering obtained from Γ by removing all events that have as conversation identifier
the name n, while keeping the overall ordering, defined as follows:

Γ \ n , {(e1(m) ≺ e2(o)) | (e1(m) ≺Γ e2(o)) ∧ n 6= m ∧ n 6= o}

By e1 ≺Γ e2 we denote that e1 is smaller than e2 under Γ, and by e(n) an event of conversation
n, i.e., e is of the form n.l.(x)Γ for some l and (x)Γ.

Definition 4.2. The domain of an event ordering Γ, noted dom(Γ), is the set of events
which are related by Γ, defined as follows:

dom(Γ) , {e | ∃e′.(e≺Γ e′) or (e′≺Γ e)}

Definition 4.3. Given event e and event ordering Γ such that e ∈ dom(Γ) we define e⊥Γ
as the subrelation of Γ where all events are greater than e, as follows:

e⊥Γ , {(e1 ≺ e2) | (e1 ≺Γ e2) ∧ (e≺Γ e1)}

We discuss the key proof rules of Figure 15. In rule (Res) the event ordering considered
in the conclusion is obtained from the one in the premise by removing all events that have as
conversation the restricted name a. In rule (Piece) the current conversation and enclosing
conversation are updated, so that in the premise the current conversation is n and the
enclosing conversation is `(�), which is the current conversation in the conclusion. Rule
(Rec) states a recursive process is well-ordered if the body is well-ordered. Instead in rule
(RecUnfold) a recursive process that originates from an unfolding is always well-ordered:

32

we verify the ordering of the recursive process body only once. To simplify presentation,
we consider that each time a recursive definition is unfolded then the recursion variable is
replaced by a variable from a dedicated set χu (χu ⊆ χ), so as to distinguish unfoldings.

Rules (Input) and (Output) ensure that communications originating in the continuations,
including the ones in the conversation being received/sent, are of a greater order. In rule
(Input) the event ordering considered in the premise is such that it contains elements greater
than `(d).li.(y)Γ′i, the event associated with the input, enlarged with the event ordering
abstraction (y)Γ′ of the event associated with the input, where the bound y is replaced by
the input parameter xi. Notice that `(d).li.(y)Γ′i is necessarily in the domain of the event
ordering Γ, by definition of `(d).li.(y)Γ′i⊥Γ. In rule (Output) the event ordering considered
in the premise is such that it contains elements greater than `(d).l.(x)Γ′, the event associated
to the output. Also the premise states that the event ordering abstraction (x)Γ′ of the event
associated to the output is a subrelation of the event ordering Γ, when the parameter x is
replaced by the name to be sent in the output n. Again, notice that `(d).li.(x)Γ′ is necessarily
in the domain of the event ordering Γ, by definition of `(d).li.(x)Γ′⊥Γ.

Rule (This) ensures that interactions in conversation x follow the ordering defined for the
current conversation. The event ordering given in the premise is enlarged with events which
have as conversation x, following the ordering given for events that have as conversation
`(�). Condition `(�) 6= z ensures the this is inside a conversation piece (not at top-level).

We may now present our progress results, starting by Theorem 4.5 which states that
orderings are preserved in reductions, and its auxiliary Substitution Lemma.

Lemma 4.4 (Substitution). Let P be a process and Γ, Γ′ event orderings such that Γ ∪
Γ′ `` P and Γ′{x← n} ⊆ Γ. Then Γ ``{x←n} P{x← n}.

Proof. By induction on the structure of P . Essentially, Γ′{x ← n} ⊆ Γ ensures that the
ordering prescribed for n in Γ copes with the ordering required for x (see Appendix B).

Theorem 4.5 (Preservation of Event Ordering). Let P be a process and Γ an event
ordering such that Γ `` P , for some `. If P → Q then Γ `` Q.

Proof. By induction on the length of the derivation of the reduction (see Appendix B).

In order to characterize the absence of stuck processes, we first need to distinguish
finished processes from stuck processes.

Definition 4.6 (Finished Process). P is a finished process if for any static context C and
process Q such that P = C[Q] then Q has no immediate output (λ = ld!(a)) transitions.

Finished processes have no reductions and also have no pending requests (outputs), hence
are in a stable state, but may have some active inputs (e.g., persistent definitions).

Theorem 4.7 (Progress). Let P be a well-typed process such that P :: T , where closed(T),
and Γ an event ordering such that Γ `(z′,z) P . If P is not a finished process then P → Q.

33

Proof. The result follows from auxiliary Lemmas (see Appendix B).

Theorem 4.7 ensures that well-typed and well-ordered processes are never stuck on an
output that has no matching input. This property entails that services are always available
upon request and protocols involving interleaving conversations never get stuck. As for
conversation type-checking the procedure to check if Γ `` P is decidable, provided bound
names are annotated with the orderings.

4.1. Proving Progress in Conversations

In this section we revisit the running example to show it enjoys the progress property.
For the Buyer -Seller -Shipper example of Section 1.1, which we denote by BuySystem, we
have that BuySystem :: Tsys and closed(Tsys) (see Figure 12).

We consider Γ is such that:

Seller .startBuy.(x1)Γ1≺Γ Seller .askPrice≺Γ

Seller .readVal≺Γ Shipper .newDelivery.(x2)Γ2

where Γ1 describes the ordering of the conversation which is passed in the startBuy ser-
vice instantiation and Γ2 describes the ordering of the conversation which is passed in the
newDelivery service instantiation (we omit the associate event ordering of events when it
is empty, e.g., in events Seller .askPrice and Seller .readVal).

We then have that Γ2 is such that:

x2.product≺Γ2 x2.details

which captures the ordering of the events associated to the Shipper , and Γ1 is such that:

x1.buy≺Γ1 Seller .askPrice≺Γ1 Seller .readVal≺Γ1 x1.price≺Γ1

Shipper .newDelivery.(x2)Γ2≺Γ1 x1.product≺Γ1 x1.details

which captures the ordering of the events associated to the Seller -Shipper subsystem (recall
that Seller dynamically invites Shipper to join the conversation). When analyzing within
the scope of the restricted name corresponding to the service conversation, which we identify
with name c, Γ is extended to Γ′ such that:

Seller .startBuy.(x1)Γ1≺Γ′ c.buy≺Γ′ Seller .askPrice≺Γ′ Seller .readVal≺Γ′

c.price≺Γ′ Shipper .newDelivery.(x2)Γ2≺Γ′ c.product≺Γ′ c.details

Notice such ordering corresponds to the vertical timeline of the message sequence chart
shown in Figure 1. We can then state Γ `` BuySystem which combined with BuySystem ::
Tsys and closed(Tsys) guarantees, considering the results of Theorem 4.5 and Theorem 4.7,
that the process BuySystem reduces endlessly, or until it is a finished process.

Notice our progress results apply to systems where conversations can be interleaved, in-
cluding delegated conversations. For instance, consider the Seller code which interleaves the
received service conversation with the enclosing conversation (to access the price database)
and with conversation Shipper (to ask Shipper to join in the ongoing conversation).

34

P, Q, R ::= 0 (Inaction)

| P | Q (Parallel Composition)

| (νa)P (Name Restriction)

| recX .P (Recursion)

| X (Variable)

| Σi∈I αi.Pi (Prefix Guarded Choice)

α ::= n · l!(m) (Output)

| n · l?(x) (Input)

Figure 16: The Labeled π-calculus (πlab-calculus) Syntax.

5. Conversation Types in a Labeled π-calculus

Our general framework of conversations was developed having in mind our view of service
oriented computing as modeled by the CC. In this section, we describe how the key ideas
behind conversation types can be reproduced in a more canonical and simpler model, an
elementary labeled π-calculus, thus showing how the generalization of binary session types
to conversations types are not specific to the core CC, in the same way as session types is not
specific to the π-calculus with session constructs (cf., [11]), and may conceivably be imposed
in a π-calculus with labels. We start by presenting the labeled π-calculus (πlab-calculus),
which is an extension of the π-calculus obtained by indexing channel communication with
labels.

The syntax of the πlab-calculus is shown in Figure 16. We reuse names, variables, labels
and process variables from the syntax of core CC—Definition 2.1. Notice the only differ-
ence of the πlab-calculus with respect to the π-calculus is the label l suffix of channel n
communications.

We briefly describe the operational semantics of the πlab-calculus. The operational se-
mantics of the πlab-calculus is defined by means of a labeled transition system. A transition
P λ−→ Q states that process P may evolve to process Q by performing the action represented
by the transition label λ. Transition labels are defined as follows:

λ ::= τ | c · l!(a) | c · l?(a) | (νa)λ

Transition labels represent internal interaction (τ), and interactions with the external envi-
ronment, either output (c · l!(a)) or input (c · l?(a)) , and may carry a bound name ((νa)λ).

The transition relation (P λ−→ Q) is the least relation that satisfies the rules of Figure 3,
where rules (Out) and (In) are replaced by the following:

c · l!(a).P
c·l!(a)−→ P (Out) c · l?(x).P

c·l?(a)−→ P{x← a} (In)

The main difference with respect to core CC is that communications in the πlab-calculus are
located a priori, unlike in core CC where communications’ location depends on contextual

35

information. Notice that πlab-calculus processes can be translated into core CC processes
by encoding the inputs and outputs through the combination of conversation contexts and
labeled messages:

Jn · l!(m).P K , n J [l!(m).JP K] Jn · l?(x).P K , n J [l?(x).JP K]

However, the typing analysis presented in Section 3 is (as usual) driven by syntactic in-
formation, and uses information about the current (contextually determined) conversation
which cannot be represented in the πlab-calculus, so some care is needed in the application
of conversation type analysis of the πlab-calculus. On the other hand the progress proof
system presented in Section 4 can be directly applied to the πlab-calculus. We discuss such
applications in the following sections.

5.1. Conversation Types for the πlab-calculus

In this section we show how the conversation types presented in Section 3 can be used
to type πlab systems. We consider the direct restriction of our type language and operators
to messages defined exclusively with � direction (which is the same as no direction at all).

We characterize the interactions that a πlab-calculus process has in a determined channel
n by means of a located type n : [B], where B is the behavioral type that collects the labels
and polarities of the interactions in channel n. Since πlab-calculus process communications
are originally located, the typing judgment for a πlab-calculus process P is of the form P :: L,
unlike the judgment for core CC processes which uses process types (the unlocated part)
to specify the interactions in the current conversation. Figure 17 shows the typing rules for
πlab-calculus processes.

The main differences with respect to the rules shown in Figure 9 are in rules (Output)
and (Input). While for the core CC we specify the choice or branch types (respectively) that
characterize the action prefix at the level of the current conversation (in the conclusion of the
rule), for the πlab-calculus we must specify the choice or branch types in the corresponding
located type. To that end, in the premise of rule (Output), we take a partial view of the
corresponding located type, through the merge L ./ n : [B], and use this view as the
continuation of the message interaction. In the conclusion we merge the resulting located
choice type n : [�i∈I{Mi.Bi}] back to the located type L. Likewise for rule (Input).

Intuitively, rules (Input) and (Output) for πlab-calculus processes are a combination of the
respective rules for core CC processes together with rule (Piece), which is where behaviors
get located in the core CC type system.

We state our main soundness results for the labeled π-calculus.

Theorem 5.1 (πlab-calculus Subject Reduction). Let P be a πlab-calculus process and
L a type such that P :: L. If P → Q then there is L′ such that L→ L′ and Q :: L′.

Proof. Follows the lines of the proof of Theorem 3.20.

The definition of error πlab-calculus processes follows the lines of Definition 3.22: pro-
cesses that exhibit competing linear messages.

36

P :: L1 Q :: L2

P | Q :: L1 ./ L2

(Par)
0 :: 0

(Stop)

P :: L | a : [B] (closed(B), a 6∈ dom(L))

(νa)P :: L
(Res)

P :: LM

recX .P :: ?LM

(Rec)
X :: 0

(RecVar)

∀i∈I (Pi :: (L ./ n : [Bi]) | xi : Ci (xi 6∈ dom(L)))

Σi∈I n · li?(xi).Pi :: L ./ n : [Ni∈I{? li(Ci).Bi}]
(Input)

P :: L ./ n : [B] (∃j ∈ I.Mj.Bj = ! l(C).B)

n · l!(m).P :: (L ./ n : [�i∈I{Mi.Bi}]) ./ (m : C)
(Output)

P :: L1 L1 <: L2

P :: L2

(Sub)

Figure 17: πlab-calculus Typing Rules.

Proposition 5.2 (πlab-calculus Error Freeness). Let P be a πlab-calculus process. If
there is type L such that P :: L then P is not an error process.

Proof. Follows the lines of the proof of Proposition 3.23.

Corollary 5.3 (πlab-calculus Type Safety). Let P be a πlab-calculus process such that

P :: L for some L. If there is Q such that P
∗→ Q, then Q is not an error process.

Proof. Immediate from Theorem 5.1 and Proposition 5.2.

Corollary 5.4 (Conversation Fidelity). Let P be a πlab-calculus process such that P :: L
for some L. Then all conversations in P follow the protocols prescribed by L.

5.2. Progress Analysis for the πlab-calculus

In this section we show how the progress proof system presented in Section 4 applies to
the πlab-calculus. Event orderings and their operations are exactly the same as defined in
Section 4 in this setting. The only difference is that the given communications are always
located a priori we no longer need to keep track of the current location information, so the
judgment now takes the form of Γ ` P . The rules of the progress proof system are shown
in Figure 18.

We state our progress results for the labeled π-calculus.

Theorem 5.5 (πlab-calculus Preservation of Event Ordering). Let P be a πlab-calculus
process and Γ an event ordering such that Γ ` P . If P → Q then Γ ` Q.

37

Γ ` P Γ ` Q

Γ ` P | Q
(Par)

Γ ` 0
(Stop)

Γ ` P

Γ \ a ` (νa)P
(Res)

Γ ` P

Γ ` recX .P
(Rec)

X ∈ χu

Γ ` recX .P
(RecUnfold)

Γ ` X
(RecVar)

∀i∈I((n.li.(y)Γ′i⊥Γ) ∪ Γ′i{y ← xi} ` Pi)

Γ ` Σi∈I n · li?(xi).Pi

(Input)

(n.l.(x)Γ′⊥Γ) ` P Γ′{x← m} ⊆ (n.l.(x)Γ′⊥Γ)

Γ ` n · l!(m).P
(Output)

Figure 18: πlab-calculus Proof Rules for Progress.

Proof. Follows directly from Theorem 4.5.

The definition of finished πlab-calculus processes is a direct extension of Definition 4.6:
processes that have no immediate output (λ = c l!(a)) transitions.

Theorem 5.6 (πlab-calculus Progress). Let P be a well-typed πlab-calculus process such
that P :: L, where closed(L), and Γ an event ordering such that Γ ` P . If P is not a finished
process then P → Q.

Proof. Follows the lines of the proof of Theorem 4.7.

6. Related Work

Behavioral Type Systems As most behavioral type systems (see [13, 20]), we describe a
conversation behavior by some kind of abstract process. However, fundamental ideas behind
the conversation type structure, in particular the composition / decomposition of behaviors
via merge, as captured, e.g., in the typing rule for P | Q, and used to model delegation of
conversation fragments, have not been explored before.

Binary Sessions The notion of conversation originates in that of session (introduced
in [17, 18]). Sessions are a medium for two-party interaction, where session participants
access the session through a session endpoint. On the other hand conversations are also a
single medium but for multiparty interaction, where any of the conversation participants ac-
cesses the conversation through a conversation endpoint (pieces). Session channels support
single-threaded interaction protocols between the two session participants. Conversation
contexts, on the other hand, support concurrent interaction protocols between multiple par-
ticipants. Sessions always have two endpoints, created at session initialization. Participants
can delegate their participation in a session, but the delegation is full as the delegating
party loses access to the session. Conversations also initially have two endpoints. However
the number of endpoints may increase (decrease) as participants join in on (leave) ongoing
conversations. Participants can ask a party to join in on a conversation and not lose ac-
cess to it (partial delegation). Since there are only two session participants, session types

38

may describe the entire protocol by describing the behavior of just one of the participants
(the type of the other participant is dual). Conversation types, on the other hand, describe
the interactions between multiple parties so they specify the entire conversation protocol
(a choreography description) that decomposes in the types of the several participants (e.g.,
Bt = Bbu ./ Bse ./ Bsh).

Multiparty Sessions The goals of the works [2, 3, 19] are similar to ours. To support
multiparty interaction, [19] considers multiple session channels, while [2] considers a multiple
indexed session channel, both resorting to multiple communication pathways. We follow an
essentially different approach, by letting a single medium of interaction support concurrent
multiparty interaction via labeled messages. In [2, 19] sessions are established simultaneously
between several parties through a multicast session request. As in binary sessions, session
delegation is full so the number of initial participants is kept invariant, unlike in conversations
where parties can keep joining in. The approach of [2, 19] builds on two-level descriptions
of service collaborations (global and local types), first introduced in a theory of endpoint
projection [10]. The global types mention the identities of the communicating partners,
being the types of the individual participants projections of the global type with respect to
these annotations. Our merge operation ./ is inspired by the idea of projection [10], but
we follow a different approach where “global” and “local” types are treated at the same
level in the type language and types do not explicitly mention the participants’ identities,
so that each given protocol may be realized by different sets of participants, provided that
the composition of the types of the several participants produce (via ./) the appropriate
invariant. Our approach thus supports conversations with a dynamically changing number
of partners, ensuring a higher degree of loose-coupling. We do not see how this could
be encoded in the approach of [19]. On the other hand, we believe that core CC with
conversation types can express the same kind of systems as [19].

Progress in Session Types There is a number of progress studies for binary sessions
(e.g., [1, 6, 14]), and for multiparty sessions [2, 19]. The techniques of [2, 14] are nearer to
ours as orderings on channels are imposed to guarantee the absence of cyclic dependencies.
However they disallow processes that get back to interact in a session after interacting in
another, and exclude interleaving on received sessions, while we allow processes that re-
interact in a conversation and interleave received conversations.

7. Concluding Remarks

We have presented a core typed model for expressing and analyzing service and com-
munication based systems, building on the notions of conversation, conversation context,
and context-dependent communication. We believe that, operationally, the core CC can be
seen as a specialized idiom of the π-calculus [27], if one considers π extended with labeled
channels or pattern matching. However, for the purpose of studying communication disci-
plines for service-oriented computing and their typings, it is much more convenient to adopt
a primitive conversation context construct, for it allows the conversation identity to be kept
implicit until needed.

39

Conversation types elucidate the intended dynamic structure of conversations, in particu-
lar how freshly instantiated conversations may dynamically engage and dismiss participants,
modeling in a fairly abstract way, the much lower level correlation mechanisms available in
Web-Services technology. Conversation types also describe the information and control flow
of general service-based collaborations, in particular they may describe the behavior of or-
chestrations and choreographies. We have established subject reduction and type safety
theorems, which entail that well-typed systems follow the defined protocols. We also have
studied a progress property, proving that well-ordered systems never get stuck, even when
participants are engaged in multiple interleaved conversations, as is often the case in applica-
tions. Conversation types extend the notion of binary session types to multiple participants,
but discipline their communication by exploiting distinctions between labeled messages in a
single shared communication medium, rather than by introducing multiple or indexed com-
munication channels, where interaction in each one is captured by a more traditional session
type, as, e.g., [19]. This approach allows us to unify the notions of global type and local
type, and type highly dynamic scenarios of multiparty concurrent conversations not covered
by other approaches. On the other hand, being more abstract and uniform, our type system
does not explicitly keep track of participants’ identities. It would be interesting to investi-
gate to what extent both approaches could be conciliated, for instance, by specializing our
approach so as to consider extra constraints on projections on types and merges, restricting
particular message exchanges to some roles.

Acknowledgments We acknowledge CITI, IP Sensoria and CMU-PT. We thank Mariangiola
Dezani-Ciancaglini and Nobuko Yoshida for insightful discussions, and the anonymous ref-
erees for their detailed remarks.

References

[1] L. Acciai and M. Boreale. A Type System for Client Progress in a Service-Oriented Calculus. In
P. Degano, R. De Nicola, and J. Meseguer, editors, Concurrency, Graphs and Models, Essays Dedicated
to Ugo Montanari on the Occasion of His 65th Birthday, volume 5065 of Lecture Notes in Computer
Science, pages 642–658. Springer-Verlag, 2008.

[2] L. Bettini, M. Coppo, L. D’Antoni, M. De Luca, M. Dezani-Ciancaglini, and N. Yoshida. Global
Progress in Dynamically Interleaved Multiparty Sessions. In F. van Breugel and M. Chechik, editors,
CONCUR 2008, 19th International Conference on Concurrency Theory, Proceedings, volume 5201 of
Lecture Notes in Computer Science, pages 418–433. Springer-Verlag, 2008.

[3] E. Bonelli and A. Compagnoni. Multipoint Session Types for a Distributed Calculus. In G. Barthe and
C. Fournet, editors, Trustworthy Global Computing, Third Symposium, TGC 2007, Revised Selected
Papers, volume 4912 of Lecture Notes in Computer Science, pages 240–256. Springer-Verlag, 2008.

[4] M. Bravetti, I. Lanese, and G. Zavattaro. Contract-Driven Implementation of Choreographies. In
C. Kaklamanis and F. Nielson, editors, Trustworthy Global Computing, 4th Symposium, TGC 2008,
Revised Selected Papers, volume 5474 of Lecture Notes in Computer Science, pages 1–18. Springer-
Verlag, 2009.

[5] M. Bravetti and G. Zavattaro. A Foundational Theory of Contracts for Multi-party Service Composi-
tion. Fundamenta Informaticae, 89(4):451–478, 2008.

[6] R. Bruni and L. G. Mezzina. Types and Deadlock Freedom in a Calculus of Services, Sessions and
Pipelines. In J. Meseguer and G. Rosu, editors, Algebraic Methodology and Software Technology,

40

12th International Conference, AMAST 2008, Proceedings, volume 5140 of Lecture Notes in Computer
Science, pages 100–115. Springer-Verlag, 2008.

[7] L. Caires. Spatial-Behavioral Types for Concurrency and Resource Control in Distributed Systems.
Theoretical Computer Science, 402(2-3):120–141, 2008.

[8] L. Caires and H. T. Vieira. Conversation Types. In G. Castagna, editor, Programming Languages and
Systems, 18th European Symposium on Programming, ESOP 2009, Proceedings, volume 5502 of Lecture
Notes in Computer Science, pages 285–300. Springer-Verlag, 2009.

[9] L. Caires and H. T. Vieira. Conversation Types. Technical Report UNL-DI-01-09, Departamento de
Informática, Universidade Nova de Lisboa, 2009.

[10] M. Carbone, K. Honda, and N. Yoshida. Structured Communication-Centred Programming for Web
Services. In R. De Nicola, editor, Programming Languages and Systems, 16th European Symposium
on Programming, ESOP 2007, Proceedings, volume 4421 of Lecture Notes in Computer Science, pages
2–17. Springer-Verlag, 2007.

[11] G. Castagna, M. Dezani-Ciancaglini, E. Giachino, and L. Padovani. Foundations of Session Types. In
A. Porto and F. J. López-Fraguas, editors, PPDP 2009, 11th International ACM SIGPLAN Conference
on Principles and Practice of Declarative Programming, Proceedings, pages 219–230. ACM, 2009.

[12] G. Castagna, N. Gesbert, and L. Padovani. A Theory of Contracts for Web Services. ACM Transactions
on Programming Languages and Systems, 31(5), 2009.

[13] S. Chaki, S. K. Rajamani, and J. Rehof. Types as models: Model Checking Message-Passing Pro-
grams. In Proceedings of the 29th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2002, pages 45–57. ACM, 2002.

[14] M. Dezani-Ciancaglini, U. de’ Liguoro, and N. Yoshida. On Progress for Structured Communications.
In G. Barthe and C. Fournet, editors, Trustworthy Global Computing, Third Symposium, TGC 2007,
Revised Selected Papers, volume 4912 of Lecture Notes in Computer Science, pages 257–275. Springer-
Verlag, 2008.

[15] S. Gay and M. Hole. Subtyping for Session Types in the Pi Calculus. Acta Informatica, 42(2-3):191–225,
2005.

[16] E. Giachino, M. Sackman, S. Drossopoulou, and S. Eisenbach. Softly Safely Spoken: Role Playing for
Session Types. In PLACES 2009, 2nd International Workshop on Programming Language Approaches
to Concurrency and Communication-Centric Software, Proceedings. To appear.

[17] K. Honda. Types for Dyadic Interaction. In E. Best, editor, CONCUR 1993, 4th International Con-
ference on Concurrency Theory, Proceedings, volume 715 of Lecture Notes in Computer Science, pages
509–523. Springer-Verlag, 1993.

[18] K. Honda, V. T. Vasconcelos, and M. Kubo. Language Primitives and Type Discipline for Structured
Communication-Based Programming. In C. Hankin, editor, Programming Languages and Systems,
7th European Symposium on Programming, ESOP 1998, Proceedings, volume 1381 of Lecture Notes in
Computer Science, pages 122–138. Springer-Verlag, 1998.

[19] K. Honda, N. Yoshida, and M. Carbone. Multiparty Asynchronous Session Types. In G. C. Necula
and P. Wadler, editors, Proceedings of the 35th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2008, pages 273–284. ACM, 2008.

[20] A. Igarashi and N. Kobayashi. A Generic Type System for the Pi-Calculus. Theoretical Computer
Science, 311(1-3):121–163, 2004.

[21] N. Kobayashi, B. C. Pierce, and D. N. Turner. Linearity and the Pi-Calculus. In Proceedings of the 23rd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 1996, pages
358–371. ACM, 1996.

[22] I. Lanese, C. Guidi, F. Montesi, and G. Zavattaro. Bridging the Gap between Interaction- and Process-
Oriented Choreographies. In A. Cerone and S. Gruner, editors, SEFM 2008, Sixth IEEE International
Conference on Software Engineering and Formal Methods, Proceedings, pages 323–332. IEEE Computer
Society, 2008.

[23] N. Lynch. Fast Allocation of Nearby Resources in a Distributed System. In Conference Proceedings of
the Twelfth Annual ACM Symposium on Theory of Computing, STOC 1980, pages 70–81. ACM, 1980.

41

[24] R. Milner, J. Parrow, and D. Walker. A Calculus of Mobile Processes, Part I + II. Information and
Computation, 100(1):1–77, 1992.

[25] N. Kobayashi. A New Type System for Deadlock-Free Processes. In C. Baier and H. Hermanns, editors,
CONCUR 2006, 17th International Conference on Concurrency Theory, Proceedings, volume 4137 of
Lecture Notes in Computer Science, pages 233–247. Springer-Verlag, 2006.

[26] B. Pierce. Types and Programming Languages. MIT Press, 2002.
[27] D. Sangiorgi and D. Walker. The π-calculus: A Theory of Mobile Processes. Cambridge University

Press, 2001.
[28] H. T. Vieira, L. Caires, and J. C. Seco. The Conversation Calculus: A Model of Service-Oriented Com-

putation. In S. Drossopoulou, editor, Programming Languages and Systems, 17th European Symposium
on Programming, ESOP 2008, Proceedings, volume 4960 of Lecture Notes in Computer Science, pages
269–283. Springer-Verlag, 2008.

A. Proofs for Results of Section 3

We show the main cases and refer the interested reader to [9] for more detailed proofs.

Proof of Lemma 3.12

(2) If B′ = B1 ./ B2 and B = B′ ./ B3 then there is B′′ such that B′′ = B2 ./ B3 and
B = B1 ./ B′′.
Proof. By induction on the derivation of B′ = B1 ./ B2 and B = B′ ./ B3. We show the
case when B′ = B1 ./ B2 is derived using rule (Plain-l) and B = B′ ./ B3 is derived using
rule (Shuffle-l), hence B1 ≡ ! l(C).Ba and B2 ≡ ? l(C).Bb. We have:

τ l(C).B′ | B′′ = τ l(C).(Ba ./ Bb) ./ B3 (1)

derived from:
B′ | B′′ ≡ (Ba ./ Bb) ./ B3 (2)

and τ l(C) # B3, τ l(C) # B′′ and I(B′) ⊆ I(Ba ./ Bb) and I(B′′) ⊆ I(B3). We also have:

τ l(C).(Ba ./ Bb) = ! l(C).Ba ./ ? l(C).Bb (3)

We intend to prove: τ l(C).B′ | B′′ = ! l(C).Ba ./ (? l(C).Bb ./ B3). By induction hypothe-
sis on (2) we have:

B′ | B′′ ≡ Ba ./ (Bb ./ B3) (4)

From (4) and τ l(C) # B3 we have that there is Bc, Bd such that:

? l(C).Bc | Bd = ? l(C).Bb ./ B3 (5)

derived from:
Bc | Bd ≡ Bb ./ B3 (6)

and ? l(C) # Bd and I(Bc) ⊆ I(Bb) and I(Bd) ⊆ I(B3). We then derive ((MsgPar -r)):

(! l(C).Ba ./ ? l(C).Bc) ./ Bd = ! l(C).Ba ./ ? l(C).Bc | Bd (7)

42

and then by rule (Plain-l) we derive:

τ l(C).(Ba ./ Bc) ./ Bd = (! l(C).Ba ./ ? l(C).Bc) ./ Bd (8)

We then have, by rule (Shuffle-l):

τ l(C).Be | Bf = τ l(C).(Ba ./ Bc) ./ Bd (9)

derived from:
Be | Bf ≡ (Ba ./ Bc) ./ Bd (10)

and τ l(C) # Bf and I(Be) ⊆ I(Ba ./ Bc) and I(Bf) ⊆ I(Bd). By induction hypothesis on
(10) we conclude:

(Ba ./ Bc) ./ Bd ≡ Ba ./ (Bc ./ Bd) (11)

From (6) we have that Bc and Bd are apart, hence:

Ba ./ (Bc ./ Bd) ≡ Ba ./ (Bc | Bd) (12)

Also from (6) we conclude:

Ba ./ (Bc | Bd) ≡ Ba ./ (Bb ./ B3) (13)

From (13), (12), (11) and (10) we conclude:

Be | Bf ≡ Ba ./ (Bb ./ B3) (14)

From (14) and (4) we conclude:
Be | Bf ≡ B′ | B′′ (15)

From I(Bf) ⊆ I(Bd) ⊆ I(B3) and I(B′′) ⊆ B3 we have Be ≡ B′ and Bf ≡ B′′, from which
we conclude—rule (Shuffle-l):

τ l(C).B′ | B′′ = τ l(C).(Ba ./ Bc) ./ Bd (16)

which completes the proof.

Proof of Lemma 3.19 (Substitution)

Let P be a well-typed process such that P :: T | x : C, for x 6∈ dom(T) and types T, C. If
there is type T ′ such that T ′ = T ./ a : C then P{x← a} :: T ′.
Proof. By induction on the length of the derivation of P :: T | x : C. We show the case of
rule (Piece), when P of the form x J [Q].

(Case (Piece))
We have:

x J [Q] :: T | x : C (1)

where x 6∈ dom(T). Since (1) is a conclusion of rule (Piece) we have that:

T | x : C ≡ (L ./ x : [�B]) | loc(�B) (i) and Q :: L | B (ii) (2)
43

In order to apply the induction hypothesis we first characterize types L, C and T . We
separate L into two parts L′ and x : C ′ such that L′ does not mention x (i.e., x 6∈ dom(L′)):

L ≡ L′ | x : C ′ (3)

From (2)(i) we have that x : C is the result of the merge of x : [�B] and the type that L
specifies for x (which we identify in (3) as x : C ′), hence:

x : C = x : C ′ ./ x : [�B] (4)

Also, since L′ does not mention x we have that (L′ | x : C ′) ./ x : [�B] yields the same type
as L′ | (x : C ′ ./ x : [�B]), hence from (2)(i) we have that T is such that:

T ≡ L′ | loc(�B) (5)

We now assume the hypothesis in the statement of the Lemma: there is type T ′ such that:

T ′ = T ./ a : C (6)

Since L′ is a part of T (5) and C ′ is a partial view of C (4), from (6) we conclude there is
type T ′′ such that T ′′ = L′ ./ a : C ′ and hence:

T ′′ | B = (L′ | B) ./ a : C ′ (7)

We rewrite (2)(ii) considering (3), using the subsumption rule, and obtain:

Q :: L′ | B | x : C ′ (8)

By induction hypothesis on (8) and (7) we conclude Q{x ← a} :: (L′ | B) ./ a : C ′, from
which we obtain:

Q{x← a} :: (L′ ./ a : C ′) | B (9)

From (6), considering L′ is a part of T (5) and separating C in the partial views given by
(4) we obtain there is type T ′′′ such that:

T ′′′ = L′ ./ (a : C ′ ./ a : [� B]) (10)

From (9) and (10) and considering rule (Piece) we derive:

a J [(Q{x← a})] :: ((L′ ./ a : C ′) ./ a : [� B]) | loc(� B) (11)

from which we conclude:

a J [(Q{x← a})] :: (L′ | loc(�B)) ./ (a : C ′ ./ a : [� B]) (12)

From (12), considering (5) and (4), we conclude:

a J [(Q{x← a})] :: T ./ a : C (13)

which completes the proof for this case.

We state some auxiliary results to the proof of Theorem 3.20.
44

Lemma A.1. Let process P be such that P :: T . If P
ld?(a)−→ Q then there are T ′, C,B, B̃ such

that either T ≡ T ′ | N{? ld(C).B; B̃} or T ≡ T ′ | B and τ ld(C) ∈ Msg(B). Furthermore if

T ≡ T ′ | N{? ld(C).B; B̃} and there is T ′′ = (T ′ | B) ./ a : C then Q :: T ′′.

Proof. By induction on the derivation of the transition P
ld?(a)−→ Q. We show the cases when

the transition results from a input summation and from a parallel composition.

(Case Σi∈I ldi ?(xi).Pi

ldj ?(a)
−→ Pj{xj ← a})

We have that:

Σi∈I ldi ?(xi).Pi :: T and Σi∈I ldi ?(xi).Pi

ldj ?(a)
−→ Pj{xj ← a} (1)

From (1) and considering rule (Input) we have there is L, Cj, Bj, B̃ such that:

L | N{? ldj (Cj).Bj; B̃} <: T (2)

and:
Σi∈I ldi ?(xi).Pi :: L | N{? ldj (Cj).Bj; B̃} and Pj :: L | Bj | xj : Cj (3)

From (2) we conclude there are T ′, B′, B′j, B̃
′ such that:

T ≡ T ′ | B′ | N{? ldj (Cj).B
′
j; B̃

′} (4)

and:
L <: T ′ and N{? ldj (Cj).Bj; B̃} <: B′ | N{? ldj (Cj).B

′
j; B̃

′} (5)

Let us now consider there is T ′′ such that:

T ′′ ≡ (T ′ | B′ | B′j) ./ a : Cj (6)

Since L <: T ′ from (6) we directly have that there is L′ such that

L′ | Bj ≡ (L | Bj) ./ a : Cj (7)

Considering Lemma 3.19 we then have:

Pj{xj ← a} :: (L | Bj) ./ a : Cj (8)

and hence:
Pj{xj ← a} :: (T ′ | B′ | B′j) ./ a : Cj (9)

which completes the proof for this case.

(Case P ′ | R
ld?(a)−→ Q′ | R)

We have that:

P ′ | R :: T and P ′ | R
ld?(a)−→ Q′ | R (10)

45

where the transition is derived from:

P ′
ld?(a)−→ Q′ (11)

Considering (10) and rule (Par) we have that there is T1, T2 such that T1 ./ T2 <: T and:

P ′ | R :: T1 ./ T2 and P ′ :: T1 and R :: T2 (12)

By induction hypothesis on (11) and (12) we have that there is T ′, C,B, B̃ such that:

T1 ≡ T ′ | N{? ld(C).B; B̃} (13)

or:
T1 ≡ T ′ | B and τ ld(C) ∈ Msg(B) (14)

In case of (13), from T1 ./ T2 <: T we conclude there is T ′′ such that either:

T ≡ T ′′ | N{? ld(C).B; B̃} (15)

or:
T ≡ T ′′ | B′′ and τ ld(C) ∈ Msg(B′′) (16)

In case of (14), from T1 ./ T2 <: T we directly have that T ≡ T ′′ | B′′ where τ ld(C) ∈
Msg(B′′). Let us now consider (15) and that there is T3 such that:

T3 ≡ (T ′′ | B) ./ a : C (17)

From (17), (15) and T1 ./ T2 <: T we have that there is (T ′ | B) ./ a : C, and thus by
induction hypothesis we conclude:

Q′ :: (T ′ | B) ./ a : C (18)

From (18) and (12) we derive:

Q′ | R :: ((T ′ | B) ./ a : C) ./ T2 (19)

From (19), (15), (13) and T <: T1 ./ T2 we conclude:

Q′ | R :: (T ′′ | B) ./ a : C (20)

which completes the proof for this case.

Lemma A.2. Let P be a process such that P :: T . If P
c l�?(a)−→ Q then there are T ′, C,B, B̃

s.t. T ≡ T ′ | c : [N{? l�(C).B; B̃}] or T ≡ T ′ | c : [B] and τ l�(C) ∈ Msg(B). Furthermore

if T ≡ T ′ | c : [N{? l�(C).B; B̃}] and there is T ′′ = (T ′ | c : [B]) ./ a : C then Q :: T ′′.

46

Proof. By induction on the derivation of the transition P
c l�?(a)−→ Q, similarly to the proof of

Lemma A.1. We show the case of l�?(a) transition originating from a context piece.

(Case c J [P ′]
c l�?(a)−→ c J [Q′])

We have that:

c J [P ′] :: T and c J [P ′]
c l�?(a)−→ c J [Q′] (1)

From (1) and considering rule (Piece) we have there is L, B such that:

(L ./ c : [� B]) | loc(� B) <: T (2)

and:
c J [P ′] :: (L ./ c : [� B]) | loc(� B) and P ′ :: L | B (3)

We also have that (1) is derived from:

P ′
l�?(a)−→ Q′ (4)

Considering Lemma A.1, from (4) and (3) we have there is T ′, C,B′, B̃ such that either:

L | B ≡ T ′ | N{? l�(C).B′; B̃} (5)

or:
τ l�(C) ∈ Msg(B) (6)

In case of (5) we have that there is B1 such that:

B ≡ B1 | N{? l�(C).B′; B̃} (7)

and there is L′ such that T ′ ≡ L′ | B1 and L ≡ L′. We then have:

� B ≡� B1 | N{? l�(C). � B′; � B̃} (8)

From (2), (5) and (8) we conclude:

(L′ ./ c : [� B1 | N{? l�(C). � B′; � B̃}]) | loc(� B1) | loc(� (N{? l�(C).B′; B̃}) <: T (9)

From (9) we have that either:

(L′ ./ c : [� B1 | N{? l�(C). � B′; � B̃}]) | loc(� B1) | loc(� (N{? l�(C).B′; B̃})
≡ L′′ | c : [N{? l�(C).B′′; B̃′}] | loc(� B1) | loc(� (N{? l�(C).B′; B̃})

(10)

or:

(L′ ./ c : [� B1 | N{? l�(C). � B′; � B̃}]) | loc(� B1) | loc(� (N{? l�(C).B′; B̃})
≡ L′′ | c : [�{τ l�(C).B′′; B̃′}] | loc(� B1) | loc(� (N{? l�(C).B′; B̃})

(11)

47

Then we have that there is T ′1, B
′
1, B

′′′, B̃′′ such that either:

T ≡ T ′1 | c : [B′1 | N{? l�(C).B′′′; B̃′′}] (12)

where:
L′′ | loc(� B1) | loc(� (N{? l�(C).B′; B̃})) <: T ′1 (13)

and:
c : [N{? l�(C).B′′; B̃′}] <: c : [B′1 | N{? l�(C).B′′′; B̃′′}] (14)

or:
T ≡ T ′1 | c : [B′1 | N{? l�(C).B′′′; B̃′′}] (15)

In case of (6) proof that T ≡ T ′ | c : [B′] and τ l�(C) ∈ Msg(B′) from τ l�(C) ∈ Msg(B)
follows expected lines. Let us now consider (12) and that there is T2 such that:

T2 ≡ (T ′1 | c : [B′1 | B′′′]) ./ a : C (16)

From (16), (13) and (5) we conclude there is T ′′ such that:

T ′′ ≡ (T ′ | B′) ./ a : C (17)

From Lemma A.1 we then have:

Q′ :: (T ′ | B′) ./ a : C (18)

and thus:
Q′ :: (L′ | B1 | B′) ./ a : C (19)

From (19) we derive:

c J [Q′] :: ((L′ ./ a : C) ./ c : [� B1 | � B′]) | loc(� (B1 | B′)) (20)

From (10), (13) and (14), we conclude:

c J [Q′] :: (T ′1 | c : [B′1 | B′′′]) ./ a : C (21)

which completes the proof for this case.

Lemma A.3. Let P be a process such that P :: T . If P
ld!(a)−→ Q then there are T ′, C,B, B̃

s.t. either T ≡ T ′ | �{! ld(C).B; B̃} or T ≡ T ′ | B and τ ld(C) ∈ Msg(B). Furthermore if

T ≡ T ′ | �{! ld(C).B; B̃} or l ∈ L? then there is T ′′ s.t. T ′ = T ′′ ./ a : C and Q :: T ′′ | B.

Proof. By induction on the length of the derivation of the transition P
ld!(a)−→ Q. We show

the case when the transition results from a output prefix.

(Case ld!(a).P ′
ld!(a)−→ P ′)

48

We have that:

ld!(a).P ′ :: T and ld!(a).P ′
ld!(a)−→ P ′ (1)

From (1) and considering rule (Output) we have there is L, C,B, B̃ such that:

(L ./ a : C) | �{! ld(C).B; B̃} <: T (2)

and:
ld!(a).P ′ :: (L ./ a : C) | �{! ld(C).B; B̃} and P ′ :: L | B (3)

From (2) we have there is T ′, B′, B′′, B̃′ such that:

T ≡ T ′ | B′ | �{! ld(C).B′′; B̃′} (4)

where:
L ./ a : C <: T ′ (5)

and:
�{! ld(C).B; B̃} <: B′ | �{! ld(C).B′′; B̃′} (6)

From (5) we have that there is T ′′ such that L <: T ′′ and:

T ′ ≡ T ′′ ./ a : C (7)

From (3) and (6) and L <: T ′′ we conclude:

P ′ :: T ′′ | B′ | B′′ (8)

which completes the proof for this case.

Lemma A.4. Let P be a process such that P :: T . If P
c l�!(a)−→ Q then there are T ′, C,B, B̃

s.t. T ≡ T ′ | c : [�{! l�(C).B; B̃}] or T ≡ T ′ | c : [B] and τ l�(C) ∈ Msg(B). Furthermore if

T ≡ T ′ | c : [�{! l�(C).B; B̃}] or l ∈ L? then there is T ′ ≡ T ′′ ./ a : C and Q :: T ′′ | c : [B].

Proof. By induction on the derivation of the transition, following expected lines.

Lemma A.5. Let P be a process such that P :: T . If P
(νa)ld!(a)−→ Q then there are T ′, C,B, B̃

s.t. T ≡ T ′ | �{! ld(C).B; B̃} or T ≡ T ′ | B and τ ld(C) ∈ Msg(B). Furthermore if

T ≡ T ′ | �{! ld(C).B; B̃} or l ∈ L? then there are B′, C ′ such that closed(B′), a : [B′] = a :
C ′ ./ a : C and Q :: T ′ | B | a : C ′.

Proof. By induction on the length of the derivation of the transition P
(νa)ld!(a)−→ Q. The proof

follows similar lines to that of Lemma A.3. We show the case of (Open) (Figure 3).

(Case (νa)P ′
(νa)ld!(a)−→ Q′)

49

We have that:

(νa)P ′ :: T and (νa)P ′
(νa)ld!(a)−→ Q′ (1)

which is derived from:

P ′
ld!(a)−→ Q′ (2)

From (1) and considering rule (Res) we have that there is T ′, B such that:

T ′ <: T and (νa)P ′ :: T ′ and P ′ :: T ′ | a : [B] (3)

and closed(B). Considering Lemma A.3 and (2) and (3) we have that there are T1, C,B′, B̃
such that either:

T ′ | a : [B] ≡ T1 | �{! ld(C).B′; B̃} (4)

or:
T ′ | a : [B] ≡ T1 | B′ and τ ld(C) ∈ Msg(B′) (5)

We show the case of (4). We have that there is T ′1 such that T1 ≡ T ′1 | a : [B] and:

T ′ ≡ T ′1 | �{! ld(C).B′; B̃} (6)

From (6) and T ′ <: T we conclude there is T ′′, B′′, B′′′, B̃′ such that:

T ≡ T ′′ | B′′ | �{! ld(C).B′′′; B̃′} (7)

where:
T ′1 <: T ′′ (8)

and:
�{! ld(C).B′; B̃} <: B′′ | �{! ld(C).B′′′; B̃′} (9)

Let us now consider (6) (proof when l ∈ L? follows similar lines). We then have that must
be the case of (4), hence, from Lemma A.3 we conclude:

T1 ≡ T ′′1 ./ a : C and Q′ :: T ′′1 | B′ (10)

From T1 ≡ T ′1 | a : [B] we then have:

T ′1 | a : [B] ≡ T ′′1 ./ a : C (11)

From (11) we conclude there are T2, C
′ such that T2 ≡ T ′1:

T ′′1 ≡ T2 | a : C ′ and a : [B] = a : C ′ ./ a : C (12)

From (10) and (12) and T2 ≡ T ′1 we have:

Q′ :: T ′1 | a : C ′ | B′ (13)

50

From (13) and T ′1 <: T ′′—(8)—we then have:

Q′ :: T ′′ | a : C ′ | B′ (14)

Finally, from (14) and (9) we conclude:

Q′ :: T ′′ | a : C ′ | B′′ | B′′′ (15)

which completes the proof for this case.

Lemma A.6. Let P be a process such that P :: T . If P
(νa)c l�!(a)−→ Q then there are T ′, C,B, B̃

such that T ≡ T ′ | c : [�{! l�(C).B; B̃}] or T ≡ T ′ | c : [B] and τ l�(C).B ∈ Msg(B).

Furthermore if T ≡ T ′ | c : [�{! l�(C).B; B̃}] or l ∈ L? then there are B′, C ′ such that
closed(B′) and a : [B′] = a : C ′ ./ a : C and Q :: (T ′ ./ c : [B]) | a : C ′.

Proof. By induction on the length of the derivation of the transition P
(νa)c l�!(a)−→ Q, following

the lines of the proof of Lemma A.5.

Lemma A.7. Let P be a well-typed process such that P :: T . If P
c this−→ Q due to a this

prefix, then there are L, B1, B2 such that T ≡ L | (B1 ./ (� B2)). Furthermore if there is T ′

such that T ′ ≡ (L | B1) ./ (c : [� B2]) then Q :: (L | B1) ./ (c : [� B2]).

Proof. By induction on the derivation of P
c this−→ Q, following expected lines.

Lemma A.8. Let P be a process such that P :: T . If P
c this−→ Q then there are T ′, B1, B2, B̃,

B̃′, C1, C2, l such that T ≡ T ′ | {p1 l�(C1).B1; B̃} | c : [{p2 l�(C2).B2; B̃
′}] where pi = !

and pj = ? for {i, j} = {1, 2}, or T ≡ T ′ | B1 | c : [B2] and p1 l�(C1) ∈ Msg(B1) and

p2 l�(C2) ∈ Msg(B2). Furthermore if T ≡ T ′ | {p1 l�(C1).B1; B̃} | c : [{p2 l�(C2).B2; B̃
′}]

and pi = ! or l ∈ L? and pj = ? and C1 ≡ C2 then we have that Q :: T ′ | B1 | c : [B2].

Proof. By induction on the length of the derivation of the transition P
c this−→ Q. We show

the case of a (ThisComm) synchronization.

(Case P1 | P2
c this−→ Q1 | Q2)

We have that:

P1 | P2
c this−→ Q1 | Q2 (i) and P1 | P2 :: T (ii) (1)

(1)(i) is derived from:

P1
c l�!(a)−→ Q1 and P2

l�?(a)−→ Q2 (2)

From (1)(ii) we have there are T1, T2 such that:

T1 ./ T2 <: T and P1 :: T1 and P2 :: T2 (3)
51

Considering Lemma A.4, (2) and (3) we have there are T ′1, C1, B1, B̃ such that either:

T1 ≡ T ′1 | c : [�{! l�(C1).B1; B̃}] (4)

or:
T1 ≡ T ′1 | c : [B1] and τ l�(C1) ∈ Msg(B1) (5)

Considering Lemma A.1, (2) and (3) we have there are T ′2, C2, B2, B̃
′ such that:

T2 ≡ T ′2 | N{? l�(C2).B2; B̃
′} (6)

or:
T2 ≡ T ′2 | B2 and τ l�(C2) ∈ Msg(B2) (7)

From T1 ./ T2 <: T and (4), (5), (6) and (7) we directly have that T ≡ T ′ | c : [B1] | B2

such that p1 l�(C1) ∈ Msg(B1) and p2 l�(C2) ∈ Msg(B2).
Let us now consider the case of (4) and (6 and also that ! l�(C1) # T2 and ! l�(C2) # T1.

We then have that:

T ≡ (T ′′1 | c : [B′1 | �{! l�(C1).B
′′
1 ; B̃′′}]) ./ (T ′′2 | B′2 | N{? l�(C2).B

′′
2 ; B̃′′′})

≡ T ′ | c : [�{! l�(C1).B
′; (· · ·)}] | N{? l�(C2).B

′′; (· · ·)} (8)

where T ′1 <: T ′′1 and T ′2 <: T ′′2 and:

�{! l�(C1).B1; B̃} <: B′1 | �{! l�(C1).B
′′
1 ; B̃′′} (9)

and:
N{? l�(C2).B2; B̃

′} <: B′2 | N{? l�(C2).B
′′
2 ; B̃′′′} (10)

Let us now consider (C ≡)C1 ≡ C2. Considering Lemma A.4 we have there is T ′′′1 such that:

T ′1 ≡ T ′′′1 ./ a : C and Q1 :: T ′′′1 | c : [B1] (11)

Then, via Lemma A.1, considering (11) and T ′1 <: T ′′1 and (8) and T ′2 <: T ′′2 we conclude
that there is T ′′′2 such that:

T ′′′2 = (T ′2 | B2) ./ a : C and Q2 :: T ′′′2 (12)

From (11) and (9) we conclude:

Q1 :: T ′′′1 | c : [B′1 | B′′1] (13)

Likewise from (12), (10) we conclude:

Q2 :: (T ′2 | a : C) | B′2 | B′′2 (14)

Then from (13) and (14) we have:

Q1 | Q2 :: (T ′′′1 | c : [B′1 | B′′1]) ./ ((T ′2 ./ a : C) | B′2 | B′′2) (15)
52

which, considering (11) leads to:

Q1 | Q2 :: (T ′1 | c : [B′1 | B′′1]) ./ (T ′2 | B′2 | B′′2) (16)

Since T ′1 <: T ′′1 and T ′2 <: T ′′2 we derive:

Q1 | Q2 :: (T ′′1 | c : [B′1 | B′′1]) ./ (T ′′2 | B′2 | B′′2) (17)

which, along with (8), gives us:

Q1 | Q2 :: T ′ | c : [B′] | B′′ (18)

which completes the proof for this case.

Lemma A.9. Let types T1, T
′
1, T

′
2 be such that T ′1 <: T1 and T ′1 → T ′2. Then we have that

there is type T2 such that T1 → T2 and P :: T ′2 implies P :: T2.

Proof. By induction on the length of the derivation of T ′1 <: T1, following expected lines.

Proof of Theorem 3.20 (Subject Reduction)

Let P be a process and T a type such that P :: T . If P → Q then there is type T ′ such that
T → T ′ and Q :: T ′.
Proof. By induction on the derivation of the reduction P → Q. We show the case of
a reduction derived from a synchronization on an unlocated—at the level of the current
conversation—message, distinguishing between when the message is defined on a plain label
and on a shared label, and the case of a τ derived from a c this transition originating from
a conversation piece.

(Case unlocated message synchronization)
We have:

P1 | P2
τ−→ Q1 | Q2 (1)

derived from:

P1
l�!(a)−→ Q1 (i) and P2

l�?(a)−→ Q2 (ii) (2)

Since P1 | P2 is a well-typed process, we have P1 | P2 :: T for some T such that T ′ <: T and:

P1 | P2 :: T ′ (3)

where (3) is derived from (rule (Par)):

P1 :: T1 (i) and P2 :: T2 (ii) and T ′ = T1 ./ T2 (iii) (4)

From (2)(i) and (4)(i) and considering Lemma A.3 we conclude that there are T ′1, C1, B1, B̃
such that either:

T1 ≡ T ′1 | �{! l�(C1).B1; B̃} (5)
53

or:
T1 ≡ T ′1 | B and τ l�(C1) ∈ Msg(B1) (6)

From (2)(ii) and (4)(ii), considering Lemma A.1, we conclude that there are T ′2, C2, B2, B̃
′

such that either:
T2 ≡ T ′2 | N{? l�(C2).B2; B̃

′} (7)

or:
T2 ≡ T ′2 | B and τ l�(C2) ∈ Msg(B2) (8)

We consider the two possible cases: either the label is plain (l ∈ Lp) or it is shared (l ∈ L?).
(Plain label) If l is a plain label, from (4)(iii) we have that it must be the case that in

T ′ there is a τ introduced by rule (Plain) for this synchronization which is only possible if
(5) and (7) and also that C1 ≡ C2 (≡ C), otherwise the merge T1 ./ T2 (4)(iii) would not
be defined. We then have, from Lemma A.3 that there is T ′′ such that:

T ′1 = T ′′1 ./ a : C (i) and Q1 :: T ′′1 | B1 (ii) (9)

From the merge in (4)(iii), considering (5), (9)(i) and (7) we conclude:

T ′ = ((T ′′1 ./ a : C) | �{! l�(C).B1; B̃}) ./ (T ′2 | N{? l�(C).B2; B̃
′}) (10)

From (10) we have that there is T ′′ = (T ′2 | B2) ./ a : C. From Lemma A.1 we have:

Q2 :: (T ′2 | B2) ./ a : C (11)

From (10) we also have that there is T ′′′ such that T ′′′ = (T ′′1 ./ B1) ./ ((T ′2 ./ B2) ./ a : C),
hence from (9)(ii) and (11) we conclude:

Q1 | Q2 :: (T ′′1 | B1) ./ ((T ′2 | B2) ./ a : C) (12)

The merge of plain label message types necessarily yields a τ message type. We can thus
derive a reduction for type T ′ as follows:

((T ′′1 ./ a : C) | �{! l�(C).B1; B̃}) ./ (T ′2 | N{? l�(C).B2; B̃
′})

≡
((T ′′1 ./ a : C) ./ T ′2) ./ �{τ l�(C).(B1 ./ B2); (· · ·)}
→
((T ′′1 ./ a : C) ./ T ′2) ./ (B1 ./ B2)
≡
(T ′′1 | B1) ./ ((T ′2 | B2) ./ a : C)

Since T ′ <: T from Lemma A.9 we have that there is T ′′ such that T → T ′′ and Q1 | Q2 :: T ′′

which completes the proof for this case.
(Shared label) If l is a shared label then by conformance we have that C1 ≡ C2(≡

C). From the definition of merge and (4)(iii) we conclude it must be the case of (7) and

54

furthermore we have that N{? ld(C).B2; B̃
′} ≡ ?? ld(C). Also, considering Lemma A.3, from

either (5) or (6), since l ∈ L?, we have there is T ′′ such that:

T ′1 = T ′′1 ./ a : C1 (i) and Q1 :: T ′′1 | B1 (ii) (13)

We show only the proof for (5), as the proof for (6) follows similar lines. From the merge in
(4)(iii), and (13)(i) and (7) we conclude:

T ′ = ((T ′′1 ./ a : C) | �{? l�(C).B1; B̃}) ./ (T ′2 | ? ? ld(C)) (14)

which leads to:

((T ′′1 ./ a : C) ./ T ′2) ./ (�{? l�(C).B1; B̃} ./ ?? ld(C))
≡
((T ′′1 ./ a : C) ./ T ′2)

./ (�{τ l�(C).(B1{! l�(C)← τ l�(C)}); (B̃{! l�(C)← τ l�(C)})} | ? ? ld(C))

(15)

From (15) we conclude:
(T ′2 | ? ? ld(C)) ./ a : C (16)

Then from Lemma A.1 and (16) we have:

Q2 :: (T ′2 | ? ? ld(C)) ./ a : C (17)

From (13)(ii), (17) and (15) we derive:

Q1 | Q2 :: (T ′′1 | B1) ./ ((T ′2 | ? ? ld(C)) ./ a : C) (18)

From (15) we have:

((T ′′1 ./ a : C) ./ T ′2)

./ (�{τ l�(C).(B1{! l�(C)← τ l�(C)}); (B̃{! l�(C)← τ l�(C)})} | ? ? ld(C))
→
((T ′′1 ./ a : C) ./ T ′2) ./ (B1{! l�(C)← τ l�(C)}) | ? ? ld(C))
≡
(T ′′1 | B1) ./ ((T ′2 | ? ? ld(C)) ./ a : C)

(19)

We then have, from T ′ <: T , (14), (15) and (19) and Lemma A.9 that there is T ′′ such that
T → T ′′ and Q1 | Q2 :: T ′′ which completes the proof for this case.

(Case c this)
We have:

c J [P]
τ−→ c J [Q] (20)

derived from:
P

c this−→ Q (21)

We have that c J [P] :: T . Also we have that there is T ′ such that T ′ <: T and:

c J [P] :: T ′ (22)
55

where (22) is derived from (rule (Piece)):

P :: L | B (i) and T ′ = (L ./ c : [�B]) | loc(�B) (ii) (23)

We must consider the two distinct cases: either the transition originates from a this prefix
or from a message synchronization. The proof of the first case follows expected lines. We
show the proof for the second case, when the transition originates in a message synchro-
nization. Considering Lemma A.8 and from (23)(i) and (21) we conclude that there exist

T ′′, B1, B2, B̃, B̃′, C1, C2, l such that:

L | B ≡ T ′′ | {p1 l�(C1).B1; B̃} | c : [{p2 l�(C2).B2; B̃
′}] (24)

and pi = ! and pj = ?, or:
L | B ≡ T ′′ | B1 | c : [B2] (25)

and p1 l�(C1) ∈ Msg(B1) and p2 l�(C2) ∈ Msg(B2). From (L ./ c : [� B]) | loc(� B) we
directly have that it must be the case of (24) otherwise the merge would be undefined. We
show the case when i = 1 and j = 2 and l is a plain label (the proofs for the other cases
follow similar lines). From (24) we conclude there exist L1, B3 such that T ′′ ≡ L1 | B3 and:

L ≡ L1 | c : [N{? l�(C2).B2; B̃
′}] and B ≡ B3 | �{! l�(C1).B1; B̃} (26)

From (26) we have that:

� B ≡ � B3 | �{! l�(C1).(� B1); (� B̃)} (27)

and:
loc(� B) ≡ loc(� B3) | loc(� �{! l�(C1).B1; B̃}) (28)

From (23)(ii), (26) and (27) and (28) we have:

T ′ = ((L1 | c : [N{? l�(C2).B2; B̃
′}]) ./ c : [� B3 | �{! l�(C1).(� B1); (� B̃)}])

| loc(� B3) | loc(� �{! l�(C1).B1; B̃})
(29)

We also have that C1 ≡ C2 (≡ C). From Lemma A.8 we then have:

Q :: T ′′ | B1 | c : [B2] (30)

which, since T ′′ ≡ L1 | B3 gives us:

Q :: L1 | B3 | B1 | c : [B2] (31)

From (31) we derive:

c J [Q] :: ((L1 | c : [B2]) ./ c : [� (B3 | B1)]) | loc(� (B3 | B1)) (32)

We conclude:

c J [Q] :: ((L1 | c : [B2]) ./ c : [� (B3 | B1)]) | loc(� B3) | loc(� {p1 l�(C1).B1; B̃}) (33)
56

and derive the following type reduction:

((L1 | c : [N{? l�(C2).B2; B̃
′}]) ./ c : [� B3 | �{! l�(C1).(� B1); (� B̃)}])

| loc(� B3) | loc(� �{! l�(C1).B1; B̃})
≡
((L1 ./ c : [�B3]) ./ c : [�{τ l�(C).((�B1) ./ B2); B̃

′′′}]) | loc(�B3) | loc(��{! l�(C1).B1; B̃})
→
((L1 ./ c : [� B3]) ./ c : [(� B1) ./ B2]) | loc(� B3) | loc(� �{! l�(C1).B1; B̃})
≡
((L1 | c : [B2]) ./ c : [� (B3 | B1)]) | loc(� B3) | loc(� �{! l�(C1).B1; B̃})

(34)
which, along with (29) and T ′ <: T , considering Lemma A.9 gives us there is T ′′′ such that
T → T ′′′ and c J [Q] :: T ′′′, which completes the proof for this case.

B. Proofs for Results of Section 4

We first state a weakening property for the progress proof system judgments.

Lemma B.1. Let P be a well-typed process and Γ an event ordering such that Γ `` P . If
Γ ∪ Γ′ is an event ordering then Γ ∪ Γ′ `` P .

Proof. By induction on the structure of P , following expected lines. Intuitively if Γ already
proves that events are well ordered in P then Γ′ describes an ordering of events that do not
pertain to P , and hence Γ′ does not interfere in verifying the event ordering of P .

Proof of Lemma 4.4 (Substitution)

Let P be a process and Γ, Γ′ event orderings such that Γ ∪ Γ′ `` P and Γ′{x ← n} ⊆ Γ.
Then Γ ``{x←n} P{x← n}.
Proof. By induction on the structure of P . We show the case when P is a conversation piece
x J [P] and an output prefixed process ld!(x).P .

(Case x J [P])
We have that

Γ ∪ Γ′ `` x J [P] (i) and Γ′{x← n} ⊆ Γ (ii) (1)

derived from
Γ ∪ Γ′ `(`(�),x) P (2)

By induction hypothesis on (2) and (1)(ii) we have

Γ `(`(�){x←n},n) P{x← n} (3)

From (3) we derive
Γ ``{x←n} n J [P{x← n}] (4)

57

which completes the proof for this case.
(Case ld!(x).P) We have that:

Γ ∪ Γ′ `` ld!(x).P and Γ′{x← n} ⊆ Γ (5)

(5) is derived from (rule (Output)):

(`(d).l.(y)Γ′′⊥(Γ ∪ Γ′)) `` P (i) and Γ′′{y ← x} ⊆ (`(d).l.(y)Γ′′⊥(Γ ∪ Γ′)) (ii) (6)

From (6)(i), considering Lemma B.1, we conclude Γ ∪ Γ′ `` P . By induction hypothesis:

Γ ``{x←n} P{x← n} (7)

We have that `(d).l.(y)Γ′′ ∈ dom(Γ ∪ Γ′) and hence:

(`(d).l.(y)Γ′′){x← n} ∈ dom(Γ) (8)

Also from (6)(i) we have that events in P are of greater order w.r.t. event `(d).l.(y)Γ′′, so
events in P{x← n} are of greater order w.r.t. (`(d).l.(y)Γ′′){x← n}:

((`(d).l.(y)Γ′′){x← n}⊥Γ) ``{x←n} P{x← n} (9)

From (6)(ii) and Γ′{x← n} ⊆ Γ—(5)—we conclude:

(Γ′′{y ← x}){x← n} ⊆ (`(d).l.(y)Γ′′⊥(Γ∪Γ′)){x← n} ⊆ ((`(d).l.(y)Γ′′){x← n}⊥Γ) (10)

and hence Γ′′{y ← n} ⊆ ((`(d).l.(y)Γ′′){x← n}⊥Γ). Then, considering also (9), we conclude
Γ ``{x←n} ld!(n).(P{x← n}) which completes the proof for this case.

Lemma B.2. Let P be a well-typed process and Γ an event ordering such that Γ `` P . If

P
ld?(a)−→ Q and (`(d).l.(x)Γ′) ∈ dom(Γ) and Γ′{x← a} ⊆ (`(d).l.(x)Γ′)⊥Γ then Γ `` Q.

Proof. By induction on the derivation of the transition. We show the case when P is an
input summation.

(Case Σi∈I ldi ?(xi).Pi

ldj ?(a)
−→ Pj{xj ← a})

We have that

Γ `` Σi∈I ldi ?(xi).Pi and Σi∈I ldi ?(xi).Pi

ldj ?(a)
−→ Pj{xj ← a} (1)

and
(`(d).li.(y)Γ′j ∈ dom(Γ)) and Γ′j{y ← a} ⊆ (`(d).li.(y)Γ′j⊥Γ) (2)

We have that (1) is derived from

(`(d).li.(y)Γ′i⊥Γ) ∪ Γ′i{y ← xi} `` Pi (3)
58

in particular for j we have

(`(d).lj.(y)Γ′j⊥Γ) ∪ Γ′j{y ← xj} `` Pj (4)

From Lemma 4.4 considering (4) and (2) we then have

(`(d).lj.(y)Γ′j⊥Γ) `` Pj{xj ← a} (5)

From (5) and considering Lemma B.1 we have

Γ `` Pj{xj ← a} (6)

which completes the proof for this case.

Lemma B.3. Let P be a well-typed process and Γ an event ordering such that Γ `` P . If

P
c l�?(a)−→ Q and (c.l.(x)Γ′) ∈ dom(Γ) and Γ′{x← a} ⊆ (c.l.(x)Γ′)⊥Γ then Γ `` Q.

Proof. By induction on the derivation of the label. We show the base case.

(Case c J [P ′]
c l�?(a)−→ c J [Q′])

We have that
Γ `` c J [P ′] (1)

Let us consider

c J [P ′]
c l�?(a)−→ c J [Q′] and (c.l.(x)Γ′ ∈ dom(Γ)) and Γ′{x← a} ⊆ (c.l.(x)Γ′⊥Γ)

(2)
We have that (1) is derived from

Γ `(`(�),c) P ′ (3)

and (2) is derived from

P ′
l�?(a)−→ Q′ (4)

From Lemma B.2 considering (4), (3) and (2) we have

Γ `(`(�),c) Q′ (5)

From (5) we derive
Γ `` c J [Q′] (6)

which completes the proof for this case.

Lemma B.4. Let P be a well-typed process and Γ an event ordering such that Γ `` P . If

P
ld!(a)−→ Q then Γ `` Q and (`(d).l.(x)Γ′) ∈ dom(Γ) and Γ′{x← a} ⊆ (`(d).l.(x)Γ′)⊥Γ.

59

Proof. By induction on the derivation of the transition. We show the case when P is an
output prefix.

(Case ld!(a).P ′
ld!(a)−→ P ′)

We have that

Γ `` ld!(a).P ′ (i) and ld!(a).P ′
ld!(a)−→ P ′ (ii) (1)

We have that (1)(i) is derived from

(`(d).l.(x)Γ′⊥Γ) `` P ′ and Γ′{x← a} ⊆ (`(d).l.(x)Γ′⊥Γ) (2)

From (2) and considering Lemma B.1 we have

Γ `` P ′ (3)

which completes the proof for this case.

Lemma B.5. Let P be a well-typed process and Γ an event ordering such that Γ `` P . If

P
c l�!(a)−→ Q then Γ `` Q and (c.l.(x)Γ′) ∈ dom(Γ) and Γ′{x← a} ⊆ (c.l.(x)Γ′)⊥Γ.

Proof. By induction on the derivation of the transition. We show the base case.

(Case c J [P ′]
c l�!(a)−→ c J [Q′])

We have that
Γ `` c J [P ′] (1)

Let us consider

c J [P ′]
c l�!(a)−→ c J [Q′] (2)

We have that (1) is derived from
Γ `(`(�),c) P ′ (3)

and (2) is derived from

P ′
l�!(a)−→ Q′ (4)

From (3) and (4), considering Lemma B.4 we have

(c.l.(x)Γ′⊥Γ) `` P ′ and Γ′{x← a} ⊆ (c.l.(x)Γ′⊥Γ) and Γ `(`(�),c) Q′ (5)

From (5) we conclude
Γ `` c J [Q′] (6)

which completes the proof for this case.

Lemma B.6. Let P be a well-typed process and Γ an event ordering such that Γ `` P . If

P
(νa)ld!(a)−→ Q then there is Γ′ such that Γ ∪ Γ′ `` Q and (Γ ∪ Γ′) \ a ⊆ Γ and (`(d).l.(x)Γ′′) ∈

dom(Γ) and Γ′′{x← a} ⊆ ((`(d).l.(x)Γ′′)⊥(Γ ∪ Γ′)).
60

Proof. By induction on the derivation of the transition. We show the base case of restriction
open (Figure 3 (Open)).

(Case (νa)P ′
(νa)ld!(a)−→ Q′)

We have that
Γ `` (νa)P ′ (1)

Let us consider

(νa)P ′
(νa)ld!(a)−→ Q′ (2)

We have that (1) is derived from
Γ′ `` P ′ (3)

where Γ = Γ′ \ a. (2) is derived from

P ′
ld!(a)−→ Q′ (4)

From (3) and (4), considering Lemma B.4 we have

(`(d).l.(x)Γ′′⊥Γ′) `` P ′ and Γ′′{x← a} ⊆ (`(d).l.(x)Γ′′⊥Γ′) and Γ′ `` Q′ (5)

Since `(d) 6= a from (5) we conclude (`(d).l.(x)Γ′′) ∈ dom(Γ) which completes the proof.

Lemma B.7. Let P be a well-typed process and Γ an event ordering such that Γ `` P . If

P
(νa)c l�!(a)−→ Q then there is Γ′ such that Γ ∪ Γ′ `` Q and (Γ ∪ Γ′) \ a ⊆ Γ and (c.l.(x)Γ′′) ∈

dom(Γ) and Γ′′{x← a} ⊆ ((c.l.(x)Γ′′)⊥(Γ ∪ Γ′)).

Proof. By induction on the derivation of the transition. We show the base cases of restriction
open (Figure 3 (Open)) and (νa)l�!(a) transition originating from within a context piece.

(Case c J [P ′]
(νa)c l�!(a)−→ c J [Q′])

We have that
Γ `` c J [P ′] (1)

Let us consider

c J [P ′]
(νa)c l�!(a)−→ c J [Q′] (2)

We have that (1) is derived from
Γ `(`(�),c) P ′ (3)

and (2) is derived from

P ′
(νa)l�!(a)−→ Q′ (4)

From (3) and (4), considering Lemma B.6 we have there is Γ′ such that

Γ ∪ Γ′ `(`(�),c) Q′ (5)

61

and (Γ ∪ Γ′) \ a ⊆ Γ and

(c.l.(x)Γ′′) ∈ dom(Γ) and Γ′′{x← a} ⊆ (c.l.(x)Γ′′⊥(Γ ∪ Γ′)) (6)

From (5) we conclude
Γ ∪ Γ′ `` c J [Q′] (7)

which completes the proof for this case.

(Case (νa)P ′
(νa)c ld!(a)−→ Q′)

We have that
Γ `` (νa)P ′ (8)

Let us consider

(νa)P ′
(νa)c l�!(a)−→ Q′ (9)

We have that (8) is derived from
Γ′ `` P ′ (10)

where Γ = Γ′ \ a. (9) is derived from

P ′
c l�!(a)−→ Q′ (11)

From (10) and (11), considering Lemma B.5 we have

(c.l.(x)Γ′′⊥Γ′) `` P ′ and Γ′′{x← a} ⊆ (c.l.(x)Γ′′⊥Γ′) and Γ′ `` Q′ (12)

Since c 6= a from (12) we conclude

(c.l.(x)Γ′′) ∈ dom(Γ) (13)

which completes the proof for this case.

Lemma B.8. Let P be a well-typed process and Γ an event ordering such that Γ `` P . If

P
c this−→ Q and `(�) = c then Γ `` Q.

Proof. By induction on the derivation of the transition. We show the base case when P is
a this prefixed process.

(Case this(x).P ′
c this−→ P ′{x← c})

We have that
Γ `` this(x).P ′ (1)

Let us consider
this(x).P ′

c this−→ P ′{x← c} (2)

and `(�) = c. We have that (1) is derived from

Γ ∪ Γ′ `` P ′ (3)

where Γ′{x← `(�)} ⊆ Γ, hence Γ′{x← c} ⊆ Γ. From Lemma 4.4 we then have

Γ `` P ′{x← c} (4)

which completes the proof for this case.

62

Proof of Theorem 4.5 (Preservation of Event Ordering)

Let P be a process and Γ an event ordering such that Γ `` P . If P → Q then Γ `` Q.
Proof. By induction on the length of the derivation of the reduction. We show the case
for a message exchanged at the level of the current conversation, and the case of a message
exchanged at the level of the current conversation carrying a bound name.

(Case P1
ld!(a)−→ Q1 and P2

ld?(a)−→ Q2)
We have that

P1 | P2 → Q1 | Q2 and Γ `` P1 | P2 (1)

From (1) we have that
Γ `` P1 and Γ `` P2 (2)

(1) is derived from

P1
ld!(a)−→ Q1 and P2

ld?(a)−→ Q2 (3)

From Lemma B.4 and (2) and (3) we have

(`(d).l.(x)Γ′) ∈ dom(Γ) and Γ′{x← a} ⊆ ((`(d).l.(x)Γ′)⊥Γ) and Γ `` Q1 (4)

From Lemma B.2 and (2) and (3) and (4) we have

Γ `` Q2 (5)

From (4) and (5) we have
Γ `` Q1 | Q2 (6)

which completes the proof for this case.

(Case P1
(νa)ld!(a)−→ Q1 and P2

ld?(a)−→ Q2)
We have that

P1 | P2 → (νa)(Q1 | Q2) and Γ `` P1 | P2 (7)

From (7) we have that
Γ `` P1 and Γ `` P2 (8)

(7) is derived from

P1
(νa)ld!(a)−→ Q1 and P2

ld?(a)−→ Q2 (9)

From Lemma B.6 and (8) and (9) we have there is Γ′ such that

Γ ∪ Γ′ `` Q1 and (Γ ∪ Γ′) \ a ⊆ Γ and (Γ(`(d).l).(x)Γ′′) ∈ dom(Γ) (10)

and
Γ′′{x← a} ⊆ (Γ(`(d).l).(x)Γ′′)⊥(Γ ∪ Γ′) (11)

From Lemma B.1 and (8), since (10) gives us that Γ ∪ Γ′ is a well founded order, we have

Γ ∪ Γ′ `` P2 (12)
63

From Lemma B.2 and (12) and (9) and (10) and (11) we have

Γ ∪ Γ′ `` Q2 (13)

From (10) and (13) we have
Γ ∪ Γ′ `` Q1 | Q2 (14)

From (14) and (10) we conclude

Γ `` (νa)(Q1 | Q2) (15)

which completes the proof for this case.

We introduce some notions auxiliary to the proof of Theorem 4.7.

Notation B.9. We say Mw is an initial message type of T if T ≡ �{B̃1; p ld(C).B; B̃2} | T ′

and M = p ld(C) and w = d, or T ≡ N{B̃1; p ld(C).B; B̃2} | T ′ and M = p ld(C) and w = d,

or T ≡ c : [�{B̃1; M.B; B̃2}] | T ′ and w = c, or T ≡ c : [N{B̃1; M.B; B̃2}] | T ′ and w = c.

Notation B.10. We denote by p1 ld1(C1)
d ≺`

Γ p2 ld
′

2 (C2)
d′

that `(d).l1.(x)Γ′ ≺Γ `(d′).l2.(x)Γ′′

and by p1 ld1(C1)
a ≺`

Γ p2 ld
′

2 (C2)
b that a.l1.(x)Γ′ ≺Γ b.l2.(x)Γ′′.

Notation B.11. We denote by P
Mw

−→ P ′ a transition P
λ−→ P ′ such that either:

• λ = ld!(a) (or λ = (νa)ld!(a)) and M = ! ld(C) and w = d for some a, C

• λ = ld?(a) and M = ? ld(C) and w = d for some a, C

• λ = c l�!(a) (or λ = (νa)c l�!(a)) and M = ! l�(C) and w = c for some a, C

• λ = c l�?(a) and M = ? l�(C) and w = c for some a, C

• λ = τ and M = τ ld(C)

Notation B.12. We say Mw is an minimal initial message of T w.r.t. Γ, ` if Mw is an
initial message of T and there is no M ′w ′

initial message type of T such that M ′w ′
≺`

Γ Mw .

Lemma B.13. Let P be a well-typed process. If P
c σ−→ P ′ and P

σ−→ P ′′ then P
c this−→ P ′′′.

Proof. Follows by induction on the structure of P in expected lines.

Lemma B.14. Let P be a process such that P :: T and there is T ′ such that closed(T ./ T ′)
and Γ `` P and Mw

1 and Mw ′
2 initial messages of T . If Mw

1 ≺`
Γ Mw ′

2 and M1 = ? ld1(C1) and
l1 ∈ L? and M2 = τ ld2(C2) then there is τ ld1(C1) initial of T .

64

Proof. By induction on the length of the derivation of P :: T following expected lines. Notice
that shared inputs expose a shared message interface (outputs on shared labels) and hence
any greater τ initial message type is introduced by an output that matches the shared input,
which type is initial and minimal since the shared input is initial and minimal.

Notation B.15. We say process P is final if it has no active this prefixes, hence if there is
no C and Q such that P = C[this(x).P].

Lemma B.16. Let P be a final process such that P :: T and Γ `` P and Mw a minimal

initial message of T . Then there is P ′ such that either P → P ′ or P
Mw

−→ P ′.

Proof. By induction on the length of the derivation of P :: T . We show the cases when the
last rule applied is (Par), (Res) and (Output).

(Case (Par))
We have that:

P1 | P2 :: T1 ./ T2 (i) and Γ `` P1 | P2 (ii) (1)

and that Mw is a minimal initial message of T1 ./ T2. (1)(i) is derived from:

P1 :: T1 (i) and P2 :: T2 (ii) (2)

(1)(ii) is derived from:

Γ `` P1 (i) and Γ `` P2 (ii) (3)

Since Mw is a minimal initial message of T1 ./ T2 we have that either (1) Mw is a minimal
initial message of T1 or (2) Mw is a minimal initial message of T2 or (3) Mw = τ ld(C)w

and ? ld(C)w is a minimal initial message of Ti and ! ld(C)w is a minimal initial message of
Tj for {i, j} = {1, 2}.

(Case (1)) By induction hypothesis on (2)(i) and (3)(i) and (1) we have that there is
P ′1 such that either:

P1 → P ′1 or P1
Mw

−→ P ′1 (4)

We then directly have that:

P1 | P2 → P ′1 | P2 or P1 | P2
Mw

−→ P ′1 | P2 (5)

respectively, which completes the proof for this case.
(Case (2)) Analogous to (1).
(Case (3)) Let us consider i = 1 and j = 2, hence, ? ld(C)w is a minimal initial message

of T1 and ! ld(C)w is a minimal initial message of T2. By induction hypothesis on (2)(i) and
(3)(i) and ? ld(C)w is a minimal initial message of T1 we conclude that either:

P1 → P ′1 (i) or P1
? ld(C)w−→ P ′1 (ii) (6)

65

Likewise by induction hypothesis on (2)(ii) and (3)(ii) and ! ld(C)w is a minimal initial
message of T2 we conclude that either:

P2 → P ′2 (i) or P2
! ld(C)w−→ P ′2 (ii) (7)

If either (6)(i) or (7)(i) we have that:

P1 | P2 → P ′ (8)

and the proof is complete. If (6)(ii) and (7)(ii) we derive:

P1 | P2 → P ′ (9)

and, given that Mw = τ ld(C)w , we conclude:

P1 | P2
Mw

−→ P ′ (10)

which completes the proof for this case.
(Case (Res))
We have that:

(νa)P :: T (i) and Γ `` (νa)P (ii) (11)

and that Mw is a minimal initial message of T . (11)(i) is derived from:

P :: T | a : [B] (12)

and closed(B). (11)(ii) is derived from:

Γ′ `` P (13)

and Γ = Γ′ \ a. Since Mw is a minimal initial message of T we have that either (1) Mw

is a minimal initial message of T | a : [B] (w.r.t. Γ′, `) or (2) there is M ′a minimal initial
message of T | a : [B] (w.r.t. Γ′, `). If (1) then the result follows from induction hypothesis.
If (2) we have, since closed(B), that M ′a = τ l�(C)a. By induction hypothesis on (12) and
(13) and (2) we conclude:

P → P ′ or P
M ′a
−→ P ′ (14)

Since M ′a = τ l�(C)a we conclude
P → P ′ (15)

and hence:
(νa)P → (νa)P ′ (16)

which completes the proof for this case.
(Case (Output))

66

We have that:

ld!(n).P :: (L ./ n : C) | �i∈I{Mi.Bi} (i) and Γ `` ld!(n).P (ii) (17)

and there is j ∈ I such that Mj.Bj = ! ld(C).B and that Mw is a minimal initial message
of (L ./ n : C) | �i∈I{Mi.Bi}. (17)(i) is derived from:

P :: L | B (18)

(17)(ii) is derived from:

(`(d).l.(x)Γ′⊥Γ) `` P and Γ′{x← n} ⊆ (`(d).l.(x)Γ′⊥Γ) (19)

From (18) and (19) we conclude Mw = ! ld(C)d and we have that:

ld!(n).P
! ld(C)d

−→ P (20)

which completes the proof for this case.

Lemma B.17. Let P be final process such that P :: T , where closed(T), and Γ `(z′,z) P . If
P is not a finished process then there are C, Q, T ′, l, d, C such that P = C[Q] and Q :: T ′ and
τ ld(C)w is minimal to T ′.

Proof. Follows by induction on the length of the derivation of P :: T in expected lines. Since
closed(T) all message types in T are either of polarity τ or are of polarity ? and defined on a
shared label. If all initial message types are of the second type then the process is finished,
otherwise if there is an initial τ message type which is not minimal then Lemma B.14 gives
us there is a minimal initial message type.

Proof of Theorem 4.7 (Progress)

Let P be a well-typed process such that P :: T , where closed(T), and Γ an event ordering
such that Γ `(z′,z) P . If P is not a finished process then P → Q.
Proof. Follows directly from Lemma B.16 and Lemma B.17. If P is has an active this prefix
we directly have that P → P ′. Otherwise P is final and Lemma B.17 gives us that there is
a minimal initial τ message type and hence from Lemma B.16 we conclude P → P ′.

67

