
Conversation Types

Lúıs Caires and Hugo Torres Vieira
CITI / Departamento de Informática, FCT Universidade Nova de Lisboa, Portugal

July 15, 2008
Revised January 6, 2009

Abstract

We present a type theory for analyzing concurrent multiparty interactions
as found in service-oriented computing. Our theory introduces a novel and
flexible type structure, able to uniformly describe both the internal and the
interface behavior of systems, referred respectively as choreographies and con-
tracts in web-services terminology. The notion of conversation builds on the
fundamental concept of session, but generalizes it along directions up to now
unexplored; in particular, conversation types discipline interactions in conversa-
tions while accounting for dynamical join and leave of an unanticipated number
of participants. We prove that well-typed systems never violate the prescribed
conversation constraints. We also present techniques to ensure progress of sys-
tems involving several interleaved conversations, a previously open problem.

1 Introduction

While most issues arising in the context of communication-based software systems
do not appear to be new when considered in isolation, the analysis of loosely-coupled
distributed systems involving type based discovery, and multiparty collaborations
such as those supported by web-services technology raises many challenges and calls
for new concepts, specially crafted models, and formal analysis techniques (e.g., [1,
2, 3, 5, 6, 12]). In previous work [20] we introduced the Conversation Calculus (CC),
a π-calculus based model for service-oriented computing that builds on the concepts
of process delegation, loose-coupling, and, crucially, conversation contexts.

A key concept for the organization of service-oriented computing systems is the
notion of conversation. A conversation is a structured, not centrally coordinated,
possibly concurrent, set of interactions between several participants. Then, a con-
versation context is a medium where partners may interact in a conversation. It can
be distributed in many pieces, and processes in any piece may seamlessly talk to pro-
cesses in the same or any other piece of the same conversation context. Intuitively a
conversation context may be seen as a virtual chat room where remote participants
exchange messages according to some discipline, while simultaneously engaged in
other conversations. Conversation context identities can be passed around, allowing
participants to dynamically join conversations. To join an ongoing conversation, a
process may perform a remote conversation access using the conversation context
identifier. It is then able to participate in the conversation to which it has joined,
while being able to interact back with the caller context through the access point.

1

To discipline multiparty conversations we introduce conversation types, a novel and
flexible type structure, able to uniformly describe both the internal and the inter-
face behavior of systems, referred respectively as choreographies and contracts in
web-services terminology.

We give substantial evidence that our minimal extension to the π-calculus is
already effective enough to model and type sophisticated service-based systems, at
a fairly high level of abstraction. Examples include challenging scenarios involving
simultaneous multiparty conversations, with concurrency and access to local re-
sources, and conversations with a dynamically changing and unanticipated number
of participants, that fall out of scope of other approaches for modeling and typing
of service-based systems.

1.1 Conversation Contexts and Conversation Types

We explain the key ideas of our development by going through a motivating example.
Consider the following composition of two conversation contexts, named Buyer and
Seller , modeling a typical service collaboration:

Buyer J [new Seller · startBuy⇐ buy!(prod).price?(v)] |
Seller J [PriceDB | def startBuy⇒ buy?(prod).askPrice�!(prod).

readVal�?(v).price!(v)]
Notice that in the core CC, the bounded communication medium provided by a con-
versation context may also be used to model a partner local context, avoiding the in-
troduction of a primitive notion of site. The code in Buyer starts a new conversation
by calling service startBuy located at Seller using the service instantiation idiom
new Seller ·startBuy⇐ buy!(prod).price?(v). The code buy!(prod).price?(v) de-
scribes the role of Buyer in the conversation: a buy message is sent, and afterwards
a price message should be received. Upon service instantiation, the system evolves
to

(νc)(Buyer J [c J [buy!(prod).price?(v)]] |
Seller J [PriceDB | c J [buy?(prod).askPrice�!(prod).

readVal�?(v).price!(v)])

where c is the fresh name of the newly created conversation (with two pieces). The
code

buy?(prod).askPrice�!(prod).readVal�?(v).price!(v)
describes the participation of Seller in the conversation c: a buy message is received,
and in the end, price message should be sent. In between, database PriceDB located
in the Seller context is consulted through a pair of � directed message exchanges
(askPrice and readVal). Such messages are targeted to the parent conversation
(Seller), rather than to the current conversation (c).

In our theory, message exchanges inside and at the interface of subsystems are
captured by conversation types, which describe both internal and external partici-
pation of processes in conversations. The Buyer and Seller conversation is described
by type

BSChat , τbuy(Tp).τprice(Tm)
specifying the two interactions that occur sequentially within the conversation c,
first a message buy and after a message price (Tp and Tm represent basic value

2

types).
The τ in, e.g., τbuy(Tp) means that the interaction is internal. A declaration

such as τbuy(Tp) is like an assertion such as buy(Tp) : Buyer → Seller in a message
sequence chart, or in the global types of [12], except that in our case participant
identities are abstracted away, increasing flexibility. In general, the interactions
described by a type such as BSChat may be realized in several ways, by different
participants. Technically, we specify the several possibilities by a (ternary) merge
relation between types, noted B = B1 ./ B2, stating how a behavior B may be
projected in two independent matching behaviors B1 and B2. In particular, we have
(among others) the projection

BSChat = ? buy(Tp).! price(Tm) ./ ! buy(Tp).? price(Tm)
The type ? buy(Tp).! price(Tm) will be used to type the Buyer participation,
and the type ! buy(Tp).? price(Tm) will be used to type the Seller participa-
tion (in conversation BSChat). Thus, in our first example, the conversation type
BSChat is decomposed in a pair of “dual” conversation types, as in classical session
types [10, 11]; this does not need to be always the case, however. In fact, the notion
of conversation builds on the fundamental concept of session but extends it along
unexplored directions, as we now discuss. Consider a three-party variation (from [5])
of the example above:

Buyer J [new Seller · startBuy⇐ buy!(prod).price?(p).details?(d)] |
Seller J [PriceDB |

def startBuy⇒ buy?(prod).askPrice�!(prod).
readVal�?(p).price!(p).
join Shipper · newDelivery⇐ product!(prod)] |

Shipper J [def newDelivery⇒ product?(p).details!(data)]
The role of Shipper is to inform the client on the delivery details. The code is
composed of three conversation contexts, representing the three partners Buyer ,
Seller and Shipper . The system progresses as in the first example: messages buy
and price are exchanged between Buyer and Seller in the fresh conversation. After
that, Shipper is asked by Seller , using idiom join Shipper · newDelivery ⇐ · · · ,
to join the ongoing conversation (till then involving only Buyer and Seller). The
system then evolves to

(νa)(Buyer J [a J [details?(d)]] |
Seller J [a J [product!(prod)] | . . .] |
Shipper J [a J [product?(p).details!(data)]])

Notice that Seller does not lose access to the conversation after asking service
Shipper · newDelivery to join in the current conversation a (partial session dele-
gation). In fact, Seller and Shipper will interact later on in the very same conversa-
tion, by exchanging a product message. Finally, Shipper sends a message details
directly to Buyer . In this case, the global conversation a is initially assigned type

BSSChat , τ buy(Tp).τ price(Tm).τ product(Tp).τ details(Td)
BSSChat type may be depicted as the message sequence chart shown in Fig. 1. We
decompose type BSSChat in three “projections” (Bbu , Bse , and Bsh), by means of
the merge ./, first by BSSChat = Bbu ./ Bss , and then by Bss = Bse ./ Bsh , where

3

buy

product

details

price

Buyer Seller Shipper

Figure 1: BSSChat Message Sequence Chart.

Bbu , ? buy(Tp).! price(Tm).! details(Td)
Bss , ! buy(Tp).? price(Tm).τ product(Tp).? details(Td)
Bse , ! buy(Tp).? price(Tm).? product(Tp)
Bsh , ! product(Tp).? details(Td)

These various “local” types are merged by our type system in a compositional way,
allowing e.g., service startBuy to be assigned type !startBuy([Bss]), and the con-
tribution of each partner in the conversation to be properly determined. At the
point where join operation above gets typed, the (residual) conversation type corre-
sponding to the participation of Seller is typed τ product(Tp).? details(Td). At
this stage, extrusion of the conversation name a to service Seller · newDelivery will
occur, to enable Shipper to join in. Notice that the global conversation BSSChat
discipline will nevertheless be respected, since the conversation fragment delegated
to Shipper is typed ! product(Tp).? details(Td) while the conversation fragment
retained by Seller is typed ? product(Tp). Also notice that since conversation
types abstract away from participant identities, the overall conversation type can be
projected into the types of the individual roles in several ways, allowing for different
implementations of the roles of a given conversation (cf. loose-coupling). It is even
possible to type systems with an unbounded number of different participants, as
needed to type, e.g., a service broker.

Our type system combines techniques from linear, behavioral, session and spatial
types (see [4, 11, 13, 14]): the type structure features prefix M.B, parallel composi-
tion B1 | B2, and other operators. Messages M describe external (receive ? / send !)
exchanges in two views: with the caller / parent conversation (�), and in the current
conversation (�). They also describe internal message exchanges (τ). Key technical
ingredients in our approach to conversation types are the amalgamation of global
types and of local types (in the general sense of [12]) in the same type language,
and the definition of a merge relation ensuring, by construction, that participants
typed by the projected views of a type will behave well under composition. Merge
subsumes duality, in the sense that for each τ -free B there are types B,B′ such that
B ./ B = τ (B′), so sessions are special cases of conversations. But merge of types

4

allows for extra flexibility on the manipulation of projections of conversation types,
in an open-ended way, as illustrated above. In particular, our approach allows frag-
ments of a conversation type (e.g., a choreography) to be dynamically distributed
among participants, while statically ensuring that interactions follow the prescribed
discipline.

The technical contributions of this work may be summarized as follows. First, we
define the new notion of conversation type. Conversation types are a generalization
of session types to loosely-coupled, possibly concurrent, multiparty conversations,
allowing mixed global / local behavioral descriptions to be expressed at the same
level, while supporting the analysis of systems with dynamic delegation of fragments
of ongoing conversations. Second, we advance new techniques to certify safety and
liveness properties of service-based systems. We propose a type system for assign-
ing conversation types to core CC systems. Processes that get past our typing
rules are ensured to be free of communication errors, and races on plain messages
(Corollary 3.19): this also implies that well-typed systems enjoy a conversation fi-
delity property (i.e., all conversations follow the prescribed protocols). Finally, we
present techniques to establish progress of systems with several interleaved con-
versations (Theorem 4.6), exploiting the combination of conversation names with
message labels in event orderings, and, more crucially, propagation of orderings in
communications, solving a previously open problem.

2 The Core Conversation Calculus

In this section, we present the syntax of our calculus, and formally define its oper-
ational semantics, by means of a labeled transition system. The core Conversation
Calculus extends the π-calculus [16] static fragment with the conversation construct
n J [P], and replaces channel based communication with context-sensitive message
based communication. For simplicity, we present a monadic version of the calculus,
and assume the expected extension in examples as needed.

The syntax of the calculus is defined in Figure 2. We assume given an infinite
set of names Λ, an infinite set of variables V, an infinite set of labels L, and an
infinite set of process variables χ. The static fragment is defined by the inaction
0, parallel composition P | Q, name restriction (νa)P and recursion recX .P . The
conversation access construct n J [P], allows a process to initiate interactions, as
specified by P , in the conversation n.

Communication is expressed by the guarded choice construct Σi∈I αi.Pi, meaning
that the process may select some initial action αi and then progress as Pi. Communi-
cation actions are of two forms: ld!(n) for sending messages (e.g., askPrice�!(prod))
and ld?(x) for receiving messages (e.g., price�?(p)). Thus, message communication
is defined by the label l and the direction d. There are two message directions: �
(read “here”) meaning that the interaction should take place in the current conver-
sation or � (read “up”) meaning that the interaction should take place in the caller
conversation. N.B.: to lighten notation we omit the � in messages, without any
ambiguity. A basic action may also be of the form this(x), allowing the process to
dynamically access the identity of the current conversation.

Notice that message labels (from l ∈ L) are not names but free identifiers (cf.
record labels or XML tags), and therefore not subject to fresh generation, restric-

5

a, b, c, . . . ∈ Λ (Names)
x, y, z, . . . ∈ V (Variables)
n, m, o . . . ∈ Λ ∪ V
l, s . . . ∈ L (Labels)
X ,Y, . . . ∈ χ (Process Vars)

P,Q ::= 0 (Inaction)
| P | Q (Parallel Composition)
| (νa)P (Name Restriction)
| recX .P (Recursion)
| X (Variable)
| n J [P] (Conversation Access)
| Σi∈I αi.Pi (Prefix Guarded Choice)

d ::= � | � (Directions)
α ::= ld!(n) (Output)

| ld?(x) (Input)
| this(x) (Conversation Awareness)

Figure 2: The Core Conversation Calculus.

tion or binding. Only conversation names may be subject to binding, and freshly
generated via (νa)P .

The distinguished occurrences of a, x, x and X are binding occurrences in (νa)P ,
ld?(x).P , this(x).P , and recX .P , respectively. The sets of free (fn(P)) and bound
(bn(P)) names, free variables (fv(P)), and free process variables (fpv(P)) in a process
P are defined as usual. We implicitly identify α-equivalent processes.

The operational semantics of the core CC is defined by a labeled transition
system. For clarity, we split the presentation in two sets of rules, one (in Figure 3)
containing the rules for the basic operators, which are essentially identical to the
corresponding ones in the π-calculus (see [18]), and the other (in Figure 4) grouping
the rules specific to the Conversation Calculus.

A transition P
λ−→ Q states that process P may evolve to process Q by per-

forming the action represented by the transition label λ. Transition labels (λ) and
actions (σ) are given by

σ ::= τ | ld!(a) | ld?(a) | this
λ ::= c σ | σ | (νa)λ

An action τ denotes an internal communication, actions ld!(a) and ld?(a) represent
communications with the environment, and this represents a conversation identity
access; these correspond to the basic actions a process may perform in the context of
a given conversation. To capture the observational semantics of processes, transition
labels need to register not only the action but also the conversation where the action
takes place. So, a transition label λ containing c σ is said to be located at conversation
c (or just located), otherwise is said to be unlocated. In (νa)λ the distinguished
occurrence of a is bound with scope λ (cf., the π-calculus bound output actions).

6

ld!(a).P
ld!(a)−→ P (out) ld?(x).P

ld?(a)−→ P{x/a} (inp)

αj .Pj
λ−→ Q j ∈ I

Σi∈I αi.Pi
λ−→ Q

(sum)
P

(νa)λ−→ P ′ Q
λ−→ Q′

P | Q
τ−→ (νa)(P ′ | Q′)

(clo)

P
λ−→ P ′ Q

λ−→ Q′

P | Q
τ−→ P ′ | Q′

(com)

P
λ−→ Q a = out(λ)

(νa)P
(νa)λ−→ Q

(opn)
P

λ−→ Q a 6∈ na(λ)

(νa)P λ−→ (νa)Q
(res)

P
λ−→ Q

P | R
λ−→ Q | R

(par)
P{X/recX .P} λ−→ Q

recX .P
λ−→ Q

(rec)

Figure 3: Basic Operators (π-calculus).

P
λ�
−→ Q

c J [P] λ�
−→ c J [Q]

(her)
P

λ�
−→ Q

c J [P] c·λ�
−→ c J [Q]

(loc)

P
a λ�
−→ Q

c J [P] a λ�
−→ c J [Q]

(thr)
P

τ−→ Q

c J [P] τ−→ c J [Q]
(tau)

this(x).P c this−→ P{x/c} (thi)
P

c this−→ Q

c J [P] τ−→ c J [Q]
(thl)

P
σ−→ P ′ Q

c σ−→ Q′

P | Q
c this−→ P ′ | Q′

(tco)
P

σ−→ P ′ Q
(νa)c σ−→ Q′

P | Q
c this−→ (νa)(P ′ | Q′)

(tcl)

Figure 4: Conversation Operators.

For a communication label λ we denote by λ the dual matching label obtaining by
swapping inputs with outputs, such that ld!(a) = ld?(a) and ld?(a) = ld!(a). We use
fn(λ) and bn(λ) to denote (respectively) the free and bound names of a transition
label, and na(λ) to denote all names (both free and bound) of a transition label.

Transition rules presented in Figure 3 closely follow the ones for the π-calculus
and should be fairly clear to a reader familiar with mobile process calculi. For
example, rule (opn) corresponds to the bound output or extrusion rule, in which a
bound name a is extruded to the environment in an output message λ: we define
out(λ) = a if λ = ld!(a) or λ = c ld!(a) and c 6= a.

It would be useful however to discuss the intuitions behind the rules for con-
versation contexts (Figure 4). In rule (her) an � directed message (to the caller
conversation) becomes � (in the current conversation), after passing through the
conversation access boundary. We note by λd a transition label λd containing the

7

direction d (�, �), and by λd ′
the label obtained by replacing d by d ′ in λd (e.g., if

λ� is askPrice�?(a) then λ� is askPrice�?(a)).
In rule (loc) an unlocated � message (in the current conversation) gets explicitly

located at the conversation c in which it originates. Given an unlocated label λ, we
represent by c · λ the label obtained by locating λ at c (e.g., if λ� is askPrice�?(p)
then c · λ� is c askPrice�?(p)).

In rule (thi) a this label reads the conversation identity, and originates a c this
label. A c this labeled transition may only progress inside the c conversation, as
expressed by the rule (thl), where a this label matches the enclosing conversation.

In rule (thr) an already located communication label transparently crosses some
other conversation boundary, and likewise for a τ label in (tau). In rules (tco) and
(tcl) an unlocated communication matches a communication located at c, originating
a c this label, thus ensuring the interaction to occur inside the given conversation
c, as required.

The reduction relation is defined on top the labeled transition system.

Definition 2.1 (Reduction) The relation of reduction on processes, noted P →
Q, is defined as P

τ−→ Q.

Although we will not exploit in this paper the behavioral semantics but rather
the static semantics of our calculus, it is worthwhile reporting that the standard
notion of bisimilarity, defined in terms of the above presented labeled transition
system, has pleasant structural properties, establishing that all the constructs of
our calculus may be soundly interpreted as compositional semantic operators on
bisimilarity equivalence classes.

Definition 2.2 (Strong Bisimulation) A (strong) bisimulation is a symmetric
binary relation R on processes such that, for all processes P and Q, if PRQ, we
have:

If P
λ−→ P ′ and bn(λ) ∩ fn(Q) = ∅ then there is Q′ such that

Q
λ−→ Q′ and P ′RQ′.

We denote by ∼ (strong bisimilarity) the largest bisimulation.

Theorem 2.3 Strong bisimilarity is a congruence.

Proof. Direct from the proof of [19] Theorem 5.2. The core Conversation Calculus
extends a subcalculus of the Conversation Calculus of [19] with the summation
construct. For the summation we consider:

• If αi.Pi ∼ αi.Qi, for i ∈ I, then Σi∈I αi.Pi ∼ Σi∈I αi.Qi.

which proof follows the lines of the other axioms of [19] Theorem 5.2.

N.B. For input, we consider the universal instantiation congruence principle: if
P{x/a} ∼ Q{x/a} for all a then ld?(x).P ∼ ld?(x).Q (cf., [18] Theorem 2.2.8(2)).
Like for the π-calculus, congruence does not hold for input, if input congruence
is interpreted as a first order algebraic congruence. We may show interesting be-
havioral (in)equations, that confirm basic intuitions about our conversation-based
communication model.

8

def s ⇒ P , s?(x).x J [P]

new n · s ⇐ Q , (νc)(n J [s!(c)] | c J [Q])

join n · s ⇐ Q , this(x).(n J [s!(x)] | Q)

?def s ⇒ P , recX .s?(x).(X | x J [P])

Figure 5: Service Idioms.

1. n J [P] | n J [Q] ∼ n J [P | Q].

2. n J [m J [P] | Q] 6∼ m J [P] | n J [Q].

3. m J [n J [o J [P]]] ∼ n J [o J [P]].

Proof. (1) and (3) follow from [19] Proposition 5.4 (2) and (3). We show a counter-
example to prove (2). Consider process P defined as P , l�(a) and Q defined as
Q , l�(x), yielding processes P1 and P2 for the lhs and the rhs of the inequation,
respectively, defined as

P1 , n J
[
m J

[
l�(a)

]
| l�(x)

]
P2 , m J

[
l�(a)

]
| n J

[
l�(x)

]
Process P1 has a τ transition (P1

τ−→ n J [m J [0] | 0]) while process P2 has no τ
transitions, hence P1 6∼ P2.

(1) captures the notion of conversation context as a single medium accessible through
distinct pieces. (2) contrasts with (1): the relation between a conversation and its
caller must be preserved. On the other hand, (3) expresses the fact that P may only
interact in its conversation and in the caller one (via � communications).

2.1 Representing Service-Oriented Primitives

Our core model focuses on the fundamental notions of conversation context and
message-based communication. From these basic mechanisms, useful programming
abstractions for service-oriented systems may be idiomatically defined, namely ser-
vice definition and instantiation constructs (defined as primitives in [20]), and the
conversation join construct, which is crucial to our approach to multiparty conversa-
tions. These constructs may be embedded in a simple way in the minimal calculus,
without hindering the flexibility of modeling and analysis.

We show in Figure 5 the derived forms along with their translation in the core
CC. A service definition has the form def s ⇒ P where s is the service name, and
P is the process to be launched at the server side endpoint of the freshly created
conversation (the service protocol). Service definitions must be placed in appropriate
contexts (cf. methods in objects), e.g.,

Shipper J [def newDelivery ⇒ P | · · ·]
A new instance of a service s is created by new n · s ⇐ Q , where n indicates the
context where the service named s is published, and Q specifies the client protocol.
For instance, a service definition as shown above may be instantiated by

new Shipper · newDelivery ⇐ Q

9

The process Q describes the client protocol that will run inside the freshly created
conversation. The interaction between service instantiation (new) and service def-
inition (def) results in the creation of a new conversation context n, in which the
service interactions will take place. Such context is initially split in two pieces, one
piece c J [Q] residing in the context of the client, the other piece c J [P] placed in
the context of the server. These newly created conversation access points appear to
their caller contexts as any other local processes, as P and Q are able to continuously
interact by means of � directed messages. As expected, P and Q will interact in the
new conversation by means of � directed messages. Thus, conversation initiation via
new and def is similar to session initiation in session calculi [11]. Typically, service
definitions may also be replicated, written ?def s ⇒ P , in order to be usable an
unbounded number of times.

In the core CC, conversation identifiers may be manipulated by processes if
needed (via the this(x).P), passed around in messages and subject to scope extru-
sion: this corresponds, in our setting, to a generalization of session delegation, in
which multiparty conversations are modeled by the progressive access of multiple,
dynamically determined partners, to an ongoing conversation. Joining of another
partner to an ongoing conversation is a frequent programming idiom, that may be
conveniently abstracted by the join n · s ⇐ Q construct. The semantics of the join
expression is similar to the service instantiation construct new: the key difference
is that while new creates a fresh new conversation, join allows a service s defined
at n to join in the current conversation, and continue interacting as specified by Q.
Next, we illustrate typical reduction steps of systems involving the service oriented
idioms.

n J [def s1 ⇒ P] | · · · | m J [new n · s1 ⇒ Q] →
(νc)(n J [c J [P]] | · · · | m J [c J [Q]])

Here, the service instantiation results in the creation of a new conversation c. The
two partners n and m may then interact in the new conversation c by � messages,
exchanged by the processes P and Q. These processes while performing the conver-
sation may also interact with their parent conversations n and m via � messages.

o J [def s2 ⇒ P] | · · · | c J [join o · s2 ⇒ Q] →
o J [c J [P]] | · · · | c J [Q]

This reduction step illustrates the situation where an ongoing conversation c asks a
new partner o to join in c according to a published service definition s2. It should
be clear how building on these simple mechanisms, multiparty conversations may be
progressively and dynamically formed, starting from dyadic ones created by service
instantiation.

In the rest of the paper we will develop a fairly rich type theory for conversation
contexts, using the core CC as the intended model. Our type system may be used to
discipline and specify communication patterns in systems with complex interactive
behavior including systems with dynamically assembled multiparty conversations,
ensuring absence of certain kinds of erroneous behaviors as already mentioned in the
Introduction. Before closing the section, we invite the reader to revisit the examples
presented in the Introduction, an then go through the next example in Figure 6.
The Flight Booking Service example illustrates a familiar service composition sce-
nario, involving a conversation with concurrent message exchanges and branching

10

on choices. We assume an extension of the language with a standard if statement,
and introduce anonymous contexts, defined as [P] , (νc)(c J [P]).

An instance of the flightBooking service is expected to receive a flightReq
message from the client and then reply a flightResp message after finding a suitable
flight. The implementation of the service relies on subsidiary services provided by
alphaAir and deltaAir , used to identify the best pricing. After reception of the
flightReq message, the flight information is forwarded to the service instances,
that will reply informing on the price. The prices are compared and a suitable
response to the flightBooking service client will be sent back.

Notice that the body of the flightBooking service is built from three com-
ponents: a new instance of alphaAir · flightBook, a new instance of deltaAir ·
flightBook, and a process starting with the flightReq�?(flight) message, to which
we will conventionally refer to as the “orchestration script”. The instantiation of
the two subsidiary services will result in the creation of two new conversation access
pieces, that will act as local processes. The orchestration script coordinates the in-
teraction between such local processes and the remote client of the flightBooking
instance. The local process created by the instance of alphaAir will interact with
the script by means of messages reqA and replyA, and the local process created
by the instance of deltaAir will interact with the orchestration script by means of
messages reqD and replyD.

These message exchanges form a loosely-coupled interaction between the orches-
tration script and the subsidiary service conversations, where the protocols provided
in new alphaAir · flightBook and new deltaAir · flightBook take care of adapting
the conversation protocol expected by the airline service providers to the messages
required by the orchestration script (e.g., mapping message reqA to message req,
etc).

After choosing the flight the flightBooking service instance informs the partner
services of the choice taken, confirming or canceling the reservations accordingly.
The partner service instances branch in the two possible behaviors, being set to
receive either bookA/bookD or cancelA/cancelD messages, after which the service
providers are notified accordingly.

3 Type System

In this section we formally present our type system for the core CC. The syntax for
the types is show in Figure 7. As already motivated in the Introduction, our types
specify the message protocols that flow between and within conversations.

Typing judgments have the form P :: T , where T is a process type. A process
type T is a type of the form L | B, where L is a located type and B is a behavioral
type. A located type associates conversation types to conversation names; a con-
versation type C may then declare its intended local conversations, in terms of a
behavioral type. Such a type judgement P :: T intuitively states that if process P is
placed in an environment that complies to type T , then one obtains a safe system.
The intended safety property will be formally stated in Corollary 3.19: it implies
conversations agree to declared protocols, and the absence of certain kind of runtime
errors.

For behavioral types B we have the branch and the choice constructs (⊕i∈I{Mi.Bi}

11

? def flightBooking⇒ [
new alphaAir · flightBook⇐

reqA�?(flight).req!(flight).
reply?(price).replyA�!(price).
(bookA�?().book!() + cancelA�?().cancel!())

|
new deltaAir · flightBook⇐

reqD�?(flight).req!(flight).
reply?(price).replyD�!(price).
(bookD�?().book!() + cancelD�?().cancel!())

|
flightReq�?(flight).

(reqA!(flight) | reqD!(flight)
|
replyA?(priceA).
replyD?(priceD).
if (priceD < priceA) then

flightResp�!(priceD).(bookD!() | cancelA!())
else

flightResp�!(priceA).(bookA!() | cancelD!()))]

Figure 6: Flight Booking Service.

and Ni∈I{Mi.Bi}, respectively), specifying processes that can branch in either of the
Mi.Bi behaviors and choose between one of the Mi.Bi behaviors, respectively. The
prefix M.B specifies a process that sends, receives, or internally exchanges a message
M before proceeding with behavior B. Then we have parallel composition B1 | B2,
inaction 0, and recursion. Message types M are specified by a polarity p (either
output !, input ? or internal action τ), a pair label-direction ld, and the type C of
what is communicated in the message (for simplicity, we restrict to monadic mes-
sages). Notice that a message M may refer to an internal exchange between two
partners, if it is of the form τ l�(C) (such internal interactions are always specified
in the local (“here”) conversation). We write M for M.0, and p l(C) for p l�(C).
Also, we write B for the dual type of B, obtained from B by swapping polarities !
and ?. We abbreviate both ⊕{M.B} and N{M.B} with M.B. For typing purposes,
we split the set of labels L into shared L? and plain Lp labels (recursive processes
are defined using shared labels).

Conversation types C are given by [B], where B specifies the message inter-
actions that may take place in the conversation. Located types L collect (using
composition) type associations between conversation names and their types. A lo-
cated type specifies the conversation type of each visible conversation. Recall that
the unlocated parts of the types appearing in a typing judgment P :: T refer to
properties of the current (not yet located) conversation.

In order to type recursive processes we introduce B〈X 〉, used in characterizing
our admissible recursive types. First off, we denote by B? a “shareable”behavioral

12

B ::= B1 | B2

∣∣ 0
∣∣ recX .B

∣∣ X ∣∣
⊕i∈I{Mi.Bi}

∣∣ Ni∈I{Mi.Bi} (Behavioral)

M ::= p ld(C) (Message)

p ::= !
∣∣ ?

∣∣ τ (Polarity)

C ::= [B] (Conversation)

L ::= n : C
∣∣ L1 | L2

∣∣ 0 (Located)

T ::= L | B (Process)

Figure 7: Syntax of Types

type defined (exclusively) with shared labels (from L?), hence not referring any plain
label (from Lp). We define B? and B〈X 〉.

Definition 3.1 Shared behavioral types, noted B?, and recursive behavioral types,
noted B〈X 〉, are defined as follows:

l? ∈ L?

B? ::= B?
1 | B?

2

∣∣ 0
∣∣ Ni∈I{? l?d

i (Ci).B?
i }

B〈X 〉 ::= B〈X 〉 | B?
∣∣ 0

∣∣ X ∣∣ ⊕i∈I {Mi.Bi〈X 〉}
∣∣ Ni∈I{Mi.Bi〈X 〉}

Essentially, type B〈X 〉 is a behavioral type where the recursion variable X may
occur as a leaf, and all its plain labels appear in messages that prefix the recursion
variable. Type B〈X 〉 thus characterizes recursive processes that can safely have
several active concurrent instances, whereby safely we intend that the concurrent
instances share only a message alphabet from L?, hence do not share any (linear)
message alphabet from Lp, and hence do not interfere and are apart (apartness is
formalized in Definition 3.10). We then use B〈M1, . . . ,Mk,X〉 to refer to a type
with k + 1 leafs, where all Mi are defined with shared labels and with polarity ?.

Types are related by the subtyping relation <: defined in Figure 10. The subtyp-
ing rules express expected relationships of types, such as the commutative monoid
rules for (− | −,0), congruence principles, and the split rule (5). We adopt an iso-
recursive approach to recursive types [17], based on simple unfoldings of recursive
type terms (4). We could also have adopted a more flexible theory of equi-recursive
subtyping, along the lines of [9]. For types T1 and T2 we write T1 ≡ T2 if T1 <: T2

and T2 <: T1. A key subtyping principle is (12), that allows a behavioral type to be
decomposed (in the subtype) in its two projections according to the message direc-
tions � and �. An important subtyping principle is (14), that allows a message to be
serialized (in the supertype). In (13) we use ?M as an abbreviation of rec X .M.X .
In (16) we require that all Mi (i ∈ J) message types have the same direction (ei-
ther � or �). Notice that we allow width subtyping for branch type in (16) and do
not allow width subtyping in choice type in (15). Essentially we can safely consider
more branches in the branch type, while we can not forget some choices in the choice
type, since this would allow undesired matches between choice and branch types:
if the environment expected by a process does not fully reveal the options it might

13

d(0) , 0 d(X) , X d(recX .B) , recX .d(B)

d(B1 | B2) , d(B1) | d(B2)
d(Ni∈I{? ldi (Ci).Bi}) , Ni∈I{? ldi (Ci).d(Bi)}
d(Ni∈I{? ld

′
i (Ci).Bi}) , Ni∈I{d(Bi)}

if d 6= d′ and d(Bi) = ? ld(C).B′

d(⊕i∈I{p ldi (Ci).Bi}) , ⊕i∈I{p ldi (Ci).d(Bi)}
d(⊕i∈I{p ld

′
i (Ci).Bi}) , Ni∈I{d(Bi)}

if d 6= d′ and d(Bi) = ? ld(C).B′

d(⊕i∈I{p ld
′

i (Ci).Bi}) , ⊕i∈I{d(Bi)}
if d 6= d′ and d(Bi) = ! ld(C).B′

Figure 8: Direction Projection

undertake, then when the process is placed in such an environment there might
be unexpected behaviors, i.e., behaviors not described by the type (cf., [6] where a
similar problem arises in contract compliance).

The projection d(B) in the direction d of a behavioral type B consists in the
selection of all messages that have the given direction d while filtering out the ones
in the other direction, offering a partial view of behavior B from the viewpoint of d.

Definition 3.2 For each direction d, the projection d(B) of type B along direction
d is inductively defined in Figure 8.

We also write, e.g., � B for � (B), to lighten the notation. Informally, we
sometimes refer to � B as the “here interface” of B, and likewise for � B as the “up
interface”.

Example 3.3 We illustrate the projection of choice and branch types with an ex-
ample. Consider type

⊕{! bookA�().? book�(); ! cancelA�().? cancel�()}
which specifies a process environment that can either output message bookA or mes-
sage cancelA in the enclosing conversation, and afterwards receive message book or
message cancel, respectively. Projecting the type in the � direction then results in
the choice type of the two � messages, as follows:

� (⊕{! bookA�().? book�(); ! cancelA�().? cancel�()}) =
⊕{! bookA�(); ! cancelA�()}

On the other hand, the � projection specifies that the process environment must
branch in all � behaviors of the continuations (since the first choice is invisible from
this view), as follows:

� (⊕{! bookA�().? book�(); ! cancelA�().? cancel�()}) =
N{? book�(); ? cancel�()}

If p is a polarity (!, ?, τ), we denote by p(B) the projection type that selects all
messages that have polarity p, while filtering out the ones of other polarities.

14

p(0) , 0 p(T1 | T2) , p(T1) | p(T2)

p(X) , X p(recX .B) , recX .p(B)
p(Ni∈I{p ldi (Ci).Bi}) , Ni∈I{p ldi (Ci).p(Bi)}
p(⊕i∈I{p ldi (Ci).Bi}) , ⊕i∈I{p ldi (Ci).p(Bi)}
p(p′ ld(C).B) , p(B)
p(n : [B]) , n : [p(B)]

Figure 9: Polarity Projection

Definition 3.4 For each polarity p, the projection p(T) of type T along a polarity
p is inductively defined in Figure 9.

We may now present our typing rules in Figure 12. They rely on several auxiliary
operations and predicates on types. The key ones are apartness T1#T2 (a predicate)
and merge T = T1 ./ T2 (a relation). Intuitively, two types are apart when they may
type subsystems that may be safely composed without undesirable interferences. To
define apartness we introduce the set LabelsL(B).

Definition 3.5 We denote by LabelsL(B) the set of message types defined with
labels in L of a behavioral B, defined as follows:

LabelsL(0) , ∅ LabelsL(X) , ∅ LabelsL(recX .T) , LabelsL(T)
LabelsL(T1 | T2) , LabelsL(T1) ∪ LabelsL(T2)
LabelsL(⊕i∈I{p ldi (Ci).Bi}) , {(p ldi (Ci)) : li ∈ L} ∪

⋃
i∈I LabelsL(Bi)

LabelsL(Ni∈I{p ldi (Ci).Bi}) , {(p ldi (Ci)) : li ∈ L} ∪
⋃

i∈I LabelsL(Bi)

For example, given some behavioral type B, LabelsLp(B) is the set of all plain (in Lp)
message types (p ld(C)) occurring in T , leaving out shared labels (those belonging
to L?). We define the set of directed labels of a behavioral type LLabelsL(T).

Definition 3.6 We denote by LLabelsL(T) the set of directed labels from L of a
behavioral type defined as:

LLabelsL(T) , {ld : (p ld(C)) ∈ LabelsL(T)}

We then define Labels(n, T) and LLabels(n, T), which denote the set of message
types and directed labels, respectively, located at n in type T .

Definition 3.7 We denote by Labels(n, T) and by LLabels(n, T) the set of message
types and the set of directed labels, respectively, located at n in type T , defined as:

LabelsL(n, T) , {M | T ≡ T ′ | n : [B] ,M ∈ LabelsL(B)}
LLabelsL(n, T) , {ld : (p ld(C)) ∈ LabelsL(n, T)}

Given behavioral types B1 and B2, we let B1 �u B2 state that message types with
shared labels occur both B1 and B2 with identical argument types (so that B1 and
B2 are compatible on shared labels).

15

T1 | T2 <:> T2 | T1 (1) T | 0 <:> T (2)

T1 | (T2 | T3) <:> (T1 | T2) | T3 (3)

recX .T <:> T{X/recX .T} (4)

n : [B1 | B2] <:> n : [B1] | n : [B2] (5)

B1 <: B2

M.B1 <: M.B2
(6)

T1 <: T2

T3 | T1 <: T3 | T2
(7)

C1 <: C2

n : C1 <: n : C2
(8)

T1 <: T3 T3 <: T2

T1 <: T2
(9)

T <: T (10)
B1 <: B2

[B1] <: [B2]
(11)

� B | � B <: B (12)

?M1 | . . . | ? Mk | recX .B〈0, . . . ,0,X〉 <: recX .B〈M1, . . . ,Mk,X〉 (13)

M.B1 | B2 <: M.(B1 | B2) (M # B2) (14)

Mi.Bi <: M ′
i .B

′
i (i ∈ I)

⊕i∈I{Mi.Bi} <: ⊕i∈I{M ′
i .B

′
i}

(15)

Mi.Bi <: M ′
i .B

′
i (i ∈ I) I ⊆ J

Ni∈J{Mi.Bi} <: Ni∈I{M ′
i .B

′
i}

(16)

Figure 10: Subtyping Rules.

Definition 3.8 The conformance relation B1 �u B2 between behavioral types is
defined as follows:

T1 �u T2 , if (p1 ld(C1)) ∈ LabelsL?(T1)
and (p2 ld(C2)) ∈ LabelsL?(T2) then C1 ≡ C2

and either p1 = p2 =? or p1 = p2 = τ or pi = ! and pj = τ

Conformance also characterizes the admissible shared message polarities, namely:
two ! message types (introduced by two distinct input summations) are not confor-
mant, ensuring an unique handling principle on inputs defined on shared labels; and
that a ! message is not conformant with a ?, ensuring matching messages types must
synchronize in a τ . We extend conformance to all (located and behavioral) types.

Definition 3.9 The conformance relation T1 � T2 between types is defined as fol-
lows:

16

T1 � T2 , if T1 ≡ L1 | B1 and T2 ≡ L2 | B2 then
B1 �u B2

and for all n.if L1 ≡ L′
1 | n : [B′

1] and L2 ≡ L′
2 | n : [B′

2]
then B′

1 �u B′
2

Type apartness is then defined by

Definition 3.10 The apartness relation T1#T2 between types is defined as follows:

T1 # T2 , T1 � T2 and LLabelsLp(T1)#LLabelsLp(T2)
and for all n.LLabelsLp(n, T1)#LLabelsLp(n, T2)

N.B. We write A#B for A ∩B = ∅.

Essentially, apartness ensures disjointness of plain (“linear”) types, and consistency
of shared (“exponential”) types, in the appropriate conversations (cf. [14]).

The merge relation is used to define merging of two types, so that if T = T1 ./ T2

then T is a particular (in general not unique) behavioral combination of the types
T1 and T2. Merge is defined not only in terms of spatial separation, but also, and
crucially, in terms of merging behavioral “traces”.

Notice also that it is not always the case that there is T such that T = T1 ./ T2.
On the other hand, if some such T exists, we use T1 ./ T2 to non-deterministically
denote any such T (e.g., in conclusions of type rules). Intuitively, T = T1 ./ T2 holds
if T1 and T2 may safely synchronize or interleave so to produce behavioral type T .

Definition 3.11 The merge relation T = T1 ./ T2, defined on located and behavioral
types, is inductively defined in Figure 11.

In rules (1) and (2) we require that l is a shared label; by B{? ld(C)/τ ld(C)}
we denote the type obtained by replacing all occurrences of ? ld(C) by τ ld(C)
in B. Instead in rules (3)-(6) the li labels must be plain. While shared labels
synchronize and leave open the possibility for further synchronizations, expecting
further outputs from the environment, plain message synchronization characterizes
the uniquely determined synchronization on that plain label.

Merge ./ thus allows τ l� plain message types (”here” internal interactions) to
be separated into send ! and receive ? capabilities in respective choice and branch
constructs. Also it is possible to decompose a sequence of prefixes Π, where Π
abbreviates M1.(. . .).Mk, by interleaving with the continuation, if Π is apart from
the prefixes of the behavior to be placed in parallel.

Example 3.12 Consider type

! buy�(F).? price�(F).! product�(D).? details�(D)

which specifies a process environment that can output message buy, then input mes-
sage price, then output message product, and finally input message details.
When merged with the type

! price�(F).? product�(D)

specifying the dual polarities for price and product, it yields type

! buy�(F).τ price�(F).τ product�(D).? details�(D)

which specifies the composite behavior that outputs message buy, then has internal
interactions on messages price and product, and finally inputs message details.

17

B{? ld(C)/τ ld(C)} | ? ! ld(C) = B ./ ? ! ld(C) (1)

B{? ld(C)/τ ld(C)} | ? ! ld(C) = ? ! ld(C) ./ B (2)

Π.⊕i∈I {τ l�i (Ci).Ti} = Π.⊕i∈I {! l�i (Ci).T+
i } ./ Ni∈I{? l�i (Ci).T−

i } (3)
if Π # Ni∈I{? l�i (Ci).T−

i } and Ti = T−
i ./ T+

i

Π.⊕i∈I {τ l�i (Ci).Ti} = ⊕i∈I{! l�i (Ci).T+
i } ./ Π.Ni∈I{? l�i (Ci).T−

i } (4)
if Π # ⊕i∈I {! l�i (Ci).T+

i } and Ti = T−
i ./ T+

i

Π.⊕i∈I {τ l�i (Ci).Ti} = Π.Ni∈I{? l�i (Ci).T+
i } ./ ⊕i∈I{! l�i (Ci).T−

i } (5)
if Π # ⊕i∈I {! l�i (Ci).T−

i } and Ti = T−
i ./ T+

i

Π.⊕i∈I {τ l�i (Ci).Ti} = Ni∈I{? l�i (Ci).T+
i } ./ Π.⊕i∈I {! l�i (Ci).T−

i } (6)
if Π # Ni∈I{? l�i (Ci).T+

i } and Ti = T−
i ./ T+

i

recX .T = recX .T+ ./ recX .T− (7)
if T = T− ./ T+

n : [T] = n : [T+] ./ n : [T−] (8)
if T = T− ./ T+

T1 | T2 = T+
1 | T+

2 ./ T−
1 | T−

2 (9)
if T1 # T2 and Ti = T−

i ./ T+
i

X = X ./ X (10) T = T ./ 0 (11) T = 0 ./ T (12)

Figure 11: Merge Relation.

We define closed behavioral type used in characterizing processes that have a match-
ing input for all outputs, both for plain and shared messages, and are still open for
further outputs on shared label messages.

Definition 3.13 We denote by closed(B) a behavioral type, defined as follows

closed(B) , if (p ld(C)) ∈ LabelsL(B) then p = τor p = ! and l ∈ L?

We discuss some key typing rules. In rule (Stop) we use τ (L) to refer to a located
type defined exclusively with messages of polarity τ . In rule (Res) we use closed(B)
as given in Definition 3.13. In rule (Rec) we use B〈X 〉 as given in Definition 3.1. By
LM we denote a located type of the form n1 : [M1] | . . . | nk : [Mk], then by ?LM we
denote n1 : [?M1] | . . . | nk : [?Mk]. The rule states that the process is well typed
under an environment that offers persistent messages Mi under conversations ni, and
offers persistent behavior B in the current conversation. We require that message
types Mi are defined on shared labels and with polarity ?. Recursive processes define
the intended shared behavior using shared messages, in such way allowing several
instances of the (shared part) of the recursive process to be concurrently active -
the types of these several instances must be apart # Definition 3.10.

Rule (Piece) types a (piece of a) conversation. Process P expects some behavior
located in conversations L, and some behavior B in the current conversation. The
type in the conclusion is obtained by merging the process type L with a type that
describes the behavior of the new conversation piece, in parallel with the type of

18

P :: T1 Q :: T2

P | Q :: T1 ./ T2
(Par)

0 :: τ (L)
(Stop)

P :: T | a : [B] (closed(B), a 6∈ dom(T))
(νa)P :: T

(Res)

P :: LM | B〈X 〉
recX .P :: ?LM | recX .B〈X 〉

(Rec)
X :: X

(RecVar)

P :: L | B

n J [P] :: (L ./ n : [� B]) | loc(� B)
(Piece)

Pi :: L | Bi | xi : Ci (xi 6∈ dom(L))
Σi∈I ldi ?(xi).Pi :: L | ⊕i∈I {!ldi (Ci).Bi}

(Input)

P :: L | B

ld!(n).P :: (L ./ n : C) | ?ld(C).B
(Output)

P :: L | B1 | x : [B2] (x 6∈ dom(L))
this(x).P :: L | (B1 ./ B2)

(This)

T <: T ′ P :: T ′

P :: T
(Sub)

Figure 12: Typing Rules.

the toplevel conversation, the now current conversation. Essentially the type of each
projection (along the two directions) is collected appropriately. The “here” behavior
projection � B is the behavior in conversation n, and the “up” behavior projection
� of P is now the “here” behavior at the toplevel conversation, via loc(� B). The
effect of loc(B) is to set the direction of all messages in B to �.

We use dom(L) to refer to the set of conversation identifiers of the located type
L. In Rule (Input) we may read the premise as follows: processes Pi require some
located behavior L, some current conversation behavior Bi, and some behavior at
conversation xi. Then, the conclusion states that the input summation process is
well-typed under type L, with the behavior interface becoming the choice of the types
of the continuations prefixed by the messages ! ldi (Ci), where the output capability
! corresponds to the message capability expected from the external environment (as
well as the choice that also refers to the capability of performing a choice expected
from the external environment). We require that message labels li for i ∈ I are either
all plain or all shared. In the Rule (Output) notice that the context type is a separate
./ view of the context, which means that the type being sent may actually be some
separate part of the type of some conversation, which will be (partially) delegated
away. This mechanism is crucial to allow external partners to join in on ongoing
conversations in a disciplined way. The behavioral interface of the output prefixed
process is an input type, as an input is expected from the external environment. For
(Input) and (Output) rules when the label used in the prefix is shared, the message
type is required to conform with the continuation (ldi (Ci) � Bi).

19

τ ld(C).B → B
B → B′

N{B̃1;B; B̃2} → B′
B → B′

⊕{B̃1;B; B̃2} → B′

T1 → T2

n : [T1] → n : [T2]
T1 → T2

T1 | T3 → T2 | T3
T → T

Figure 13: Type Reduction.

In rule (This), typing of the conversation awareness primitive requires the “here”
behavior B2 of conversation x to be a separate view of the current conversation. This
allows the current conversation to be bound to the name x, and possibly sent to other
partners that may need to join it. Notice that the type assigned to x is in general
just a partial view of the current conversation type.

We may now present our main soundness results. Subject reduction is defined
using a notion of reduction on types, since each reduction step at the process level
may require a modification in the typing, as expected from a behavioral type system.
Type reduction is given in Figure 13. We use B̃ to denote B1;B2; . . . ;Bk.

We now state a Substitution Lemma, main auxiliary result to Subject Reduction.

Lemma 3.14 (Substitution Lemma) Let P be a well typed process such that P ::
T | x : C and x 6∈ dom(T). If there is T ′ such that T ′ = T ./ a : C then P{x/a} :: T ′.

Proof. Follows by induction on the structure of P . Essentially the merge T ./ a : C
ensures the existence of the new type derivation (see Appendix A).

We may now state our Subject Reduction result.

Theorem 3.15 (Subject Reduction) Let P be a process and T a type such that
P :: T . If P → Q then there is T ′ such that T → T ′ and Q :: T ′.

Proof. See Appendix B.

Our safety result asserts certain error processes are unreachable from well-typed
processes. To define error processes we introduce static process contexts.

Definition 3.16 (Static Context) Static process contexts, noted C[·], are defined
as follows:

C[·] ::= (νa)C[·]
∣∣ P | C[·]

∣∣ c J [C[·]]
∣∣ recX .C[·]

∣∣ ·
We also use w(λ) to denote the sequence c ld of elements in the action label λ, for
example w((νa)c ld!(a)) = c ld and w((νa)ld!(a)) = ld.

Definition 3.17 (Error Process) P is an error process if there is a static context

C with P = C[Q | R] and there are Q′, R′, λ, λ′ such that Q
λ−→ Q′, R

λ′
−→ R′ and

w(λ) = w(λ′), λ 6= λ′ and w(λ) is not a shared label.

A process is not an error only if for each possible immediate interaction in a plain
message there is at most a single sender and a single receiver.

Proposition 3.18 (Error Freeness) Let P be a process such that P :: T for some
T . Then P is not an error process.

20

P :: L | B

def s⇒ P :: L | ! s�([� B]).(loc(� B))
(Def)

P :: L | B (closed(B′), B′ = � B ./ B1)
new n · s ⇒ P :: L | n : [? s�([B1])] | loc(� B)

(New)

P :: L | B

join n · s ⇒ P :: L | n : [? s�([B1])] | (B ./ B1)
(Join)

def s ⇒ P :: LM | ! s�(C).B
?def s ⇒ P :: ?LM | recX .(! s�(C).(B | X)

(RepDef)

Figure 14: Derived Typings.

Proof. See Appendix C.

By subject reduction (Theorem 3.15), we conclude that any process reachable
from a well-typed process P :: T is not an error. We note by ∗→ the reflexive
transitive closure of →.

Corollary 3.19 (Type Safety) Let P be a process such that P :: T for some T .
If there is Q such that P

∗→ Q, then Q is not an error process.

Proof. Immediate from Theorem 3.15 and Proposition 3.18.

Our type safety result ensures that, in any reduction sequence arising from a
well-typed process, for each plain-labeled message ready to communicate there is al-
ways at most a unique input / output outstanding synchronization. More: arbitrary
interactions in shared labels do not invalidate this invariant. Another consequence
of subject reduction (Theorem 3.15) is that any message exchange inside the process
must be explained by a τM prefix in the related conversation type (via type reduc-
tion), thus implying conversation fidelity, i.e., all conversations follow the prescribed
protocols. In the expected polyadic extension of core CC and type system we would
also exclude arity mismatch errors.

3.1 Derived Typings for Service Idioms

We show in Figure 14 the typing rules for the service idioms defined in Figure 5.
Notice that these are admissible rules, mechanically derived from the typings of
the encodings, not primitive rules. It is remarkable that the typings of these id-
iomatic constructs, defined from the small set of primitives in the core CC, admit
the intended high level typings. Ignoring the continuation loc(� B), the type of a
service definition def has the form !s([S]), where S describes the compatible client
behavior. The dual type is required for a service instantiation, of the form ?s([S]).
However, such type must be located at some context n, cf. the semantics of the new
idiom. The typing for join clearly displays the partial delegation of a conversation
type fragment, B1 represents the conversation type defining the participation of the
incoming partner, while B specifies the residual that remains owned by the current
process.

21

Bc , τ buy(P).τ price(D).τ product(P).τ details(I)
Bbu , ? buy(P).! price(D).! details(I)
Bss , ! buy(P).? price(D).τ product(P).? details(I)
Bse , ! buy(P).? price(D).? product(P)
Bsh , ! product(P).? details(I)
Tbu , Seller : [? startBuy([Bss])]
Tse , Seller : [! startBuy([Bss]).Bdb]

| Shipper : [? newDelivery([Bsh])]
Tsh , Shipper : [? newDelivery([Bsh])]
Tsys , Seller : [τ startBuy([Bss]).Bdb]

| Shipper : [τ newDelivery([Bsh])]

Buyer :: Tbu Seller :: Tse Shipper :: Tsh

BuySystem :: Tsys

Figure 15: Typings for Buy System.

3.2 Typing Conversations

In this section we illustrate the expressiveness of our type system by typing the
running examples. In Figure 15 we depict the types for the Buyer -Seller -Shipper
example shown in Section 1.1.

The type Bc describes all the interactions that take place under the three-party
conversation, which consist in the sequence of internal actions on messages buy,
price, product and details. Upon startBuy service instantiation the overall con-
versation type Bc is separated, so that Buyer retains its role in the conversation
(Bbu) and Seller gets the rest of the conversation behavioral type (Bss). The sepa-
ration is such that Bc = Bbu ./ Bss .

The type of the Buyer role in the conversation is then given by type Bbu , which
specifies that Buyer first expects someone to receive message buy, then to send
message price and then to send message details. Notice that the type makes
no explicit mention of who is the communicating partner, allowing for whoever to
fulfill the intended protocol. Type Bss , which specifies the behavior of the subsystem
consisting of Seller and Shipper , is dual to Bbu in messages buy, price and details,
and accounts for the internal interaction between Seller and Shipper in message
product.

Type Bss is further separated in the type of the Seller role in the conversation
(Bse) and the type of the Shipper role in the conversation (Bsh), such that Bss =
Bse ./ Bsh . When Shipper is asked to join in on the ongoing conversation it will
receive the type of its own role in the conversation Bsh .

The types of each individual party are then Tbu , Tse and Tsh , for Buyer , Seller
and Shipper , respectively. The type specified in the service message startBuy is then
the type of the Seller -Shipper subsystem Bss and the type of the service message
newDelivery is the type of the Shipper role in the conversation Bsh .

To type the Seller participant we consider the type of the PriceDB process to
be ! askPrice(P).? readVal(D) so that the merge with the startBuy service “up”

22

Bs , ! flightReq(F).? flightResp(D)
Bt , ! flightReq�(F).

(τ reqA(F) | τ reqD(F)
| τ replyA(D).τ replyD(D).
? flightResp�(D).

(⊕{τ bookD(); τ cancelD()}
| ⊕ {τ bookA(); τ cancelA()}))

BO , ! flightReq�(F).
(? reqA(F) | ? reqD(F)
| ! replyA(D).! replyD(D).
? flightResp�(D).

(N{? bookD(); ? cancelD()}
| N{? bookA(); ? cancelA()})

BA , ! reqA(F).? replyA(D).⊕ {! bookA(); ! cancelA()}
BD , ! reqD(F).? replyD(D).⊕ {! bookD(); ! cancelD()}
La , alphaAir : [? flightBook([Bp])]
Ld , deltaAir : [? flightBook([Bp])]
Bp , ? req(F).! reply(D).N{? book(); ? cancel()}

OR :: BO AA :: La | BA DA :: Ld | BD

(AA | DA | OR) :: La | Ld | Bt

[AA | DA | OR] :: La | Ld | Bs

?def flightBooking⇒ [AA | DA | OR] ::
?La | ? Ld | recX .!flightBooking([Bs]).X

Figure 16: Typings for Flight Booking.

interface results in type Bdb , such that Bdb , τ askPrice(P).τ readVal(D).
The type of the whole system is then given by Tsys which specifies the two service

instantiations as internal interactions τ .
We now turn to the types of the flightBooking service (Figure 6) which are

depicted in Figure 16. We consider the if statement to be well typed if both branches
have the same type. Whenever flightBooking is instantiated, the service conver-
sation is described by the type Bs, specifying that the service expects the client to
output message fightReq and then input message flightResp.

The internal anonymous conversation is described by the type Bt, where the
interactions between the subsidiary service instances (alphaAir · flightBook and
deltaAir · flightBook) and the orchestrating process take place. Such a type may
be seen as a so-called choreographic description, that describes the internal message
exchanges between the different partners. We consider AA, DA and OR denote the
three elements (partner alphaAir, partner deltaAir and Orchestration) in the body
of the definition for service flighBooking. Notice how BO, BA and BD specify
message exchanges from the local viewpoint of OR, AA and DA respectively. Notice
also that Bt ≡ BO ./ BA<: ./ BD<:, so that the behavior of the three elements
merge on the “global” conversation type Bt, which still specifies interactions with

23

the enclosing conversation (messages flightReq� and flightResp�). In particular,
the internal choice specified in type Bt results from matching the behavior of the
orchestration script BO, which specifies the branch types, with the behavior interface
of the service instances BA and BD, which specify the choice types.

The choice type described in type BA is obtained from the “up” projection of
the behavioral type of the body of the alphaAir · flightBook service (process P in
new alphaAir · flightBook⇐ P), where the following choice type is specified:

⊕{! bookA�().? book(); ! cancelA�().? cancel()}
describing that a choice is expected from the enclosing environment on either mes-
sage bookA or message cancelA, after which the service provider side is expected
to receive either message book or message cancel. As described in Example 3.3
the � and � projections yield the choice type ⊕{! bookA�(); ! cancelA�()} in the
type of the behavioral interface of the service endpoint (BA) and the branch type
N{? book(); ? cancel()} in the type of the flightBook service conversation (Bp).

4 Progress

In this section, we propose an auxiliary proof system to enforce progress properties
on systems. As most traditional deadlock detection methods (e.g., see [15]), we
build on the construction of an well-founded ordering on events. In our case, since
communication depends both on a context and a label, we are able to cope with
systems with multiple interleaved conversations, and back and forth communications
between two or more conversations in the same thread.

Essentially the proof system ensures that the events in a process can be related
by a well founded partial order, where the events that are to be considered here
are synchronization on messages. Since messages can be exchanged in different
conversation contexts, the ordering must consider both the message label and the
conversation identifier. Furthermore since references to conversations can be passed
in message synchronization, the ordering also takes into account for each message
the ordering associated to the conversation which is communicated in the message.
We consider that events that come first to be minimal in the ordering (it would be
analogous to consider first events as maximal). We can then use such an ordering to
verify that all events in the continuation of an input/output prefix are greater in the
ordering than the message specified in the prefix, thus guaranteeing the intended
acyclic nature in event dependencies.

The proof system, depicted in Figure 17, is presented by means of judgments of
the form Γ `` P . The judgment Γ `` P states that the communications of process
P follow a well determined order, specified by Γ. In such a judgment we note by Γ
an event ordering, which is as a well-founded partial order of events. Events consist
of both a pair name-label ((Λ ∪ V) × L) and an event ordering abstraction, i.e.,
a parameterized event ordering, noted (x)Γ (where x is a binding occurrence with
scope Γ). We note by e an event defined as e , n.l.(x)Γ where n is the conversation,
l is the message label and (x)Γ is the event ordering abstraction.

In Γ `` P , we use ` to keep track of the names of the current conversation (`(�))
and of the enclosing conversation (`(�)); if ` = (n, m) then `(�) = n and `(�) = m.
We define some operations over event orderings Γ.

24

Γ `` P Γ `` Q

Γ `` P | Q
(Par)

Γ `` 0
(Stop)

Γ `` P

Γ \ a `` (νa)P
(Res)

Γ `(`(�),n) P

Γ `` n J [P]
(Piece)

Γ `` P

Γ `` recX .P
(Rec)

X ∈ χu

Γ `` recX .P
(RecUnfold)

Γ `` X
(RecVar)

(`(d).li.(y)Γ′
i⊥Γ) ∪ Γ′

i{y/xi} `` Pi

Γ `` Σi∈I ldi ?(xi).Pi
(Input)

(`(d).l.(x)Γ′⊥Γ) `` P Γ′{x/n} ⊆ (`(d).l.(x)Γ′⊥Γ)
Γ `` ld!(n).P

(Output)

Γ ∪ {(e1 ≺ e2) | (e1{x/`(�)} ≺Γ e2{x/`(�)})} `` P

Γ `` this(x).P
(This)

Figure 17: Proof Rules for Progress.

Definition 4.1 The event ordering Γ \ n is obtained from Γ by removing all events
that have as conversation identifier the name n, while keeping the overall ordering.

Γ \ n , {(e1(m) ≺ e2(o)) | (e1(m) ≺Γ e2(o)) ∧ n 6= m ∧ n 6= o}
∪ {(e1(m) ≺ e2(o)) | (e1(m) ≺Γ e3(n)) ∧ (e3(n) ≺Γ e2(o))}

We use e1 ≺Γ e2 to say that e1 is smaller than e2 under Γ. Also, we use e(n) to refer
to an event such that e is of the form n.l.(x)Γ for some l and (x)Γ.

Definition 4.2 Given event e and event ordering Γ such that e ∈ dom(Γ) we define
e⊥Γ as the subrelation of Γ where all events are greater than e, as follows:

e⊥Γ , {(e1 ≺ e2) | (e1 ≺Γ e2) ∧ (e≺Γ e1)}

We briefly discuss the key proof rules of Figure 17. In rule (Res) the event
ordering considered in the conclusion is obtained from the one in the premise by
removing all events that have as conversation the restricted name a. In rule (Piece)
the current conversation and enclosing conversation are updated, so that in the
premise the current conversation is n and the enclosing conversation is `(�), which
is the current conversation in the conclusion. Rule (Rec) states a recursive process
is well-ordered if the body is well-ordered. Instead in rule (RecUnfold) a recursive
process that originates from an unfolding is always well-ordered: we need to verify
the ordering of the recursive process body only “once”. To simplify presentation,
we annotate unfoldings by considering a specialized set of process variables χu.

Rules (Input) and (Output) ensure communications originating in the continu-
ations, including the ones in the conversation being received/sent, are of a greater
order. In rule (Input) the event ordering considered in the premise is such that
it contains elements greater than `(d).li.(x)Γ′, the event associated with the input,
enlarged with the event ordering abstraction (x)Γ′ of the event associated with the
input, where the bound y is replaced by the input parameter xi. In rule (Output)

25

the event ordering considered in the premise is such that it contains elements greater
than `(d).l.(x)Γ′, the event associated to the output. Also the premise states that
the event ordering abstraction (x)Γ′ of the event associated to the output is a sub-
relation of the event ordering Γ, when the parameter x is replaced by the name to
be sent in the output n. In both rules (Output) and (Input) we require there is e′

such that `(d).li.(y)Γ′
i ≺Γ e′.

Rule (This) ensures interactions in conversation x follow the ordering defined for
the current conversation. The event ordering given in the premise is enlarged with
events which have as conversation x, following the ordering given for events that
have as conversation `(�). We assume that all this occur inside context pieces.

We now present our progress results, starting by Theorem 4.4 which states that
orderings are preserved in reductions, and the auxiliary Lemma 4.3.

Lemma 4.3 (Substitution Lemma) Let P be a process and Γ,Γ′ event orderings
such that Γ ∪ Γ′ `` P and Γ′{x/n} ⊆ Γ. Then Γ ``{x/n} P{x/n}.

Proof. Follows by induction on the structure of P . Essentially the condition
Γ′{x/n} ⊆ Γ ensures the ordering already prescribed for n in Γ copes with the
ordering required for conversation x (see Appendix D).

Theorem 4.4 (Preservation of Event Ordering) Let P be a well typed process
P :: T and Γ an event ordering such that Γ `` P . If there is Q such that P → Q
then Γ `` Q.

Proof. See Appendix E.

In order to characterize the absence of stuck processes, we first need to distinguish
finished processes from stuck processes.

Definition 4.5 (Finished Process) P is a finished process if for every static con-
text C (Definition 3.16) and process Q such that P = C[Q] there are no ld, a, R such

that Q
ld!(a)−→ R.

Finished processes are processes that have no active outputs. With finished pro-
cesses we thus intend to characterize processes that are in a stable state (have
no reductions) where there are no pending requests (outputs), but there can be
some processes (e.g., persistent definitions) still listening on messages (cf., Defini-
tion 1 (Normal Form) [3] where a similar notion is presented, and Definition 4.6
(Progress) [8] where a notion of stable process is presented as a process that does
not contain live channels). We may now state our progress result.

Theorem 4.6 (Progress) Let P be a well typed process such that P :: T , where
closed(T), and Γ an event ordering and a, b names (a, b 6∈ fn(P)) such that Γ `(a,b)

P . If P is not a finished process (Definition 4.5) then there is Q such that P → Q.

Proof. See Appendix G.

Theorem 4.6 ensures that well-typed and well-ordered processes are never stuck
on an output that has no matching input. This property entails services are always
available upon request and protocols involving interleaving conversations never get
stuck.

26

4.1 Proving Progress in Conversations

In this section we revisit the running examples to show they enjoy the progress
property. For the Buyer -Seller -Shipper example of Section 1.1, which we denote by
BuySystem, we have that BuySystem :: Tsys and closed(Tsys) (see Figure 15).

We consider Γ such that
Seller .startBuy≺Γ Seller .askPrice≺Γ

Seller .readVal≺Γ Shipper .newDelivery

When analyzing within the scope of the restricted name corresponding to the service
conversation, which we identify with BuyChat , Γ is extended to Γ′ such that

Seller .startBuy≺Γ′ BuyChat .buy≺Γ′

. . . ≺Γ′ BuyChat .details
Intuitively such ordering corresponds to the protocol ordering of messages a pro-
grammer has in mind when writing such code. Our proof system guarantees this
order is coherently followed globally.

We can then state Γ `` BuySystem which combined with BuySystem :: Tsys and
closed(Tsys) guarantees, considering the results of Theorem 4.4 and Theorem 4.6,
that the process BuySystem reduces until it is a finished process (Definition 4.5).

Notice that since we combine conversation names and message labels in the
ordering we are able to interleave conversations, for instance in the Seller code
where after receiving a buy message under the service conversation, the process
then accesses the enclosing conversation to consult the service provider database,
and then re-interacts in the service conversation. We believe the ability to express
this control flow pattern is essential in service-oriented computing, as server side
resources need to be accessed in between the handling of a service instance.

We can also state that our flightBooking service, shown in Figure 6, enjoys the
progress property, if placed in a system with a service client, alphaAir and deltaAir
service providers, such that the type of the composite system is a closed type. If
the service client persistently requires the service to be instantiated then the system
has infinite reductions.

5 Related Work

Behavioral Type Systems As most behavioral type systems (see [7, 13]), we describe
a conversation behavior by some kind of abstract process. However, fundamental
ideas behind the conversation type structure, in particular the composition / decom-
position of behaviors via merge, as captured, e.g., in the typing rule for P | Q, and
used to model delegation of conversation fragments, have not been explored before.

Binary Sessions The notion of conversation originates in that of session (intro-
duced in [10, 11]). Sessions are a medium for two-party interaction, where session
participants access the session through a session endpoint. On the other hand con-
versations are also a single medium but for multiparty interaction, where any of the
conversation participants accesses the conversation through a conversation endpoint
(pieces). Session channels support single-threaded interaction protocols between the
two session participants. Conversation contexts, on the other hand, support concur-
rent interaction protocols between multiple participants. Sessions always have two

27

endpoints, created at session initialization. Participants can delegate their partici-
pation in a session, but the delegation is full as the delegating party loses access to
the session. Conversations also initially have two endpoints. However the number
of endpoints may increase (decrease) as participants join in on (leave) ongoing con-
versations. Participants can ask a party to join in on a conversation and not lose
access to it (partial delegation). Since there are only two session participants, ses-
sion types may describe the entire protocol by describing the behavior of just one of
the participants (the type of the other participant is dual). Conversations types, on
the other hand, describe the interactions between multiple parties so they specify
the entire conversation protocol (a choreography description) that decomposes in
the types of the several participants (e.g., Bt = Bbu ./ Bse ./ Bsh).

Multiparty Sessions The goals of the works [2, 12] are similar to ours. To support
multiparty interaction, [12] considers multiple session channels, while [2] considers
a multiple indexed session channel, both resorting to multiple communication path-
ways. We follow an essentially different approach, by letting a single medium of in-
teraction support concurrent multiparty interaction via labeled messages. In [2, 12]
sessions are established simultaneously between several parties through a multi-
cast session request. As in binary sessions, session delegation is full so the number
of initial participants is kept invariant, unlike in conversations where parties can
keep joining in. The approach of [2, 12] builds on two-level descriptions of service
collaborations (global and local types), first introduced in a theory of endpoint pro-
jection [5]. The global types mention the identities of the communicating partners,
being the types of the individual participants projections of the global type with
respect to these annotations. Our merge operation ./ is inspired in the idea of pro-
jection [5], but we follow a different approach where “global” and “local” types are
treated at the same level in the type language and types do not explicitly mention
the participants identities, so that each given protocol may be realized by different
sets of participants, provided that the composition of the types of the several par-
ticipants produce (via ./) the appropriate invariant. Our approach thus supports
conversations with dynamically changing number of partners, ensuring a higher de-
gree of loose-coupling. We do not see how this could be encoded in the approach
of [12]. On the other hand, we believe that core CC with conversation types can
express the same kind of systems as [12].

Progress in Session Types There are a number of progress studies for binary
sessions (e.g., [1, 3, 8]), and for multiparty sessions [2, 12]. The techniques of [2, 8]
are nearer to ours as orderings on channels are imposed to guarantee the absence
of cyclic dependencies. However they disallow processes that get back to interact in
a session after interacting in another, and exclude interleaving on received sessions,
while we allow processes that re-interact in a conversation and interleave received
conversations.

6 Concluding Remarks

We have presented a core typed model for expressing and analyzing service and
communication based systems, building on the notions of conversation, conversation
context, and context-dependent communication. We believe that, operationally, the
core CC can be seen as a specialized idiom of the π-calculus [18], if one considers π

28

extended with labeled channels or pattern matching. However, for the purpose of
studying communication disciplines for service-oriented computing and their typings,
it is much more convenient to adopt a primitive conversation context construct, for
it allows the conversation identity to be kept implicit until needed.

Conversation types elucidate the intended dynamic structure of conversations,
in particular how freshly instantiated conversations may dynamically engage and
dismiss participants, modeling in a fairly abstract way, the much lower level cor-
relation mechanisms available in Web-Services technology. Conversation types also
describe the information and control flow of general service-based collaborations,
in particular they may describe the behavior of orchestrations and choreographies.
We have established subject reduction and type safety theorems, which entail that
well-typed systems follow the defined protocols. We also have studied a progress
property, proving that well-ordered systems never get stuck, even when participants
are engaged in multiple interleaved conversations, as is often the case in applica-
tions. Conversation types extend the notion of binary session types to multiple
participants, but discipline their communication by exploiting distinctions between
labeled messages in a single shared communication medium, rather than by intro-
ducing multiple or indexed more traditional session typed communication channels
as, e.g., [12]. This approach allows us to unify the notions of global type and local
type, and type highly dynamic scenarios of multiparty concurrent conversations not
covered by other approaches. On the other hand, being more abstract and uniform,
our type system does not explicitly keep track of participant identities. It would
be interesting to investigate to what extent both approaches could be conciliated,
for instance, by specializing our approach so as to consider extra constraints on
projections on types and merges, restricting particular message exchanges to some
roles.

29

References

[1] L. Acciai and M. Boreale. A Type System for Client Progress in a Service-
Oriented Calculus. In P. Degano, R. De Nicola, and J. Meseguer, editors,
Concurrency, Graphs and Models, Essays Dedicated to Ugo Montanari on the
Occasion of His 65th Birthday, volume 5065 of Lecture Notes in Computer
Science, pages 642–658. Springer-Verlag, 2008.

[2] L. Bettini, M. Coppo, L. D’Antoni, M. De Luca, M. Dezani-Ciancaglini, and
N. Yoshida. Global Progress in Dynamically Interleaved Multiparty Sessions.
In F. van Breugel and M. Chechik, editors, CONCUR 2008, 19th International
Conference on Concurrency Theory, Proceedings, volume 5201 of Lecture Notes
in Computer Science, pages 418–433. Springer-Verlag, 2008.

[3] R. Bruni and L. G. Mezzina. Types and Deadlock Freedom in a Calculus of
Services, Sessions and Pipelines. In J. Meseguer and G. Rosu, editors, Algebraic
Methodology and Software Technology, 12th International Conference, AMAST
2008, Proceedings, volume 5140 of Lecture Notes in Computer Science, pages
100–115. Springer-Verlag, 2008.

[4] L. Caires. Spatial-Behavioral Types for Concurrency and Resource Control in
Distributed Systems. Theoretical Computer Science, 402(2-3):120–141, 2008.

[5] M. Carbone, K. Honda, and N. Yoshida. Structured Communication-Centred
Programming for Web Services. In R. De Nicola, editor, Programming Lan-
guages and Systems, 16th European Symposium on Programming, ESOP 2007,
Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2007, Proceedings, volume 4421 of Lecture Notes in Com-
puter Science, pages 2–17. Springer-Verlag, 2007.

[6] G. Castagna, N. Gesbert, and L. Padovani. A Theory of Contracts for
Web Services. In G. C. Necula and P. Wadler, editors, Proceedings of the
35th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL 2008, pages 261–272. ACM, 2008.

[7] S. Chaki, S. K. Rajamani, and J. Rehof. Types as models: Model Check-
ing Message-Passing Programs. In Proceedings of the 29th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2002,
pages 45–57. ACM, 2002.

[8] M. Dezani-Ciancaglini, U. de’ Liguoro, and N. Yoshida. On Progress for Struc-
tured Communications. In G. Barthe and C. Fournet, editors, Trustworthy
Global Computing, Third Symposium, TGC 2007, Revised Selected Papers,
volume 4912 of Lecture Notes in Computer Science, pages 257–275. Springer-
Verlag, 2008.

[9] S. Gay and M. Hole. Subtyping for Session Types in the Pi Calculus. Acta
Informatica, 42(2-3):191–225, 2005.

[10] K. Honda. Types for Dyadic Interaction. In E. Best, editor, CONCUR 1993,
4th International Conference on Concurrency Theory, Proceedings, volume 715
of Lecture Notes in Computer Science, pages 509–523. Springer-Verlag, 1993.

30

[11] K. Honda, V. T. Vasconcelos, and M. Kubo. Language Primitives and Type
Discipline for Structured Communication-Based Programming. In C. Hankin,
editor, Programming Languages and Systems, 7th European Symposium on Pro-
gramming, ESOP 1998, Held as Part of the European Joint Conferences on the
Theory and Practice of Software, ETAPS 1998, Proceedings, volume 1381 of
Lecture Notes in Computer Science, pages 122–138. Springer-Verlag, 1998.

[12] K. Honda, N. Yoshida, and M. Carbone. Multiparty Asynchronous Ses-
sion Types. In G. C. Necula and P. Wadler, editors, Proceedings of the
35th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL 2008, pages 273–284. ACM, 2008.

[13] A. Igarashi and N. Kobayashi. A Generic Type System for the Pi-Calculus.
Theoretical Computer Science, 311(1-3):121–163, 2004.

[14] N. Kobayashi, B. C. Pierce, and D. N. Turner. Linearity and the Pi-Calculus.
In Proceedings of the 23rd ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 1996, pages 358–371. ACM, 1996.

[15] N. Lynch. Fast Allocation of Nearby Resources in a Distributed System. In
Conference Proceedings of the Twelfth Annual ACM Symposium on Theory of
Computing, STOC 1980, pages 70–81. ACM, 1980.

[16] R. Milner, J. Parrow, and D. Walker. A Calculus of Mobile Processes, Part I
+ II. Information and Computation, 100(1):1–77, 1992.

[17] B. Pierce. Types and Programming Languages. MIT Press, 2002.

[18] D. Sangiorgi and D. Walker. The π-calculus: A Theory of Mobile Processes.
Cambridge University Press, 2001.

[19] H. T. Vieira, L. Caires, and J. C. Seco. A Model of Service Oriented Compu-
tation. TR-DI/FCT/UNL 6/07, Universidade Nova de Lisboa, Departamento
de Informática, 2007.

[20] H. T. Vieira, L. Caires, and J. C. Seco. The Conversation Calculus: A Model
of Service-Oriented Computation. In S. Drossopoulou, editor, Programming
Languages and Systems, 17th European Symposium on Programming, ESOP
2008, Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2008, Proceedings, volume 4960 of Lecture Notes in Computer
Science, pages 269–283. Springer-Verlag, 2008.

31

A Theorem 3.15 and Proposition 3.18 auxiliary results

We start by the proof of the Substitution Lemma (3.14) and the statements of the
other Lemmas used in the proofs of the Theorems.

Substitution Lemma (Lemma 3.14)

Let P be a well typed process such that P :: T | x : C and x 6∈ dom(T). If there is
T ′ such that T ′ = T ./ a : C then P{x/a} :: T ′.
Proof. Follows by induction on the structure of P . Essentially the existence of a
merge T ./ a : C ensures the existence and is the result of the new type derivation.
We show the case when P is of the form x J [Q]. We have

x J [Q] :: T | x : C (A.0.1)

where x 6∈ dom(T). We have that there exist T ′′ such that T | x : C <: T ′′ and
(A.0.1) is derived from

x J [Q] :: T ′′ (A.0.2)

being that (A.0.2) is derived from

Q :: L | B (A.0.3)

where L,B are such that

T ′′ = (L ./ x : [� B]) | loc(� B) (A.0.4)

We have that there exist L′, C ′′ such that

L ≡ L′ | x : C ′′ (A.0.5)

From (A.0.4) and (A.0.5) and T | x : C <: T ′′ we conclude that there exist C ′ such
that C <: C ′ and

x : C ′ = x : C ′′ ./ x : [� B] (A.0.6)

and there exist T ′ such that T <: T ′ such that

T ′ ≡ L′ | loc(� B) (A.0.7)

We now consider there is type
T ./ a : C (A.0.8)

From (A.0.8), (A.0.7), T <: T ′, (A.0.6) and C <: C ′ we conclude there is

L′ ./ a : C ′′ (A.0.9)

From (A.0.9) we conclude
(L′ | B) ./ a : C ′′ (A.0.10)

From (A.0.3) and (A.0.5) we conclude

Q :: L′ | B | x : C ′′ (A.0.11)

32

By induction hypothesis on (A.0.11) and (A.0.10) we conclude

Q{x/a} :: (L′ | B) ./ a : C ′′ (A.0.12)

From (A.0.8), (A.0.7), T <: T ′, C <: C ′ and (A.0.6) we conclude

L′ ./ (a : C ′′ ./ a : [� B]) (A.0.13)

From (A.0.12) and (A.0.13) we derive

a J [(Q{x/a})] :: (L′ ./ (a : C ′′ ./ a : [� B])) | loc(� B) (A.0.14)

From (A.0.14), (A.0.7), T <: T ′, C <: C ′ and (A.0.6) we conclude

a J [(Q{x/a})] :: T ./ a : C (A.0.15)

which completes the proof.

Lemma A.1 Let P be a well-typed process such that P :: T . If P
ld?(a)−→ Q then there

are T ′, C, B such that T ≡ T ′ ./ ⊕{. . . ; ! ld(C).B; . . .}. Furthermore if there is T ′′

such that T ′′ = (T ′ ./ B) ./ a : C then Q :: T ′′.

Proof. Follows by induction on the derivation of the label. We consider the different
cases: either the transition results from a input summation, or from within a con-
versation piece, or from within the scope of a restriction, or from one component of
a parallel composition, or from the body of a recursive process.

(Case Σi∈I ldi ?(xi).P ′
i

ldi ?(a)
−→ P ′

j{xj/a})
We have that

Σi∈I ldi ?(xi).P ′
i :: T (A.1.1)

and

Σi∈I ldi ?(xi).P ′
i

ldi ?(a)
−→ P ′

j{xj/a} (A.1.2)

We have there is L,Ci, Bi such that

T <: L | ⊕ {!ldi (Ci).Bi} (A.1.3)

and
Σi∈I ldi ?(xi).P ′

i :: L | ⊕ {!ldi (Ci).Bi} (A.1.4)

and
P ′

i :: L | Bi | xi : Ci (A.1.5)

From (A.1.3) we have there is T ′ such that

T ≡ T ′ ./ ⊕{. . . ; !ldi (Ci).Bi; . . .} (A.1.6)

Let us now consider there is T ′′ such that

T ′′ ≡ (T ′ ./ B) ./ a : Cj (A.1.7)

33

Considering Lemma 3.14 we then have

P ′
j{xj/a} :: T ′′ (A.1.8)

which completes the proof for this case.

(Case c J [P ′]
l�?(a)−→ c J [Q′])

We have that
c J

[
P ′] :: T (A.1.9)

and
c J

[
P ′] l�?(a)−→ c J

[
Q′] (A.1.10)

We have there is L,B such that

T <: (L ./ c : [� B]) | loc(� B) (A.1.11)

and
c J

[
P ′] :: (L ./ c : [� B]) | loc(� B) (A.1.12)

and
P ′ :: L | B (A.1.13)

We also have that (A.1.10) is derived from

P ′ l�?(a)−→ Q′ (A.1.14)

By induction hypothesis on (A.1.14) and (A.1.13) we have there is T ′, C, B′ such
that

L | B ≡ T ′ ./ ⊕{. . . ; !l�(C).B′; . . .} (A.1.15)

From (A.1.15) we have that there is B1 such that

loc(� B) ≡ B1 ./ ⊕{. . . ; !l�(C).B′; . . .} (A.1.16)

From (A.1.11) and (A.1.16) we have there is T1 such that

T ≡ T1 ./ ⊕{. . . ; !l�(C).B′; . . .} (A.1.17)

Let us now consider there is T2 such that

T2 ≡ (T1 ./ B′) ./ a : C (A.1.18)

From (A.1.18), (A.1.17), (A.1.11) and (A.1.15) we conclude there is T ′′ such that

T ′′ ≡ (T ′ ./ B′) ./ a : C (A.1.19)

By induction hypothesis we then have

Q′ :: (T ′ ./ B′) ./ a : C (A.1.20)

From (A.1.15) we have that there is B2 such that

L | B2 ≡ (T ′ ./ B′) (A.1.21)

34

and
� B ≡� B2 (A.1.22)

and
� B2 ≡ B1 ./ B′ (A.1.23)

We then have that

c J
[
Q′] :: ((L ./ a : C) ./ c : [� B2]) | loc(� B2) (A.1.24)

From (A.1.24), (A.1.23), (A.1.22), (A.1.11) and (A.1.17) we have that

c J
[
Q′] :: (T1 ./ B′) ./ a : C (A.1.25)

which completes the proof for this case.

(Case (νc)P ′ ld?(a)−→ (νc)Q′)
We have that

(νc)P ′ :: T (A.1.26)

and
(νc)P ′ ld?(a)−→ (νc)Q′ (A.1.27)

which is derived from
P ′ ld?(a)−→ Q′ (A.1.28)

We have that there is T ′, B such that

T <: T ′ (A.1.29)

and
(νc)P ′ :: T ′ (A.1.30)

and
P ′ :: T ′ | c : [B] (A.1.31)

and closed(B). By induction hypothesis on (A.1.28) and (A.1.31) we have that there
is T ′′, C, B′ such that

T ′ | c : [B] ≡ T ′′ ./ ⊕{. . . ; !ld(C).B′; . . .} (A.1.32)

From (A.1.32) we have there is T ′′
1 such that

T ′′ ≡ T ′′
1 | c : [B] (A.1.33)

We then have that
(νc)P ′ :: T ′′

1 ./ ⊕{. . . ; !ld(C).B′; . . .} (A.1.34)

Let us now consider there is T2 such that

T2 ≡ (T ′′
1 ./ B′) ./ a : C (A.1.35)

We then have, since a 6= c, that

((T ′′
1 | c : [B]) ./ B′) ./ a : C (A.1.36)

35

which by induction hypothesis gives us

Q′ :: ((T ′′
1 | c : [B]) ./ B′) ./ a : C (A.1.37)

From (A.1.37) we derive

(νc)Q′ :: (T ′′
1 ./ B′) ./ a : C (A.1.38)

which completes the proof for this case.

(Case P ′ | R
ld?(a)−→ Q′ | R)

We have that
P ′ | R :: T (A.1.39)

and
P ′ | R

ld?(a)−→ Q′ | R (A.1.40)

which is derived from
P ′ ld?(a)−→ Q′ (A.1.41)

We have that there is T1, T2 such that

T <: T1 ./ T2 (A.1.42)

and
P ′ | R :: T1 ./ T2 (A.1.43)

and
P ′ :: T1 (A.1.44)

and
R :: T2 (A.1.45)

By induction hypothesis on (A.1.41) and (A.1.44) we have that there is T ′, C, B such
that

T1 ≡ T ′ ./ ⊕{. . . ; !ld(C).B; . . .} (A.1.46)

From (A.1.46) and (A.1.42) we conclude there is T ′′ such that

T ≡ T ′′ ./ ⊕{. . . ; !ld(C).B; . . .} (A.1.47)

Let us now consider there is T3 such that

T3 ≡ (T ′′ ./ B) ./ a : C (A.1.48)

From (A.1.48), (A.1.46) and (A.1.42) we have that

(T ′ ./ B) ./ a : C (A.1.49)

By induction hypothesis we then have

Q′ :: (T ′ ./ B) ./ a : C (A.1.50)

From (A.1.50) and (A.1.45) we derive

Q′ | R :: ((T ′ ./ B) ./ a : C) ./ T2 (A.1.51)

36

From (A.1.51), (A.1.47), (A.1.46) and (A.1.42) we conclude

Q′ | R :: (T ′′ ./ B) ./ a : C (A.1.52)

which completes the proof for this case.

(Case rec X .P ′ ld?(a)−→ Q′)
We have that

rec X .P ′ :: T (A.1.53)

and
rec X .P ′ ld?(a)−→ Q′ (A.1.54)

which is derived from
P ′{X/rec X .P ′} ld?(a)−→ Q′ (A.1.55)

We have that there is LM , B such that

T <: ?LM | rec X .B〈X 〉 (A.1.56)

and
rec X .P ′ :: ?LM | rec X .B〈X 〉 (A.1.57)

and
P ′ :: LM | B〈X 〉 (A.1.58)

From (A.1.58) we derive

P ′{X/rec X .P ′} :: LM | ? LM | B〈rec X .B〈X 〉〉 (A.1.59)

By induction hypothesis on (A.1.55) and (A.1.59) we have that there is T ′, C, B′

such that

LM | ? LM | B〈rec X .B〈X 〉〉 ≡ T ′ ./ ⊕{. . . ; !ld(C).B′; . . .} (A.1.60)

From (A.1.60) and (A.1.56) we conclude there is T ′′ such that

T ≡ T ′′ ./ ⊕{. . . ; !ld(C).B′; . . .} (A.1.61)

Let us now consider there is T2 such that

T2 ≡ (T ′′ ./ B′) ./ a : C (A.1.62)

From (A.1.62), (A.1.60) and (A.1.61) we have that

(T ′ ./ B′) ./ a : C (A.1.63)

By induction hypothesis we then have

Q′ :: (T ′ ./ B) ./ a : C (A.1.64)

From (A.1.64), (A.1.60), (A.1.61) and (A.1.56) we derive

Q′ :: (T ′′ ./ B) ./ a : C (A.1.65)

which completes the proof.

37

Lemma A.2 Let P be a well-typed process such that P :: T . If P
c l�?(a)−→ Q then

there are T ′, C, B such that T ≡ T ′ ./ c : [⊕{. . . ; ! l�(C).B; . . .}]. Furthermore if
there is T ′′ such that T ′′ = (T ′ ./ c : [B]) ./ a : C then Q :: T ′′.

Proof. Follows by induction on the derivation of the label, along the lines of the
proof of Lemma A.1. We show the base case of l�?(a) transition originating from
within a context piece and the case where the derivation originates from the located
transition c l�?(a) from within a context piece.

(Case c J [P ′]
c l�?(a)−→ c J [Q′])

We have that
c J

[
P ′] :: T (A.2.1)

and
c J

[
P ′] c l�?(a)−→ c J

[
Q′] (A.2.2)

We have there is L,B such that

T <: (L ./ c : [� B]) | loc(� B) (A.2.3)

and
c J

[
P ′] :: (L ./ c : [� B]) | loc(� B) (A.2.4)

and
P ′ :: L | B (A.2.5)

We also have that (A.2.2) is derived from

P ′ l�?(a)−→ Q′ (A.2.6)

Considering Lemma A.1, from (A.2.6) and (A.2.5) we have there is T ′, C, B′ such
that

L | B ≡ T ′ ./ ⊕{. . . ; !l�(C).B′; . . .} (A.2.7)

From (A.2.7) we have that there is B1 such that

� B ≡ B1 ./ ⊕{. . . ; !l�(C).B′; . . .} (A.2.8)

From (A.2.3) and (A.2.8) we have there is T1 such that

T ≡ T1 ./ c :
[
⊕{. . . ; !l�(C).B′; . . .}

]
(A.2.9)

Let us now consider there is T2 such that

T2 ≡ (T1 ./ c :
[
B′]) ./ a : C (A.2.10)

From (A.2.10), (A.2.9), (A.2.3) and (A.2.7) we conclude there is T ′′ such that

T ′′ ≡ (T ′ ./ c :
[
B′]) ./ a : C (A.2.11)

By induction hypothesis we then have

Q′ :: (T ′ ./ c :
[
B′]) ./ a : C (A.2.12)

38

From (A.2.7) we have that there is B2 such that

L | B2 ≡ (T ′ ./ B′) (A.2.13)

and
� B ≡ � B2 (A.2.14)

and
� B2 ≡ B1 ./ B′ (A.2.15)

We then have that

c J
[
Q′] :: ((L ./ a : C) ./ c : [� B2]) | loc(� B2) (A.2.16)

From (A.2.16), (A.2.15), (A.2.14), (A.2.3) and (A.2.9) we have that

c J
[
Q′] :: (T1 ./ c :

[
B′]) ./ a : C (A.2.17)

which completes the proof for this case.

(Case b J [P ′]
c l�?(a)−→ b J [Q′])

We have that
b J

[
P ′] :: T (A.2.18)

and
b J

[
P ′] c l�?(a)−→ b J

[
Q′] (A.2.19)

We have there is L,B such that

T <: (L ./ b : [� B]) | loc(� B) (A.2.20)

and
b J

[
P ′] :: (L ./ b : [� B]) | loc(� B) (A.2.21)

and
P ′ :: L | B (A.2.22)

We also have that (A.2.19) is derived from

P ′ c l�?(a)−→ Q′ (A.2.23)

By induction hypothesis on (A.2.23) and (A.2.22) we have there is T ′, C, B′ such
that

L | B ≡ T ′ ./ c :
[
⊕{. . . ; !l�(C).B′; . . .}

]
(A.2.24)

From (A.2.24) we have that there is L′ such that

L ≡ L′ ./ c :
[
⊕{. . . ; !l�(C).B′; . . .}

]
(A.2.25)

From (A.2.20) and (A.2.25) we have there is T1 such that

T ≡ T1 ./ c :
[
⊕{. . . ; !l�(C).B′; . . .}

]
(A.2.26)

Let us now consider there is T2 such that

T2 ≡ (T1 ./ c :
[
B′]) ./ a : C (A.2.27)

39

From (A.2.27), (A.2.26), (A.2.20) and (A.2.24) we conclude there is T ′′ such that

T ′′ ≡ (T ′ ./ c :
[
B′]) ./ a : C (A.2.28)

By induction hypothesis we then have

Q′ :: (T ′ ./ c :
[
B′]) ./ a : C (A.2.29)

We then have that

c J
[
Q′] :: ((L′ ./ c :

[
B′]) ./ a : C) ./ b : [� B]) | loc(� B) (A.2.30)

From (A.2.30), (A.2.20), (A.2.25) and (A.2.26) we have that

c J
[
Q′] :: (T1 ./ c :

[
B′]) ./ a : C (A.2.31)

which completes the proof for this case.

Lemma A.3 Let P be a well-typed process such that P :: T . If P
ld!(a)−→ Q then there

are T ′, C, B such that T ≡ T ′ ./ N{. . . ; ? ld(C).B; . . .}, and there is T ′′ such that
T ′ = T ′′ ./ a : C and Q :: T ′′ ./ B.

Proof. Follows by induction on the derivation of the label. We consider the different
cases: either the transition results from a output prefix, or from within a conversation
piece, or from within the scope of a restriction, or from one component of a parallel
composition, or from the body of a recursive process.

(Case ld!(a).P ′ ld!(a)−→ P ′)
We have that

ld!(a).P ′ :: T (A.3.1)

and
ld!(a).P ′ ld!(a)−→ P ′ (A.3.2)

We have there is L,C,B such that

T <: (L ./ a : C) | N{?ld(C).B} (A.3.3)

and
ld!(a).P ′ :: (L ./ a : C) | N{?ld(C).B} (A.3.4)

and
P ′ :: L | B (A.3.5)

From (A.3.3) we have there is T ′ such that

T ≡ T ′ ./ N{. . . ; ?ld(C).B; . . .} (A.3.6)

and also that there is T ′′ such that

T ′ ≡ T ′′ ./ a : C (A.3.7)

40

and finally, considering (A.3.5), that

P ′ :: T ′′ ./ B (A.3.8)

which completes the proof for this case.

(Case c J [P ′]
l�!(a)−→ c J [Q′])

We have that
c J

[
P ′] :: T (A.3.9)

and
c J

[
P ′] l�!(a)−→ c J

[
Q′] (A.3.10)

We have there is L,B such that

T <: (L ./ c : [� B]) | loc(� B) (A.3.11)

and
c J

[
P ′] :: (L ./ c : [� B]) | loc(� B) (A.3.12)

and
P ′ :: L | B (A.3.13)

We also have that (A.3.10) is derived from

P ′ l�!(a)−→ Q′ (A.3.14)

By induction hypothesis on (A.3.14) and (A.3.13) we have there is T ′, C, B′ such
that

L | B ≡ T ′ ./ N{. . . ; ?l�(C).B′; . . .} (A.3.15)

and there is T ′′ such that
T ′ ≡ T ′′ ./ a : C (A.3.16)

and
Q′ :: T ′′ ./ B′ (A.3.17)

From (A.3.15) we have that there is B1 such that

loc(� B) ≡ B1 ./ N{. . . ; ?l�(C).B′; . . .} (A.3.18)

From (A.3.11) and (A.3.18) we have there is T1 such that

T ≡ T1 ./ N{. . . ; ?l�(C).B′; . . .} (A.3.19)

From (A.3.11), (A.3.16) and (A.3.15) we conclude there is T ′′
1 such that

T1 ≡ T ′′
1 ./ a : C (A.3.20)

and from (A.3.17) that
c J

[
Q′] :: T ′′

1 ./ B′ (A.3.21)

which completes the proof for this case.

(Case (νc)P ′ ld?(a)−→ (νc)Q′)

41

We have that
(νc)P ′ :: T (A.3.22)

and
(νc)P ′ ld!(a)−→ (νc)Q′ (A.3.23)

which is derived from
P ′ ld!(a)−→ Q′ (A.3.24)

We have that there is T ′, B such that

T <: T ′ (A.3.25)

and
(νc)P ′ :: T ′ (A.3.26)

and
P ′ :: T ′ | c : [B] (A.3.27)

and closed(B). By induction hypothesis on (A.3.24) and (A.3.27) we have that there
is T ′′, C, B′ such that

T ′ | c : [B] ≡ T ′′ ./ N{. . . ; ?ld(C).B′; . . .} (A.3.28)

and
T ′′ ≡ T ′′

1 ./ a : C (A.3.29)

and
Q′ :: T ′′

1 ./ B′ (A.3.30)

From (A.3.28) we have there is T ′′
2 such that

T ′′ ≡ T ′′
2 | c : [B] (A.3.31)

and since a 6= c, T ′′
3 such that

T ′′
1 ≡ T ′′

3 | c : [B] (A.3.32)

We then have that
(νc)P ′ :: T ′′

2 ./ N{. . . ; ?ld(C).B′; . . .} (A.3.33)

and
T ′′

2 ≡ T ′′
3 ./ a : C (A.3.34)

and
(νc)Q′ :: T ′′

3 ./ B′ (A.3.35)

which completes the proof for this case.

(Case P ′ | R
ld!(a)−→ Q′ | R)

We have that
P ′ | R :: T (A.3.36)

and
P ′ | R

ld!(a)−→ Q′ | R (A.3.37)

42

which is derived from
P ′ ld!(a)−→ Q′ (A.3.38)

We have that there is T1, T2 such that

T <: T1 ./ T2 (A.3.39)

and
P ′ | R :: T1 ./ T2 (A.3.40)

and
P ′ :: T1 (A.3.41)

and
R :: T2 (A.3.42)

By induction hypothesis on (A.3.38) and (A.3.41) we have that there is T ′, C, B such
that

T1 ≡ T ′ ./ N{. . . ; ?ld(C).B; . . .} (A.3.43)

and T ′′ such that
T ′ ≡ T ′′ ./ a : C (A.3.44)

and
Q′ :: T ′′ ./ B (A.3.45)

From (A.3.43) and (A.3.39) we conclude there is T ′
1 such that

T ≡ (T ′ ./ T2) ./ N{. . . ; ?ld(C).B; . . .} (A.3.46)

and T3 such that
(T ′ ./ T2) ≡ (T ′′ ./ T2) ./ a : C (A.3.47)

and
Q′ | R :: (T ′′ ./ B) ./ T2 (A.3.48)

which completes the proof for this case.

(Case rec X .P ′ ld!(a)−→ Q′)
We have that

rec X .P ′ :: T (A.3.49)

and
rec X .P ′ ld!(a)−→ Q′ (A.3.50)

which is derived from
P ′{X/rec X .P ′} ld!(a)−→ Q′ (A.3.51)

We have that there is LM , B such that

T <: ?LM | rec X .B〈X 〉 (A.3.52)

and
rec X .P ′ :: ?LM | rec X .B〈X 〉 (A.3.53)

43

and
P ′ :: LM | B〈X 〉 (A.3.54)

From (A.3.54) we derive

P ′{X/rec X .P ′} :: LM | ? LM | B〈rec X .B〈X 〉〉 (A.3.55)

By induction hypothesis on (A.3.51) and (A.3.55) we have that there is T ′, C, B′

such that

LM | ? LM | B〈rec X .B〈X 〉〉 ≡ T ′ ./ N{. . . ; ?ld(C).B′; . . .} (A.3.56)

and T ′′ such that
T ′ ≡ T ′′ ./ a : C (A.3.57)

and
Q′ :: T ′′ ./ B′ (A.3.58)

From (A.3.56) and (A.3.52) we conclude there is T2 such that

T ≡ T2 ./ ⊕{. . . ; !ld(C).B′; . . .} (A.3.59)

From (A.3.57), (A.3.56) and (A.3.52) we conclude there is T ′′
2 such that

T2 ≡ T ′′
2 ./ a : C (A.3.60)

and
Q′ :: T ′′

2 ./ B′ (A.3.61)

which completes the proof.

Lemma A.4 Let P be a well-typed process such that P :: T . If P
c l�!(a)−→ Q then

there are T ′, C, B such that T ≡ T ′ ./ c : [N{. . . ; ? l�(C).B; . . .}], and there are T ′′

such that T ′ ≡ T ′′ ./ a : C and Q :: T ′′ ./ c : [B].

Proof. Follows by induction on the derivation of the label, along the lines of the
proof of Lemma A.3. We show the base case of l�!(a) transition originating from
within a context piece and the case where the derivation originates from the located
transition c l�!(a) from within a context piece.

(Case c J [P ′]
c l�!(a)−→ c J [Q′])

We have that
c J

[
P ′] :: T (A.4.1)

and
c J

[
P ′] c l�!(a)−→ c J

[
Q′] (A.4.2)

We have there is L,B such that

T <: (L ./ c : [� B]) | loc(� B) (A.4.3)

and
c J

[
P ′] :: (L ./ c : [� B]) | loc(� B) (A.4.4)

44

and
P ′ :: L | B (A.4.5)

We also have that (A.4.2) is derived from

P ′ l�!(a)−→ Q′ (A.4.6)

Considering Lemma A.3, from (A.4.6) and (A.4.5) we have there is T ′, C, B′ such
that

L | B ≡ T ′ ./ N{. . . ; ?l�(C).B′; . . .} (A.4.7)

and T ′′ such that
T ′ ≡ T ′′ ./ a : C (A.4.8)

and
Q′ :: T ′′ ./ B′ (A.4.9)

From (A.4.7) we have that there is B1 such that

� B ≡ B1 ./ N{. . . ; ?l�(C).B′; . . .} (A.4.10)

From (A.4.3) and (A.4.10) we have there is T1 such that

T ≡ T1 ./ c :
[
N{. . . ; ?l�(C).B′; . . .}

]
(A.4.11)

From (A.4.7) we have that there is B2 such that

L | B2 ≡ (T ′ ./ B′) (A.4.12)

and
� B ≡ � B2 (A.4.13)

and
� B2 ≡ B1 ./ B′ (A.4.14)

We also have that there is L′ such that

L ≡ L′ ./ a : C (A.4.15)

We then have that

c J
[
Q′] :: (L′ ./ c : [� B2]) | loc(� B2) (A.4.16)

From (A.4.16), (A.4.14), (A.4.13), (A.4.3) and (A.4.11) we have that

T1 ≡ ((L′ ./ c : [B1]) | loc(� B2)) ./ a : C (A.4.17)

and
c J

[
Q′] :: ((L′ ./ c : [B1]) | loc(� B2)) ./ c :

[
B′] (A.4.18)

which completes the proof for this case.

(Case b J [P ′]
c l�!(a)−→ b J [Q′])

We have that
b J

[
P ′] :: T (A.4.19)

45

and
b J

[
P ′] c l�!(a)−→ b J

[
Q′] (A.4.20)

We have there is L,B such that

T <: (L ./ b : [� B]) | loc(� B) (A.4.21)

and
b J

[
P ′] :: (L ./ b : [� B]) | loc(� B) (A.4.22)

and
P ′ :: L | B (A.4.23)

We also have that (A.4.20) is derived from

P ′ c l�!(a)−→ Q′ (A.4.24)

By induction hypothesis on (A.4.24) and (A.4.23) we have there is T ′, C, B′ such
that

L | B ≡ T ′ ./ c :
[
N{. . . ; ?l�(C).B′; . . .}

]
(A.4.25)

and
T ′ ≡ T ′′ ./ a : C (A.4.26)

and
Q′ :: T ′′ ./ c :

[
B′] (A.4.27)

From (A.4.25) we have that there is L′ such that

L ≡ L′ ./ c :
[
N{. . . ; ?l�(C).B′; . . .}

]
./ a : C (A.4.28)

From (A.4.21) and (A.4.28) we have there is T1 such that

T ≡ T1 ./ c :
[
N{. . . ; ?l�(C).B′; . . .}

]
(A.4.29)

We then have that

c J
[
Q′] :: ((L′ ./ c :

[
B′]) ./ b : [� B]) | loc(� B) (A.4.30)

and
T1 ≡ ((L′ ./ b : [� B]) | loc(� B)) ./ a : C (A.4.31)

which completes the proof for this case.

Lemma A.5 Let P be a well-typed process such that P :: T . If P
(νa)ld!(a)−→ Q then

there are T ′, C, B such that T ≡ T ′ ./ N{. . . ; ? ld(C).B; . . .}, and there are B′, C ′

such that closed(B′) and a : [B′] = a : C ′ ./ a : C and Q :: (T ′ ./ B) | a : C ′.

Proof. Follows by induction on the derivation of the label. The proof follows similar
lines to that of Lemma A.3. We show the case of restriction open (Fig. 3 (opn)).

(Case (νa)P ′ (νa)ld!(a)−→ Q′)
We have that

(νa)P ′ :: T (A.5.1)

46

and
(νa)P ′ ld!(a)−→ Q′ (A.5.2)

which is derived from
P ′ ld!(a)−→ Q′ (A.5.3)

We have that there is T ′, B such that

T <: T ′ (A.5.4)

and
(νa)P ′ :: T ′ (A.5.5)

and
P ′ :: T ′ | a : [B] (A.5.6)

and closed(B). Considering Lemma A.3 and (A.5.3) and (A.5.6) we have that there
are T ′′, C, B′ such that

T ′ | a : [B] ≡ T ′′ ./ N{. . . ; ?ld(C).B′; . . .} (A.5.7)

and
T ′′ ≡ T ′′

1 ./ a : C ′ (A.5.8)

and
Q′ :: T ′′

1 ./ B′ (A.5.9)

From (A.5.7) we have there is T ′′
2 , C ′ such that

T ′′
1 ≡ T ′′

2 | a : C (A.5.10)

and
a : [B] = a : C ′ ./ a : C (A.5.11)

which completes the proof for this case.

Lemma A.6 Let P be a well-typed process such that P :: T . If P
(νa)c l�!(a)−→ Q then

there are T ′, C, B such that T ≡ T ′ ./ c : [N{. . . ; ? l�(C).B; . . .}], and there are B′, C ′

such that closed(B′) and a : [B′] = a : C ′ ./ a : C and Q :: (T ′ ./ c : [B]) | a : C ′.

Proof. Follows by induction on the derivation of the label. We show the case of a
(νa)l�!(a) transition originating from within a context piece.

(Case c J [P ′]
(νa)c l�!(a)−→ c J [Q′])

We have that
c J

[
P ′] :: T (A.6.1)

and
c J

[
P ′] (νa)c l�!(a)−→ c J

[
Q′] (A.6.2)

We have there is L,B such that

T <: (L ./ c : [� B]) | loc(� B) (A.6.3)

47

and
c J

[
P ′] :: (L ./ c : [� B]) | loc(� B) (A.6.4)

and
P ′ :: L | B (A.6.5)

We also have that (A.6.2) is derived from

P ′ (νa)l�!(a)−→ Q′ (A.6.6)

Considering Lemma A.5, from (A.6.6) and (A.6.5) we have there is T ′, C, B′ such
that

L | B ≡ T ′ ./ N{. . . ; ?l�(C).B′; . . .} (A.6.7)

and B′′, C ′′ such that closed(B′′) and

a :
[
B′′] = a : C ′ ./ a : C (A.6.8)

and
Q′ :: (T ′ ./ B′) ./ a : C ′ (A.6.9)

From (A.6.7) we have that there is B1 such that

� B ≡ B1 ./ N{. . . ; ?l�(C).B′; . . .} (A.6.10)

From (A.6.3) and (A.6.10) we have there is T1 such that

T ≡ T1 ./ c :
[
N{. . . ; ?l�(C).B′; . . .}

]
(A.6.11)

From (A.6.7) we have that there is B2 such that

L | B2 ≡ (T ′ ./ B′) (A.6.12)

and
� B ≡ � B2 (A.6.13)

and
� B2 ≡ B1 ./ B′ (A.6.14)

We then have that

c J
[
Q′] :: ((L ./ c : [� B2]) | loc(� B2)) ./ a : C ′ (A.6.15)

From (A.6.15), (A.6.14), (A.6.13), (A.6.3) and (A.6.11) we have that

T1 ≡ (L ./ c : [B1]) | loc(� B2) (A.6.16)

and
c J

[
Q′] :: (((L ./ c : [B1]) | loc(� B2)) ./ c :

[
B′]) ./ a : C ′ (A.6.17)

which completes the proof for this case.

Lemma A.7 Let P be a well-typed process such that P :: T . If P
c this−→ Q due to a

this prefix, then there are L,B1, B2 such that T ≡ (L | B1) ./ (� B2). Furthermore
if there is T ′ such that T ′ ≡ (L | B1) ./ (c : [� B2]) then Q :: (L | B1) ./ (c : [� B2]).

48

Proof. Follows by induction on the derivation of the label. We show the case of a
this prefix transition.

(Case this(x).P ′ c this−→ P ′{x/c})
We have that

this(x).P ′ c this−→ P ′{x/c} (A.7.1)

and
this(x).P ′ :: T (A.7.2)

We have there are L,B1, B2 such that

T <: L | (B1 ./ B2) (A.7.3)

and
P ′ :: L | B1 | x : [B2] (A.7.4)

Let us consider there is T ′ such that

T ′ = (L | B1) ./ c : [B2] (A.7.5)

Then considering Lemma 3.14 we have

P ′{x/c} :: (L | B1) ./ c : [B2] (A.7.6)

which completes the proof for this case.

Lemma A.8 Let P be a well-typed process such that P :: T . If P
c this−→ Q due to a

synchronization then there are T ′, B′, B′′, B1, B2, C1, C2, l such that T ≡ T ′ ./ B′ ./
c : [B′′] and either B′ ≡ ⊕{. . . ; ! l�(C1).B1; . . .} and B′′ ≡ N{. . . ; ? l�(C2).B2; . . .},
or B′ ≡ N{. . . ; ? l�(C1).B1; . . .} and B′′ ≡ ⊕{. . . ; ! l�(C2).B2; . . .}. Furthermore if
C1 ≡ C2 we have that Q :: T ′ ./ B1 ./ c : [B2].

Proof. Follows by induction on the derivation of the label. We show the case of a
(tco) synchronization.

(Case P1 | P2
c this−→ Q1 | Q2)

We have that
P1 | P2

c this−→ Q1 | Q2 (A.8.1)

and
P1 | P2 :: T (A.8.2)

(A.8.1) is derived from

P1
l�!(a)−→ Q1 (A.8.3)

and
P2

c l�?(a)−→ Q2 (A.8.4)

We have there are T1, T2 such that

T <: T1 ./ T2 (A.8.5)

and
P1 :: T1 (A.8.6)

49

and
P2 :: T2 (A.8.7)

Considering Lemma A.3 and (A.8.3) and (A.8.6) we have there are T ′
1, C1, B1 such

that
T1 ≡ T ′

1 ./ N{. . . ; ? ld(C1).B1; . . .} (A.8.8)

and there is T ′′
1 such that

T ′
1 = T ′′

1 ./ a : C1 (A.8.9)

and
Q1 :: T ′′

1 ./ B1 (A.8.10)

Considering Lemma A.2 and (A.8.4) and (A.8.7) we have there are T ′
2, C2, B2 such

that
T2 ≡ T ′

2 ./ c :
[
⊕{. . . ; ! l�(C2).B2; . . .}

]
(A.8.11)

Let us now consider C1 ≡ C2. We then have that there is T ′′
2 such that

T ′′
2 = (T ′

2 ./ c : [B2]) ./ a : C2 (A.8.12)

then
Q2 :: T ′′

2 (A.8.13)

From (A.8.10) and (A.8.13) we have

Q1 | Q2 :: (T ′′
1 ./ B1) ./ (T ′

2 ./ c : [B2]) ./ a : C2 (A.8.14)

which then, considering (A.8.9) and C1 ≡ C2, leads to

Q1 | Q2 :: (T ′
1 ./ B1) ./ (T ′

2 ./ c : [B2]) (A.8.15)

which completes the proof for this case.

Lemma A.9 Let T1 be a type such that T1 → T2. If there is T ′
1 such that T ′

1 <: T1

then there is T ′
2 such that T2 :> T ′

2 and T ′
1 → T ′

2.

Proof. Follows by induction on the derivation of the subtype. Essentially any reduc-
tion of a supertype can be matched by a reduction on the subtype, and the subtype
derivation can be reproduced for the arrival type term. We prove subtype (14).

(Case M.B1 | B2 <: M.(B1 | B2))
We have that

M.(B1 | B2) → T2 (A.9.1)

and
M.B1 | B2 <: M.(B1 | B2) (A.9.2)

We have that either
M.(B1 | B2) → B1 | B2 (A.9.3)

or
M.(B1 | B2) → M.(B′

1 | B2) (A.9.4)

derived from
B1 → B′

1 (A.9.5)

50

or
M.(B1 | B2) → M.(B1 | B′

2) (A.9.6)

derived from
B2 → B′

2 (A.9.7)

For (A.9.3) we directly have that

M.B1 | B2 → B1 | B2 (A.9.8)

For (A.9.4) we have that
M.B1 | B2 → M.B′

1 | B2 (A.9.9)

and
M.B′

1 | B2 <: M.(B′
1 | B2) (A.9.10)

and likewise for (A.9.6), thus completing the proof for this case.

B Proof of Theorem 3.15

Let P be a process such that P :: T . If P → Q then there is T ′ such that T
∗→ T ′

and Q :: T ′.
Proof. We proceed by induction on the derivation of the label. We consider the
possible cases for synchronization, when P is of the form P1 | P2 and P1 and P2

synchronize on a message: either (clo) or (com) (Figure 3) synchronization on a
unlocated � transition, or a located � transition. Also we consider c this transitions
originating either from a this prefix or from a located/unlocated synchronization:
either (tco) or (tcl) (Figure 4). We also consider that the τ transition might originate
within to the scope of a restriction, or from one component of a parallel composition,
or from the body of a recursive process or from within a context piece.

We give the proofs where the output originates in the left hand side of the parallel
composition and the input in the right hand side, and omit the symmetric cases.

(Synchronization)

(Case P1
ld!(a)−→ Q1 and P2

ld?(a)−→ Q2)
We have that

P1 | P2
τ−→ Q1 | Q2 (B.0.1)

and
P1 | P2 :: T (B.0.2)

(B.0.1) is derived from

P1
ld!(a)−→ Q1 (B.0.3)

and
P2

ld?(a)−→ Q2 (B.0.4)

From (B.0.2) we conclude that there exists T ′ such that T <: T ′ and

P1 | P2 :: T ′ (B.0.5)

where (B.0.5) is derived from
P1 :: T1 (B.0.6)

51

and
P2 :: T2 (B.0.7)

for some T1, T2 such that
T ′ = T1 ./ T2 (B.0.8)

Considering Lemma A.3 and (B.0.3) and (B.0.6) we conclude that there exist T ′
1, C1, B1

such that
T1 ≡ T ′

1 ./ N{. . . ; ? ld(C1);B1; . . .} (B.0.9)

and there is T ′′
1 such that

T ′
1 = T ′′

1 ./ a : C1 (B.0.10)

and
Q1 :: T ′′

1 ./ B1 (B.0.11)

Considering Lemma A.1 and (B.0.4) and (B.0.7) we conclude that there exist T ′
2, C2, B2

such that
T2 ≡ T ′

2 ./ ⊕{. . . ; ! ld(C2);B2; . . .} (B.0.12)

We consider the two possible cases: either the label l is a shared label or a plain
label. If l is a plain label then, from (B.0.8) we have that it must be the case that
in T ′ there is a τ for this synchronization and also that C1 ≡ C2 since otherwise
(B.0.8) would not be defined. We use C such that C ≡ C1 ≡ C2.

From (B.0.8), (B.0.9), (B.0.10) and (B.0.12) we have

((T ′′
1 ./ a : C) ./ N{. . . ; ? ld(C);B1; . . .}) ./ (T ′

2 ./ ⊕{. . . ; ! ld(C);B2; . . .}) (B.0.13)

From (B.0.13) we have
(T ′

2 ./ B2) ./ a : C (B.0.14)

Then from Lemma A.1 and (B.0.4) and (B.0.7) and (B.0.12) and (B.0.14) we have

Q2 :: (T ′
2 ./ B2) ./ a : C (B.0.15)

From (B.0.11), (B.0.15) and (B.0.13) we have

Q1 | Q2 :: (T ′′
1 ./ B1) ./ ((T ′

2 ./ B2) ./ a : C) (B.0.16)

Since l is a plain label we have from the definition of merge ./ (Definition 3.11) and
apartness # (Definition 3.10) that there must be a τ in the resulting type term, and
hence there is a corresponding τ type transition (Figure 13 (1)). We thus have

((T ′′
1 ./ a : C) ./ N{. . . ; ? ld(C1);B1; . . .}) ./ (T ′

2 ./ ⊕{. . . ; ! ld(C2);B2; . . .})
≡
(T ′′

1 ./ ⊕{. . . ; τ ld(C1); (B1 ./ B2); . . .} ./ T ′
2) ./ a : C

∗→
(T ′′

1 ./ B1 ./ B2 ./ T ′
2) ./ a : C

(B.0.17)
From T <: T ′, (B.0.8), (B.0.9), (B.0.10), (B.0.12) and we have

T <: ((T ′′
1 | N{. . . ; ? ld(C1);B1; . . .}) ./ a : C) ./ (T ′

2 | ⊕ {. . . ; ! ld(C2);B2; . . .})
(B.0.18)

52

which considering Lemma A.9 and (B.0.17) gives us there is T ′′ such that

(T ′′
1 ./ B1 ./ B2 ./ T ′

2) ./ a : C :> T ′′ (B.0.19)

and
T

∗→ T ′′ (B.0.20)

which completes the proof for this case.
If l is a shared label then by conformance we have that C1 ≡ C2(≡ C). From

(B.0.8) we conclude
⊕{. . . ; ! ld(C);B2; . . .}) ≡ ? !ld(C) (B.0.21)

and also the merge yields a τ message type, as follows

((T ′′
1 ./ a : C) ./ N{. . . ; ? ld(C);B1; . . .}) ./ (T ′

2 ./ ? ! ld(C))
≡
(T ′′

1 ./ (N{. . . ; τ ld(C).B1{? ld(C)/τ ld(C)}; . . .} | ? ! ld(C)) ./ T ′
2) ./ a : C

∗→
(T ′′

1 ./ B1 ./ ? ! ld(C) ./ T ′
2) ./ a : C

(B.0.22)
From (B.0.22) we conclude

(T ′
2 ./ ? ! ld(C)) ./ a : C (B.0.23)

Then from Lemma A.1 and (B.0.4) and (B.0.7) and (B.0.12) and (B.0.23) we have

Q2 :: (T ′
2 ./ ? ! ld(C)) ./ a : C (B.0.24)

From (B.0.11), (B.0.24) and (B.0.13) we have

Q1 | Q2 :: (T ′′
1 ./ B1 ./ ? ! ld(C) ./ T ′

2) ./ a : C (B.0.25)

From T <: T ′, (B.0.8), (B.0.9), (B.0.10), (B.0.12) and we have

T <: (T ′′
1 ./ (N{. . . ; τ ld(C).B1{? ld(C)/τ ld(C)}; . . .} | ? ! ld(C)) ./ T ′

2) ./ a : C
(B.0.26)

which considering Lemma A.9 and (B.0.17) gives us there is T ′′ such that

(T ′′
1 ./ B1 ./ ? ! ld(C) ./ T ′

2) ./ a : C :> T ′′ (B.0.27)

and
T

∗→ T ′′ (B.0.28)

which completes the proof for this case.

(Case P1
c l�!(a)−→ Q1 and P2

c l�?(a)−→ Q2)
Analogous to the previous case. The difference is the transition is located and

so are the types given by Lemmas A.2 and A.4, being the structure of the proof
identical.

(Case P1
(νa)ld!(a)−→ Q1 and P2

ld?(a)−→ Q2)
Analogous. The difference is the synchronization takes place in rule (clo), so

we have that the name is fresh to P2 and hence the condition on the existence of
the merge of Lemma A.1 is directly satisfied. We recover the closed under internal

53

interaction type from the merge of a : C ′ and a : C, given in the conclusion of
Lemma A.5, where a : C ′ is in the type of Q1 and a : C is in the type of Q2.

(Case P1
(νa)c l�!(a)−→ Q1 and P2

c l�?(a)−→ Q2)
Analogous.
(Case P

c this−→ Q)
We have that

c J [P] τ−→ c J [Q] (B.0.29)

and
c J [P] :: T (B.0.30)

(B.0.29) is derived from
P

c this−→ Q (B.0.31)

From (B.0.30) we conclude that there exists T ′ such that T <: T ′ and

c J [P] :: T ′ (B.0.32)

where (B.0.32) is derived from
P :: L | B (B.0.33)

for L,B such that
T ′ = (L ./ c : [� B]) | loc(� B) (B.0.34)

We must consider the two distinct cases: either the transition originates from a this
prefix or from a located/unlocated synchronization on a message.

(this prefix) For the case where the transition originates in a this prefix we
consider Lemma A.7 and (B.0.33) and (B.0.31) from which we conclude there are
L′, B1, B2 such that

L | B ≡ (L′ | B1) ./ (� B2) (B.0.35)

and, considering (B.0.34), we have

Q :: (L′ | B1) ./ (c : [� B2]) (B.0.36)

From (B.0.36) we derive

c J [Q] :: ((L′ ./ c : [� B2]) ./ c : [� B1]) | loc(� B1) (B.0.37)

From (B.0.35) we conclude there exists L′, B′ such that L ≡ L′ and B ≡ B′ and

� B′ = � B1 ./ � B2 (B.0.38)

and
� B′ ≡ � B1 (B.0.39)

From (B.0.37), (B.0.38), (B.0.39), L ≡ L′ and B ≡ B′ we have

c J [Q] :: (L ./ c : [� B]) | loc(� B) (B.0.40)

From (B.0.40) and (B.0.34) and T <: T ′ we have that

c J [Q] :: T (B.0.41)

54

which completes the proof for this case.
(located/unlocated message synchronization) For the case where the transition

originates in a located/unlocated message synchronization we consider Lemma A.8
and (B.0.33) and (B.0.31) and conclude there exist T ′, B′, B′′, B1, B2, C1, C2, l such
that

L | B ≡ T ′ ./ B′ ./ c :
[
B′′] (B.0.42)

and either
B′ ≡ ⊕{. . . ; ! l�(C1).B1; . . .} (B.0.43)

and
B′′ ≡ N{. . . ; ? l�(C2).B2; . . .} (B.0.44)

or
B′ ≡ N{. . . ; ? l�(C1).B1; . . .} (B.0.45)

and
B′′ ≡ ⊕{. . . ; ! l�(C2).B2; . . .} (B.0.46)

We prove the case when (B.0.43) and (B.0.44), being the proof analogous for
(B.0.45) and (B.0.46). From (B.0.42) we conclude there exist L′, B′′′ such that
T ′ ≡ L′ | B′′′ and L ≡ L′ ./ c : [B′′] and B ≡ B′′′ ./ B′. From (B.0.34) and T <: T ′

we then have

T ′ <: ((L′ | c :
[
B′′]) ./ c :

[
� (B′′′ | B′)

]
) | loc(� (B′′′ | B′)) (B.0.47)

We consider the two possible cases: either l is a plain label or l is a shared label.
If l is a plain label, from (B.0.43) and (B.0.44) we have that the merge of (B.0.47)
is only defined if C1 ≡ C2 (≡ C) and yields a type such that

((L′ | c : [B′′]) ./ c : [� (B′′′ | B′)]) | loc(� (B′′′ | B′))
≡
c : [⊕{. . . ; τ l�(C).((� B1) ./ B2); . . .}] ./ (L′ ./ c : [� (B′′′)]) | loc(� (B′′′ | B1))

(B.0.48)
where � B′ ≡� B1, for which we have that

c : [⊕{. . . ; τ l�(C).((� B1) ./ B2); . . .}] ./ (L′ ./ c : [� (B′′′)]) | loc(� (B′′′ | B1))
→
c : [(� B1) ./ B2] ./ (L′ ./ c : [� (B′′′)]) | loc(� (B′′′ | B1))

(B.0.49)
From C1 ≡ C2 and Lemma A.8 we then have

Q :: T ′ ./ B1 ./ c : [B2] (B.0.50)

From (B.0.50) and T ′ ≡ L′ | B′′′ we have

Q :: (L′ | B′′′) ./ B1 ./ c : [B2] (B.0.51)

From (B.0.51) we derive

c J [Q] :: ((L′ | c : [B2]) ./ c :
[
� (B′′′ | B1)

]
) | loc(� (B′′′ | B1)) (B.0.52)

55

From (B.0.52) we have

c J [Q] :: c : [(� B1) ./ B2] ./ (L′ ./ c :
[
� (B′′′)

]
) | loc(� (B′′′ | B1)) (B.0.53)

which completes the proof for this case. If l is a shared label, from (B.0.43) and
(B.0.44) we have that the merge of (B.0.47) is only defined if C1 ≡ C2 (≡ C) and
� B′ ≡ ? ! l�(C) and yields a type such that

((L′ | c : [B′′]) ./ c : [� (B′′′ | B′)]) | loc(� (B′′′ | B′))
≡
(c : [? ! l�(C)] | c :

[
N{. . . ; τ l�(C).B2{? ld(C)/τ ld(C)}; . . .}

]
)

./ (L′ ./ c : [� (B′′′)]) | loc(� (B′′′ | B1))

(B.0.54)

where � B′ ≡� B1, for which we have that

(c : [? ! l�(C)] | c :
[
N{. . . ; τ l�(C).B2{? ld(C)/τ ld(C)}; . . .}

]
)

./ (L′ ./ c : [� (B′′′)]) | loc(� (B′′′ | B1))
∗→
c : [? ! l�(C)] ./ c : [B2] ./ (L′ ./ c : [� (B′′′)]) | loc(� (B′′′ | B1))

(B.0.55)

From C1 ≡ C2 and Lemma A.8 we then have

Q :: T ′ ./ B1 ./ c : [B2] (B.0.56)

From (B.0.56) and T ′ ≡ L′ | B′′′ we have

Q :: (L′ | B′′′) ./ B1 ./ c : [B2] (B.0.57)

From (B.0.57) we derive

c J [Q] :: ((L′ | c : [B2]) ./ c :
[
� (B′′′ | B1)

]
) | loc(� (B′′′ | B1)) (B.0.58)

From (B.0.58) and � B′ ≡ ? ! l�(C) we have

c J [Q] :: c :
[
? ! l�(C) ./ B2

]
./ (L′ ./ c :

[
� (B′′′)

]
) | loc(� (B′′′ | B1)) (B.0.59)

which completes the proof.
(τ transition)
(Case (νa)P → (νa)Q)
We have that

(νa)P → (νa)Q (B.0.60)

and
(νa)P :: T (B.0.61)

(B.0.60) is derived from
P → Q (B.0.62)

We have there is T ′, B such that

T <: T ′ | a : [B] (B.0.63)

and closed(B) and
P :: T ′ | a : [B] (B.0.64)

56

By induction hypothesis on (B.0.62) and (B.0.64) we have there is T ′′ such that

T ′ | a : [B] ∗→ T ′′ (B.0.65)

and
Q :: T ′′ (B.0.66)

We consider the two possible cases: either (B.0.65) is derived from T ′ ∗→ T1 and
T ′′ ≡ T1 | a : [B] or there is B′ such that B

∗→ B′ and T ′′ ≡ T ′ | a : [B′]. In the first
case we have that

(νa)Q :: T1 (B.0.67)

which completes the proof. In the second case we have that it must be the case that
closed(B′) thus we derive

(νa)Q :: T ′ (B.0.68)

and, since T <: T ′ we have
(νa)Q :: T (B.0.69)

thus completing the proof for this case.
(Case P | R → Q | R)
We have that

P | R → Q | R (B.0.70)

and
P | R :: T (B.0.71)

(B.0.70) is derived from
P → Q (B.0.72)

We have there is T1, T2 such that

T <: T1 ./ T2 (B.0.73)

and
P | R :: T1 ./ T2 (B.0.74)

and
P :: T1 (B.0.75)

and
R :: T2 (B.0.76)

By induction hypothesis on (B.0.72) and (B.0.75) we have there is T ′
1 such that

T1
∗→ T ′

1 (B.0.77)

and
Q :: T ′

1 (B.0.78)

From (B.0.78) and (B.0.76) we derive

Q | R :: T ′
1 ./ T2 (B.0.79)

57

and from (B.0.77) we have
T1 ./ T2

∗→ T ′
1 ./ T2 (B.0.80)

which considering Lemma A.9 completes the proof for this case.
(Case rec X .P → Q)
We have that

rec X .P → Q (B.0.81)

and
rec X .P :: T (B.0.82)

(B.0.81) is derived from
P{X/rec X .P} → Q (B.0.83)

We have there is LM , B〈X 〉 such that

T <: ?LM | rec X .B〈X 〉 (B.0.84)

and
P :: LM | B〈X 〉 (B.0.85)

From (B.0.85) we have

P{X/rec X .P} :: ?LM | LM | B〈rec X .B〈X 〉〉 (B.0.86)

and also
P{X/rec X .P} :: ?LM | B〈rec X .B〈X 〉〉 (B.0.87)

By induction hypothesis on (B.0.83) and (B.0.87) we have there is T ′ such that

?LM | B〈rec X .B〈X 〉〉 ∗→ T ′ (B.0.88)

and
Q :: T ′ (B.0.89)

From (B.0.88) and (B.0.84) we derive

T
∗→ T ′ (B.0.90)

thus completing the proof for this case.
(Case c J [P] → c J [Q])
We have that

c J [P] → c J [Q] (B.0.91)

and
c J [P] :: T (B.0.92)

(B.0.91) is derived from
P → Q (B.0.93)

We have there is L,B such that

T <: (L ./ c : [� B]) | loc(� B) (B.0.94)

and
c J [P] :: (L ./ c : [� B]) | loc(� B) (B.0.95)

58

and
P :: L | B (B.0.96)

By induction hypothesis on (B.0.93) and (B.0.96) we have there is T ′ such that

L | B
∗→ T ′ (B.0.97)

We then have there is L′, B′ such that

T ′ ≡ L′ | B′ (B.0.98)

and
c J [Q] :: (L′ ./ c :

[
� B′]) | loc(� B′) (B.0.99)

which along with
T

∗→ (L′ ./ c :
[
� B′]) | loc(� B′) (B.0.100)

completes the proof.

C Proof of Proposition 3.18

Let P be a process such that P :: T . Then P is not an error process.
Proof. (Sketch) Aiming at a contradiction let us assume that P is an error process
(Definition 3.17) which then gives us there are C, Q,R, Q′, R′, λ, λ′ such that P =
C [Q | R] and

Q
λ−→ Q′ (C.0.1)

and
R

λ′
−→ R′ (C.0.2)

and w(λ) = w(λ′), and the label in w(λ) is not shared. We have that there are T1, T2

such that
Q | R :: T1 ./ T2 (C.0.3)

and
Q :: T1 (C.0.4)

and
R :: T2 (C.0.5)

We consider the case when λ = l�?(a) and λ′ = l�?(b), being the proof analogous
for any other such labels λ and λ′ such that w(λ) = w(λ′) and the label in w(λ) is not
shared. From (C.0.1) and (C.0.4) and Lemma A.1 we conclude there is T ′

1, B1, C1

such that
T1 ≡ T ′

1 ./ ⊕{. . . ; ! l�(C1).B1; . . .} (C.0.6)

and from (C.0.2) and (C.0.5) and Lemma A.1 we conclude there is T ′
2, B2, C2 such

that
T2 ≡ T ′

2 ./ ⊕{. . . ; ! l�(C2).B2; . . .} (C.0.7)

From (C.0.3) and (C.0.6) and (C.0.7) we have there must be a type B such that

B = ⊕{. . . ; p1 l�(C1).B1; . . .} ./ ⊕{. . . ; p2 l�(C2).B2; . . .} (C.0.8)

which gives us our intended contradiction since it is not possible to synchronize (the
polarities are not dual) or interleave (since they are not apart #) these two types,
and hence it is not possible to merge them.

59

D Theorem 4.4 auxiliary results

We start by the proof of the Substitution Lemma (4.3) and the statements of the
other Lemmas used in the proofs of the Theorems.

Proof of Lemma 4.3

Let P be a process and Γ,Γ′ event orderings such that Γ∪Γ′ `` P and Γ′{x/n} ⊆ Γ.
Then Γ ``{x/n} P{x/n}.
Proof. Follows by induction on the structure of P . Essentially the condition
Γ′{x/n} ⊆ Γ ensures the ordering already prescribed for n in Γ copes with the
ordering required for conversation x. We show the case when P is a context piece
and is an output prefix.

(Case x J [P])
We have that

Γ ∪ Γ′ `` x J [P] (D.0.1)

derived from
Γ ∪ Γ′ `(`(�),x) P (D.0.2)

and we have that
Γ′{x/n} ⊆ Γ (D.0.3)

By induction hypothesis on (D.0.2) and (D.0.3) we have

Γ `(`(�){x/n},n) P{x/n} (D.0.4)

From (D.0.4) we derive
Γ ``{x/n} n J [P{x/n}] (D.0.5)

which completes the proof for this case.
(Case ld!(o).P)
We have that

Γ ∪ Γ′ `` ld!(o).P (D.0.6)

derived from
(`(d).l.(y)Γ′′⊥(Γ ∪ Γ′)) `` P (D.0.7)

and
Γ′′{y/o} ⊆ (`(d).l.(y)Γ′⊥(Γ ∪ Γ′)) (D.0.8)

and we have that
Γ′{x/n} ⊆ Γ (D.0.9)

From (D.0.9) we conclude there is Γ1,Γ2 such that Γ2 ⊆ Γ and Γ1 ⊆ Γ′ and

(`(d).l.(y)Γ′′⊥(Γ ∪ Γ′)) = Γ1 ∪ Γ2 (D.0.10)

and
Γ1{x/n} ⊆ Γ2 (D.0.11)

By induction hypothesis on (D.0.7) and (D.0.11), considering (D.0.10) we have

Γ2 ``{x/n} P{x/n} (D.0.12)

60

We have that either
(`(d).l.(y)Γ′′⊥Γ1) = Γ1 (D.0.13)

or
(`(d).l.(y)Γ′′⊥Γ2) = Γ2 (D.0.14)

If (D.0.14) we directly have that

Γ′′{y/o} ⊆ Γ2 (D.0.15)

From (D.0.14) and (D.0.15) we conclude

Γ2 ``{x/n} ld!(o).P{x/n} (D.0.16)

From Γ2 ⊆ Γ and considering Lemma D.1 we conclude

Γ ``{x/n} ld!(o).P{x/n} (D.0.17)

which completes the proof for (D.0.14).
If (D.0.13) it must be the case that `(d) = x. From (D.0.11) we have

((`(d).l.(y)Γ′′){x/n}⊥Γ1{x/n}) = Γ1{x/n} (D.0.18)

From (D.0.10) we have

(`(d).l.(y)Γ′′)⊥(Γ1 ∪ Γ2) = Γ1 ∪ Γ2 (D.0.19)

Since substitution is order preserving we have

(`(d).l.(y)Γ′′){x/n}⊥(Γ1 ∪ Γ2){x/n} = Γ1 ∪ Γ2{x/n} (D.0.20)

From (D.0.20) and (D.0.11) we conclude

(`(d).l.(y)Γ′′){x/n}⊥Γ2 = Γ2 (D.0.21)

From (D.0.8) and (D.0.10) we conclude

Γ′′{y/o}{x/n} ⊆ Γ2 (D.0.22)

We then have from (D.0.21) and (D.0.22) that

Γ2 ``{x/n} ld!(o).P{x/n} (D.0.23)

From Γ2 ⊆ Γ and considering Lemma D.1 we conclude

Γ ``{x/n} ld!(o).P{x/n} (D.0.24)

which completes the proof.

Lemma D.1 Let P be a well-typed process and Γ an event ordering such that Γ ``

P . If Γ ∪ Γ′ is an event ordering then Γ ∪ Γ′ `` P .

61

Proof. Follows by induction on the structure of P . Intuitively if Γ already proves
that events are well ordered in P then Γ′ describes an ordering of events that do not
pertain to P , and hence Γ′ does not interfere in verifying the event ordering of P .
We show the case when P is an output prefixed process.

(Case ld!(n).P)
We have that

Γ `` ld!(o).P (D.1.1)

derived from
(`(d).l.(x)Γ′⊥Γ) `` P (D.1.2)

and
Γ′{x/n} ⊆ (`(d).l.(y)Γ′⊥Γ) (D.1.3)

Let us consider Γ′′ such that Γ ∪ Γ′′ is an event ordering. We then have that

(`(d).l.(x)Γ′⊥(Γ ∪ Γ′′)) (D.1.4)

is an event ordering. By induction hypothesis we conclude

(`(d).l.(x)Γ′⊥(Γ ∪ Γ′′)) `` P (D.1.5)

We have that
(`(d).l.(x)Γ′⊥Γ) ⊆ (`(d).l.(x)Γ′⊥(Γ ∪ Γ′′)) (D.1.6)

From (D.1.3) and (D.1.6) we conclude

Γ′{x/n} ⊆ (`(d).l.(x)Γ′⊥(Γ ∪ Γ′′)) (D.1.7)

From (D.1.5) and (D.1.7) we conclude

Γ ∪ Γ′′ `` ld!(o).P (D.1.8)

which completes the proof for this case.

Lemma D.2 Let P be a well-typed process and Γ an event ordering such that Γ ``

P . If P
ld?(a)−→ Q and (`(d).l.(x)Γ′)⊥Γ and Γ′{x/a} ⊆ (`(d).l.(x)Γ′)⊥Γ then Γ `` Q.

Proof. Follows by induction on the derivation of the label. We show the case when
P is an input summation.

(Case Σi∈I ldi ?(xi).Pi

ldj ?(a)
−→ Pj{xj/a})

We have that
Γ `` Σi∈I ldi ?(xi).Pi (D.2.1)

Let us consider

Σi∈I ldi ?(xi).Pi

ldj ?(a)
−→ Pj{xj/a} (D.2.2)

and
(`(d).li.(y)Γ′

j⊥Γ) (D.2.3)

and
Γ′

j{y/a} ⊆ (`(d).li.(y)Γ′
j⊥Γ) (D.2.4)

62

We have that (D.2.1) is derived from

(`(d).li.(y)Γ′
i⊥Γ) ∪ Γ′

i{y/xi} `` Pi (D.2.5)

in particular for j we have

(`(d).li.(y)Γ′
j⊥Γ) ∪ Γ′

j{y/xj} `` Pj (D.2.6)

From Lemma 4.3 considering (D.2.6) and (D.2.4) we then have

(`(d).li.(y)Γ′
j⊥Γ) `` Pj{xj/a} (D.2.7)

where `{xj/a} = ` since a reduction can not take place under a conversation which
has as identifier a variable (transitions do not originate in processes that are prefixed
by an input). From (D.2.7) and considering Lemma D.1 we have

Γ `` Pj{xj/a} (D.2.8)

which completes the proof for this case.

Lemma D.3 Let P be a well-typed process and Γ an event ordering such that Γ ``

P . If P
c l�?(a)−→ Q and (c.l.(x)Γ′)⊥Γ and Γ′{x/a} ⊆ (c.l.(x)Γ′)⊥Γ then Γ `` Q.

Proof. Follows by induction on the derivation of the label. We show the base case.

(Case c J [P ′]
c l�?(a)−→ c J [Q′])

We have that
Γ `` c J

[
P ′] (D.3.1)

Let us consider
c J

[
P ′] c l�?(a)−→ c J

[
Q′] (D.3.2)

and
(c.l.(x)Γ′⊥Γ) (D.3.3)

and
Γ′{x/a} ⊆ (c.l.(x)Γ′⊥Γ) (D.3.4)

We have that (D.3.1) is derived from

Γ `(`(�),c) P ′ (D.3.5)

and (D.3.2) is derived from

P ′ l�?(a)−→ Q′ (D.3.6)

From Lemma D.2 considering (D.2.6), (D.2.5), (D.2.4) and (D.2.3) we have

Γ `(`(�),c) Q′ (D.3.7)

From (D.3.7) we derive
Γ `` c J

[
Q′] (D.3.8)

which completes the proof for this case.

63

Lemma D.4 Let P be a well-typed process and Γ an event ordering such that Γ ``

P . If P
ld!(a)−→ Q then Γ `` Q and (`(d).l.(x)Γ′)⊥Γ and Γ′{x/a} ⊆ (`(d).l.(x)Γ′)⊥Γ.

Proof. Follows by induction on the derivation of the label. We show the case when
P is an output prefix.

(Case ld!(a).P ′ ld!(a)−→ P ′)
We have that

Γ `` ld!(a).P ′ (D.4.1)

Let us consider
ld!(a).P ′ ld!(a)−→ P ′ (D.4.2)

We have that (D.4.1) is derived from

(`(d).l.(x)Γ′⊥Γ) `` P ′ (D.4.3)

and
Γ′{x/a} ⊆ (`(d).l.(x)Γ′⊥Γ) (D.4.4)

From (D.4.3) and considering Lemma D.1 we have

Γ `` P ′ (D.4.5)

which completes the proof for this case.

Lemma D.5 Let P be a well-typed process and Γ an event ordering such that Γ ``

P . If P
c l�!(a)−→ Q then Γ `` Q and (c.l.(x)Γ′)⊥Γ and Γ′{x/a} ⊆ (c.l.(x)Γ′)⊥Γ.

Proof. Follows by induction on the derivation of the label. We show the base case.

(Case c J [P ′]
c l�!(a)−→ c J [Q′])

We have that
Γ `` c J

[
P ′] (D.5.1)

Let us consider
c J

[
P ′] c l�!(a)−→ c J

[
Q′] (D.5.2)

We have that (D.5.1) is derived from

Γ `(`(�),c) P ′ (D.5.3)

and (D.5.2) is derived from

P ′ l�!(a)−→ Q′ (D.5.4)

From (D.5.3) and (D.5.4), considering Lemma D.4 we have

(c.l.(x)Γ′⊥Γ) `` P ′ (D.5.5)

and
Γ′{x/a} ⊆ (c.l.(x)Γ′⊥Γ) (D.5.6)

and
Γ `(`(�),c) Q′ (D.5.7)

64

From (D.5.7) we conclude
Γ `` c J

[
Q′] (D.5.8)

which completes the proof for this case.

Lemma D.6 Let P be a well-typed process and Γ an event ordering such that Γ ``

P . If P
(νa)ld!(a)−→ Q then there is Γ′ such that Γ ∪ Γ′ `` Q and (Γ ∪ Γ′) \ a ⊆ Γ and

(`(d).l.(x)Γ′′)⊥Γ and Γ′′{x/a} ⊆ ((`(d).l.(x)Γ′′)⊥(Γ ∪ Γ′)).

Proof. Follows by induction on the derivation of the label. We show the base case
of restriction open (Fig. 3 (opn)).

(Case (νa)P ′ (νa)ld!(a)−→ Q′)
We have that

Γ `` (νa)P ′ (D.6.1)

Let us consider
(νa)P ′ (νa)ld!(a)−→ Q′ (D.6.2)

We have that (D.6.1) is derived from

Γ′ `` P ′ (D.6.3)

where Γ = Γ′ \ a. (D.6.2) is derived from

P ′ ld!(a)−→ Q′ (D.6.4)

From (D.6.3) and (D.6.4), considering Lemma D.4 we have

(`(d).l.(x)Γ′′⊥Γ′) `` P ′ (D.6.5)

and
Γ′′{x/a} ⊆ (`(d).l.(x)Γ′′⊥Γ′) (D.6.6)

and
Γ′ `` Q′ (D.6.7)

Since `(d) 6= a from (D.6.5) we conclude

(`(d).l.(x)Γ′′⊥Γ) (D.6.8)

which completes the proof for this case.

Lemma D.7 Let P be a well-typed process and Γ an event ordering such that Γ ``

P . If P
(νa)c l�!(a)−→ Q then there is Γ′ such that Γ ∪ Γ′ `` Q and (Γ ∪ Γ′) \ a ⊆ Γ and

(c.l.(x)Γ′′)⊥Γ and Γ′′{x/a} ⊆ ((c.l.(x)Γ′′)⊥(Γ ∪ Γ′)).

Proof. Follows by induction on the derivation of the label. We show the base cases
of restriction open (Fig. 3 (opn)) and (νa)l�!(a) transition originating from within
a context piece.

(Case c J [P ′]
(νa)c l�!(a)−→ c J [Q′])

65

We have that
Γ `` c J

[
P ′] (D.7.1)

Let us consider
c J

[
P ′] (νa)c l�!(a)−→ c J

[
Q′] (D.7.2)

We have that (D.7.1) is derived from

Γ `(`(�),c) P ′ (D.7.3)

and (D.7.2) is derived from

P ′ (νa)l�!(a)−→ Q′ (D.7.4)

From (D.7.3) and (D.7.4), considering Lemma D.6 we have there is Γ′ such that

Γ ∪ Γ′ `(`(�),c) Q′ (D.7.5)

and (Γ ∪ Γ′) \ a ⊆ Γ and
(c.l.(x)Γ′′⊥Γ) (D.7.6)

and
Γ′′{x/a} ⊆ (c.l.(x)Γ′′⊥(Γ ∪ Γ′)) (D.7.7)

From (D.7.5) we conclude
Γ ∪ Γ′ `` c J

[
Q′] (D.7.8)

which completes the proof for this case.

(Case (νa)P ′ (νa)c ld!(a)−→ Q′)
We have that

Γ `` (νa)P ′ (D.7.9)

Let us consider
(νa)P ′ (νa)c l�!(a)−→ Q′ (D.7.10)

We have that (D.7.9) is derived from

Γ′ `` P ′ (D.7.11)

where Γ = Γ′ \ a. (D.7.10) is derived from

P ′ c l�!(a)−→ Q′ (D.7.12)

From (D.7.11) and (D.7.12), considering Lemma D.5 we have

(c.l.(x)Γ′′⊥Γ′) `` P ′ (D.7.13)

and
Γ′′{x/a} ⊆ (c.l.(x)Γ′′⊥Γ′) (D.7.14)

and
Γ′ `` Q′ (D.7.15)

Since c 6= a from (D.7.13) we conclude

(c.l.(x)Γ′′⊥Γ) (D.7.16)

which completes the proof for this case.

66

Lemma D.8 Let P be a well-typed process and Γ an event ordering such that Γ ``

P . If P
c this−→ Q and `(�) = c then Γ `` Q.

Proof. Follows by induction on the derivation of the label. We show the base case
when P is a this prefixed process.

(Case this(x).P ′ c this−→ P ′{x/c})
We have that

Γ `` this(x).P ′ (D.8.1)

Let us consider
this(x).P ′ c this−→ P ′{x/c} (D.8.2)

and `(�) = c. We have that (D.8.1) is derived from

Γ ∪ Γ′ `` P ′ (D.8.3)

where Γ′{x/`(�)} ⊆ Γ, hence Γ′{x/c} ⊆ Γ. From Lemma 4.3 we then have

Γ `` P ′{x/c} (D.8.4)

which completes the proof for this case.

E Proof of Theorem 4.4

Let P be a well typed process P :: T and Γ an event ordering such that Γ `` P . If
there is Q such that P → Q then Γ `` Q.
Proof. Follows by induction on the derivation of the label. We consider the possible
cases for synchronization, this label, and τ transitions.

(Case P1
ld!(a)−→ Q1 and P2

ld?(a)−→ Q2)
We have that

P1 | P2 → Q1 | Q2 (E.0.1)

and
Γ `` P1 | P2 (E.0.2)

From (E.0.2) we have that
Γ `` P1 (E.0.3)

and
Γ `` P2 (E.0.4)

(E.0.1) is derived from

P1
ld!(a)−→ Q1 (E.0.5)

and
P2

ld?(a)−→ Q2 (E.0.6)

From Lemma D.4 and (E.0.3) and (E.0.5) we have

(`(d).l.(x)Γ′)⊥Γ (E.0.7)

67

and
Γ′{x/a} ⊆ ((`(d).l.(x)Γ′)⊥Γ) (E.0.8)

and
Γ `` Q1 (E.0.9)

From Lemma D.2 and (E.0.4) and (E.0.6) and (E.0.7) and (E.0.8) we have

Γ `` Q2 (E.0.10)

From (E.0.9) and (E.0.10) we have

Γ `` Q1 | Q2 (E.0.11)

which completes the proof for this case.

(Case P1
c l�!(a)−→ Q1 and P2

c l�?(a)−→ Q2)
Analogous to the previous case, considering instead Lemmas D.3 and D.5.

(Case P1
(νa)ld!(a)−→ Q1 and P2

ld?(a)−→ Q2)
We have that

P1 | P2 → (νa)(Q1 | Q2) (E.0.12)

and
Γ `` P1 | P2 (E.0.13)

From (E.0.13) we have that
Γ `` P1 (E.0.14)

and
Γ `` P2 (E.0.15)

(E.0.12) is derived from

P1
(νa)ld!(a)−→ Q1 (E.0.16)

and
P2

ld?(a)−→ Q2 (E.0.17)

From Lemma D.6 and (E.0.14) and (E.0.16) we have there is Γ′ such that

Γ ∪ Γ′ `` Q1 (E.0.18)

and
(Γ ∪ Γ′) \ a ⊆ Γ (E.0.19)

and
(Γ(`(d).l).(x)Γ′′)⊥Γ (E.0.20)

and
Γ′′{x/a} ⊆ (Γ(`(d).l).(x)Γ′′)⊥(Γ ∪ Γ′) (E.0.21)

From Lemma D.1 and (E.0.15), considering that (E.0.18) gives us that Γ ∪ Γ′ is a
well founded order, we have

Γ ∪ Γ′ `` P2 (E.0.22)

68

From Lemma D.2 and (E.0.22) and (E.0.17) and (E.0.20) and (E.0.21) we have

Γ ∪ Γ′ `` Q2 (E.0.23)

From (E.0.18) and (E.0.23) we have

Γ ∪ Γ′ `` Q1 | Q2 (E.0.24)

From (E.0.24) and (E.0.19) we conclude

Γ `` (νa)(Q1 | Q2) (E.0.25)

which completes the proof for this case.

(Case P1
(νa)c l�!(a)−→ Q1 and P2

c l�?(a)−→ Q2)
Analogous.
(Case P1

c this−→ Q1)
We have that

c J [P1] → c J [Q1] (E.0.26)

and
Γ `` c J [P1] (E.0.27)

From (E.0.27) we have that
Γ `(`(�),c) P1 (E.0.28)

(E.0.26) is derived from
P1

c this−→ Q1 (E.0.29)

From Lemma D.8 and (E.0.28) and (E.0.29) we have

Γ `(`(�),c) Q1 (E.0.30)

From (E.0.30) we conclude
Γ `` c J [Q1] (E.0.31)

which completes the proof for this case.
(τ)
Proofs for the cases where a τ transition originates from within the scope of a

restriction, or from one component of a parallel composition or from within a context
piece follow directly from induction hypothesis.

F Theorem 4.6 auxiliary results

Lemma F.1 Let P be a process such that P :: T and closed(T). Then for every C, Q

such that P = C[Q], Q
λ−→ Q′, then either there are C1, Qi, λi such that P = C1[Q1]

and
Q1

λ1−→ . . .
λk−→ Qk

λ−→ Q′
k

or there is λ′ such that Q
λ′
−→ Q′, and there are C1, Qi, λi such that P = C1[Q1] and

Q1
λ1−→ . . .

λk−→ Qk
λ−→ Q′

k

69

Proof. Follows by induction on the type derivation. A type can only be closed when
all outputs have matching inputs and all input summations have a matching output
(at least one of the inputs in the summation has a matching output). It is however
necessary to consider that the matching input might not be an immediate transition
of the process, in the sense there might be a number of transitions leading to a
process where the transition is observable.

(Sketch) From closed(T) we conclude that

Q :: T ′ (F.1.1)

and
closed(T ′) (F.1.2)

since conversation types for restricted names are closed - rule (Res) of Figure 12.
Considering Lemmas A.1 to A.6 we conclude that T ′ is decomposable in the branch
or choice type corresponding to λ, hence

T ≡ T ′ ./ ⊕{. . . ;M.B; . . .} (F.1.3)

or
T ≡ T ′ ./ N{. . . ;M.B; . . .} (F.1.4)

We also have, from the definition of closed process (Definition 3.13) that in T ′ there
is a τ for all message types either from persistent outputs defined on shared labels.
When such a τ is present in the type term, by definition of merge (Definition 3.11),
we conclude that the τ originates from the merge of the referred branch/choice type
associated to λ and a dual (with respect to merge) counterpart.

T ≡ T ′′ ./ ⊕i∈I{M i.Bi; . . .} ./ Ni∈I{Mi.B
′
i} (F.1.5)

If λ is an input defined on a plain label and derived from an input summation
process, we have that the corresponding choice type may be merged with a choice
type obtained by weakening (Subtype (16) Figure 10) in which case λ may not be
ever a transition of the process. On the other hand there is a transition

Q
λ′
−→ Q′′ (F.1.6)

derived from the same input summation for which the process has a dual transition
- corresponding to the output for which the branch type is initially introduced. If λ
is an output defined on a plain label there must be a matching input, since otherwise
there would be no associated τ in the type.

If λ is defined on a shared label we have, by definition of merge (Definition 3.11)
that a τ is introduced in the merged type when the decomposition is in a type
where the output type is persistent ?, and in the type where the matching input
must occur. Since the process typed with the persistent output is a process able to
handle infinitely many outputs, we are sure that any such output has a matching
input.

Proof that a process eventually (after a number of transitions) has a transition
corresponding to a message type present in the process’ type follows by induction
on the type derivation in lines similar to the proofs of Lemmas A.1 to A.6.

70

Lemma F.2 Let P be a well typed process. (1) If there is an event ordering Γ such
that Γ `` P then there is an event ordering Γ1 which has a minimal event e1 such
that for every C, Q for P = C[Q] we have that Q is well ordered, hence Γ′ ``′ Q
for some Γ′, `′, and Γ′ ⊆ (e1⊥Γ1) and Γ2 such that Γ2 `` P , and Γ2 ⊆ Γ and
Γ2 ⊆ (n.l⊥Γ1).

(2) Furthermore if P is not a finished process (Definition 4.5) and has no active
this then there are C, Q and Γ′, `′ such that Γ′ ``′ Q and `′(d) = n and Q

λ−→ Q′ for
λ = ld!(c) or λ = ld?(c).

Proof. Follows by induction on the structure of P . We prove (1), being the proof of
(2) a direct extension.

(Case ld!(n).Q)
We have that

Γ `` ld!(n).Q (F.2.1)

from which we directly have that

(`(d).l.(x)Γ′⊥Γ) `` ld!(n).Q (F.2.2)

thus completing the proof for this case.
(Case Σi∈I l

d
i ?(xi).Qi)

We have that
Γ `` Σi∈I l

d
i ?(xi).Qi (F.2.3)

from which we directly have that

(`(d).li.(x)Γ′
i⊥Γ) `` Σi∈I l

d
i ?(xi).Qi (F.2.4)

thus completing the proof for this case.
(Case Q1 | Q2)
We have that

Γ `` Q1 | Q2 (F.2.5)

from which we have
Γ `` Q1 (F.2.6)

and
Γ `` Q2 (F.2.7)

By induction hypothesis on (F.2.6) we have there is Γ1,Γ′
1, e1 such that

Γ′
1 `` Q1 (F.2.8)

and Γ′
1 ⊆ Γ and Γ′

1 ⊆ (e1⊥Γ1). By induction hypothesis on (F.2.7) we have there is
Γ2,Γ′

2, e2 such that
Γ′

2 `` Q2 (F.2.9)

and Γ′
2 ⊆ Γ and Γ′

2 ⊆ (e2⊥Γ2).
From Γ′

1 ⊆ Γ and Γ′
2 ⊆ Γ we conclude Γ′

1 ∪ Γ′
2 ⊆ Γ and hence Γ′

1 ∪ Γ′
2 is well

founded. Thus considering Lemma D.1 we have

Γ′
1 ∪ Γ′

2 `` Q1 (F.2.10)

71

and
Γ′

1 ∪ Γ′
2 `` Q2 (F.2.11)

from which we conclude
Γ′

1 ∪ Γ′
2 `` Q1 | Q2 (F.2.12)

Given that (e1⊥Γ1) and (e2⊥Γ2) are constructed minimally we conclude that
(e1⊥Γ1)∩ (e2⊥Γ2) ⊆ Γ, which ensures (e1⊥Γ1)∪ (e2⊥Γ2) is well founded and has a
minimal element which is either e1 or e2. From Γ′

1 ⊆ (e1⊥Γ1) and Γ′
2 ⊆ (e2⊥Γ2) we

have that
Γ′

1 ∪ Γ′
2 ⊆ (e1⊥Γ1) ∪ (e2⊥Γ2) (F.2.13)

thus completing the proof for this case.
(Case (νa)Q)
We have that

Γ \ a `` (νa)Q (F.2.14)

derived from
Γ `` Q (F.2.15)

By induction hypothesis we have that there is Γ1,Γ2, e such that

Γ2 `` Q (F.2.16)

and Γ2 ⊆ Γ and Γ2 ⊆ (e⊥Γ1). We then have

Γ2 \ a `` (νa)Q (F.2.17)

and Γ2 \ a ⊆ Γ \ a and Γ2 \ a ⊆ (e⊥Γ1) thus completing the proof for this case.
(Case this(x).Q)
We have that

Γ `` this(x).Q (F.2.18)

derived from
Γ ∪ Γ′ `` Q (F.2.19)

where Γ′{x/`(�)} ⊆ Γ. By induction hypothesis we have that there is Γ1,Γ2, e such
that

Γ2 `` Q (F.2.20)

and Γ2 ⊆ Γ ∪ Γ′ and Γ2 ⊆ (e⊥Γ1). We then have Γ2{x/`(�)} ⊆ Γ and

Γ2{x/`(�)} `` this(x).Q (F.2.21)

and Γ2{x/`(�)} ⊆ (e⊥Γ1){x/`(�)}, which completes the proof for this case.
(Remaining cases)
For inaction 0 and recursion variable X rules (Stop) and (RecVar) direct give

the result. Recursive process rec and conversation access n J [. . .] follow directly
from induction hypothesis.

72

G Proof of Theorem 4.6

Let P be a well typed process such that P :: T and closed(T) and Γ an event ordering
and a, b names (a, b 6∈ fn(P)) such that Γ `(a,b) P . If P is not a finished process
(Definition 4.5) then there is Q such that P → Q.
Proof. (Sketch)

We have that
P :: T (G.0.1)

and closed(T) and
Γ `(a,b) P (G.0.2)

for a, b 6∈ fn(P). If P has an active this then, since they are required to occur inside
context pieces, we have that P → P ′. Otherwise, since P is not a finished process,
we have from Lemma F.2 that there is a minimum element in the overall ordering e
such that there is C, Q such that P = C[Q] and

Q
λ−→ Q′ (G.0.3)

for λ = ld!(c) or λ = ld?(c).
We have that there is λ′ obtained from λ by changing direction, locating and/or

adding (νa) such that either P
λ′
−→ P ′ or λ′ is located at a and there is C1, P1 such

that P = C1[(νa)P1] and P1
λ′
−→ P ′

1.
Then considering P :: T and closed(T) and Lemma F.1 we have that there must

be a matching transition in P to λ′ (or to another transition observable from P ′
1 for

which the proof is analogous). Furthermore such transition must be an immediate
transition of the process, otherwise the associated event would not be the minimal
event in the event ordering, hence there is C′, R such that P = C′[R] and

R
λ′
−→ R′ (G.0.4)

If P
λ′
−→ P ′ then we have that P

λ′
−→ P ′′, and if λ′ is located at a and P =

C1[(νa)P1] then P1
λ′
−→ P ′′

1 . We focus on the first case when the label carries no
restricted name, being the proof for the other cases analogous.

We have that either
P = C1[P1 | P2] (G.0.5)

and P1
λ′
−→ P ′

1 and P2
λ′
−→ P ′

2 or

P = C1[c J [C2[P1 | P2]]] (G.0.6)

and C2[P1]
λ1−→ P ′

1 and C2[P2]
λ2−→ P ′

2 and such that λi = c · λj (i, j ∈ {1, 2} and
i 6= j) and either λ′ = λi or λ′ = λi.

For the case of (G.0.5) we directly have a reduction from a synchronization, while
for the case of (G.0.6) we derive

C2[P1 | P2]
c this−→ P ′

1 | P ′
2 (G.0.7)

from which we derive

c J [C2[P1 | P2]]
τ−→ c J

[
P ′

1 | P ′
2

]
(G.0.8)

thus completing the proof.

73

