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Abstract

This document is a reference manual of the POLY programming language,
covering it’s syntax, type system and semantics.



Contents

1 Introduction 4

2 Motivation 5
2.1 A POLY program example . . . . . . . . . . . . . . . . . . . . 6

2.1.1 A detailed study of the example . . . . . . . . . . . . 6

3 Syntax 14
3.1 Lexical Elements . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1.1 Numeric literals . . . . . . . . . . . . . . . . . . . . . . 14
3.1.2 String literals . . . . . . . . . . . . . . . . . . . . . . . 15
3.1.3 Boolean Literals . . . . . . . . . . . . . . . . . . . . . 15
3.1.4 List Literals . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1.5 Type Literals . . . . . . . . . . . . . . . . . . . . . . . 16
3.1.6 Reserved Words . . . . . . . . . . . . . . . . . . . . . 16
3.1.7 Identifiers . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1.8 Special Characters . . . . . . . . . . . . . . . . . . . . 16
3.1.9 Comments . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Grammar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.1 Compilation Units . . . . . . . . . . . . . . . . . . . . 17
3.2.2 Types . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.3 Processes . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.4 Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 Sample Code . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Types 22
4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.1.1 Pattern matching . . . . . . . . . . . . . . . . . . . . . 26
4.1.2 POLY’s types . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 Rule specification . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2.1 Judgment notation . . . . . . . . . . . . . . . . . . . . 31

4.3 Type system . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.3.1 Unit verification . . . . . . . . . . . . . . . . . . . . . 32

1



4.3.2 Declaration verification . . . . . . . . . . . . . . . . . 32
4.3.3 Agent verification . . . . . . . . . . . . . . . . . . . . 33
4.3.4 Kind verification . . . . . . . . . . . . . . . . . . . . . 37
4.3.5 Term verification . . . . . . . . . . . . . . . . . . . . . 39
4.3.6 Pattern term verification . . . . . . . . . . . . . . . . . 40

4.4 Most general unification . . . . . . . . . . . . . . . . . . . . . 41
4.5 Variable replacement . . . . . . . . . . . . . . . . . . . . . . . 43
4.6 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5 Semantics 47
5.1 Reduction rules . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2 Initial environment . . . . . . . . . . . . . . . . . . . . . . . . 49

6 Subject reduction 50
6.1 Value substitution in terms . . . . . . . . . . . . . . . . . . . 50
6.2 Value substitution in pattern terms . . . . . . . . . . . . . . . 53
6.3 Value substitution in processes . . . . . . . . . . . . . . . . . 55
6.4 Type substitution in terms . . . . . . . . . . . . . . . . . . . 59
6.5 Type substitution in pattern terms . . . . . . . . . . . . . . . 61
6.6 Type substitution in processes . . . . . . . . . . . . . . . . . . 63
6.7 Type inference . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.8 Subject Reduction . . . . . . . . . . . . . . . . . . . . . . . . 82

7 Closing remarks 86

A User manual 88

B Grammar 91

C Class listing 95

D IVisitor.java 98

2



List of Figures

2.1 POLY constructions listing . . . . . . . . . . . . . . . . . . . . 5
2.2 A first POLY example . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 A simple POLY program. . . . . . . . . . . . . . . . . . . . . . 7
2.4 Results of evaluating the restriction. . . . . . . . . . . . . . . 9
2.5 The first stage of the test agent reduction. . . . . . . . . . . . 10
2.6 Second stage. . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.7 Third stage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.8 Fourth stage. . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.9 Fifth stage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.10 Sixth stage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1 Sample POLY code. . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Operator declaration and usage. . . . . . . . . . . . . . . . . 20
3.3 Syntactic error information. . . . . . . . . . . . . . . . . . . . 21

4.1 Malformed program. . . . . . . . . . . . . . . . . . . . . . . . 22
4.2 Malformed program with types. . . . . . . . . . . . . . . . . . 23
4.3 Typing correct program. . . . . . . . . . . . . . . . . . . . . . 23
4.4 Type constructor. . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.5 Type variables. . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.6 Dynamic versus static type checking. . . . . . . . . . . . . . . 26
4.7 Program suitable for static checking. . . . . . . . . . . . . . . 27
4.8 Usage of values in the acceptance pattern. . . . . . . . . . . . 28
4.9 Type variable incorrect usage in a single term. . . . . . . . . 28
4.10 Type variable incorrect usage in different terms. . . . . . . . . 29
4.11 Type variable generality. . . . . . . . . . . . . . . . . . . . . . 29
4.12 Incorrect usage of acceptance patterns. . . . . . . . . . . . . . 36
4.13 Polymorphic constructor usage. . . . . . . . . . . . . . . . . . 45
4.14 Type error information. . . . . . . . . . . . . . . . . . . . . . 46

A.1 Successful parsing and type checking presentation. . . . . . . 89
A.2 Syntactic error presentation. . . . . . . . . . . . . . . . . . . . 89
A.3 Type error presentation. . . . . . . . . . . . . . . . . . . . . . 89
A.4 Type error presentation. . . . . . . . . . . . . . . . . . . . . . 90

3



Chapter 1

Introduction

The programming paradigms present in the POLY language, such as concur-
rency, mobility and object orientation, illustrate the fact that the study of
the language is of very up to date interest. Aiming at such different scopes
as general purpose programming, fast prototyping of distributed applica-
tions, coordination of software systems or logic agent-based programming,
it is clear that it is in fact a very interesting language to develop and study.

Based on Lpi [Cai99], a minimal calculus related to Milner’s pi-calculus
[Mil99], the language is composed by a minimal set of constructions. These
basic elements of the language are persistent and non persistent software
agents, messages, restriction of names, parallel composition of processes and
the inaction agent.

For a more comprehensive study of all the language details, this report,
that can be referred to as the language’s reference manual, wrote using
as reference [MT91, MTH91], gives a complete definition of the language,
firstly by motivating this study through a simple example, then by illus-
trating the concrete syntax specification, followed by a detailed insight of
the type system and finally through a brief explanation of the semantics,
finishing off each major chapter with some issues that surfaced during the
implementation of the language’s static checker.
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Chapter 2

Motivation

The better way of introducing the POLY language is to give a simple notion
of the constructions of the language. The basic computational element of
the language is a software agent, that can diverge into two different sorts:
persistent and non-persistent, corresponding to definitions and commands,
respectively, that will be more precisely defined further along. The specifi-
cation of concurrent agents, that are also a key feature of the language, is
ensured by the parallel composition construction.

Concurrent agents will certainly require some form of communication
platform which is provided by the message construction, that can be seen as
a specification of a named channel that holds determined information. The
language also supports a restriction construction which corresponds to a
scoped fresh name declaration. Finally the inaction construction represents
the inactive agent.

Figure 2.1 provides a listing of the referred POLY constructions through
a simple grammar, that, in spite of the intended incomplete explanation,
provides a sufficient introduction to the basics of the language.

〈P, Q〉 ::= inaction inaction
| 〈P〉 | 〈Q〉 composition
| new 〈Vars〉 in 〈P〉 restriction
| m message
| def < 〈TypeVars〉 > 〈Vars〉 in

〈Pattern〉 [ 〈P〉 ] 〈Q〉 definition
| com < 〈TypeVars〉 > 〈Vars〉 in

〈Pattern〉 [ 〈P〉 ] 〈Q〉 command

Figure 2.1: POLY constructions listing
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def l e f t , r i ght , r e s : l i s t [ integer ] in c o l l e c t ( l e f t , r i g h t )
[ concatenat ion ( l e f t , r i ght , r e s ) ] p r i n t ( r e s )

|
c o l l e c t ( cons (1 , cons (2 , ni l ) ) , cons (3 , ni l ) )

Figure 2.2: A first POLY example

2.1 A POLY program example

In order to give an intuitive notion of the language this section starts by pre-
senting an example that provides a top level view of the language. Figure 2.2
shows a program used to concatenate two integer lists.

Assuming the existence of determined specifications that are not pre-
sented, such as the one required for the concatenation algorithm, this program
would concatenate two lists, being the result, a list containing three integers
(1, 2 and 3), printed in the screen.

The program starts by launching the definition and the message concur-
rently. If the message is able to match the pattern of the definition, located
after the in keyword, and if the test is successful, meaning that the process
contained in the square brackets successfully reduces (more on this later),
the definition is activated.

The activation of the definition will imply the instantiation of the left

and right variables with the lists contained in the message, specified through
a data constructor that resembles the usual list constructor. Also as a result
of the activation of the definition comes the removal of the message from the
environment and the instantiation of variable res with the value that makes
the test successful, which is the concatenation resulting list. Finally, the
last consequence of the definition’s activation is the launching of the print

message, which is assumed to be collected by a special procedure that prints
the list contained in the message to the screen.

2.1.1 A detailed study of the example

The example appears in a complemented version in Figure 2.3, which will
help to provide a reference to the study of a number of the language’s details.

A POLY program is composed of a sequence of top level declarations and
an agent definition, also referred to as a process, being the latter composed
by the constructions illustrated previously.

Included in the language top level declarations is the declare construction
that functions as a name declaration. The name (for example cons) is pro-
vided after the declare keyword and following the colon comes the associated
type as illustrated in (2.1).
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declare cons : ( integer , l i s t [ integer ] ) l i s t [ integer ] ;
declare concatenat ion : ( l i s t [ integer ] , l i s t [ integer ] ,

l i s t [ integer ] )msg ;

// concatenat ion ( argument l i s t , argument l i s t , r e s u l t )
def l e f t , r i ght , r e s : l i s t [ integer ] in

concatenat ion ( l e f t , r i ght , r e s ) [ ]
new conc : ( l i s t [ integer ] , l i s t [ integer ] )msg in
(

conc ( l e f t , r e s )
| def x : integer ; l s t , r : l i s t [ integer ] in

conc ( cons (x , l s t ) , cons (x , r ) ) [ ] conc ( l s t , r )
| com conc ( nil , r i g h t ) [ ] inaction

)
|
new c o l l e c t : ( l i s t [ integer ] , l i s t [ integer ] )msg in
(

def l e f t , r i ght , r e s : l i s t [ integer ] in c o l l e c t ( l e f t , r i g h t )
[ concatenat ion ( l e f t , r i ght , r e s ) ] p r i n t ( r e s )

|
c o l l e c t ( cons (1 , cons (2 , ni l ) ) , cons (3 , ni l ) )

)

Figure 2.3: A simple POLY program.

declare︸ ︷︷ ︸
keyword

cons︸︷︷︸
identifier

: (integer, list [integer])list [integer]︸ ︷︷ ︸
type

; (2.1)

In the example cons is declared as a data constructor which forms a new
list of elements placing an element at the head of a list, being the head
element specified in the first argument position, the tail list as the second
and the resulting list as the return type.

The other declaration present in the example specifies concatenation as
being a message, a predefined type that stands for the referred named chan-
nels, used for communication purposes. In this particular case the message
contains a set of three lists, meaning that when published - when used as a
message - the concatenation construct will reside in some sort of execution en-
vironment, being it’s access ensured by the declared name and it’s contents
three integer lists.

Following the top level declarations comes the agent specification, that
will be more successfully introduced if explained through the evolution of the
program. For starters, at the agent top level there is a parallel composition
between a definition and a restriction, which means at the first stage a
persistent agent and a restriction will be introduced concurrently in the
environment.

A definition is composed by declarations, following which comes the in
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keyword, an acceptance pattern, a test agent - encapsulated by the square
brackets - and a continuation agent as shown in (2.2). To be activated two
conditions must be validated: there must exist messages in the environment
that match the acceptance pattern and the test agent must successfully
reduce.

def︸︷︷︸
keyword

left , right , res︸ ︷︷ ︸
identifiers

: list [integer]︸ ︷︷ ︸
type︸ ︷︷ ︸

variable declaration

in︸︷︷︸
keyword

collect ( left , right)︸ ︷︷ ︸
pattern

[ concatenation( left , right , res)︸ ︷︷ ︸
test agent

] print(res)︸ ︷︷ ︸
continuation agent

(2.2)

In the first definition of the program present in Figure 2.3 a non empty
acceptance pattern is present so, to be activated, this definition will require
the existence of messages in the execution environment that match it’s pat-
tern.

An intuitive idea of the functionality of the acceptance pattern is that
it provides a form of specifying an input to the agent, through the place-
ment of information in the environment and consequent recovery through
the pattern, being the information removed from the environment after a
successful match. The test agent holds the other condition for the activation
of the definition and one can say that it functions similarly to a guard that
ensures the validity of determined conditions.

The activation of an agent works in a all or nothing fashion: only when
both conditions are valid the activation takes place, implicating the removal
of the messages that matched the pattern, the instantiation of variables de-
clared in the definition and the publishing of the continuation agent. The
variable instantiation occurs due to the matching procedure and to the re-
duction of the test agent, being the values used in the first case the ones
present in the messages that matched the pattern, while in the second case
the values correspond to the ones that validate the condition stated by the
test.

Assuming, as expected, an empty execution environment at the starting
point, the first definition will be impossible to activate due to the lack of
messages in the environment. So the evolution of the program must involve
the restriction, which functionality is to introduce a fresh name in the en-
vironment, regarding that it’s scope is the agent present in the body of the
restriction.

Bearing in mind that POLY programs are capable of concurrent execution
these unique names provide an important role in ensuring that agents run
in isolation, meaning they to not interfere with each other. In this case
this unique name ensures no interference in this simple communication: the
published message can only be collected by this definition because the name
is known only to these elements present in the body of the restriction.
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def l e f t , r i ght , r e s : l i s t [ integer ] in FRESH COLLECT( l e f t , r i g h t )
[ concatenat ion ( l e f t , r i ght , r e s ) ] p r i n t ( r e s )

|
FRESH COLLECT( cons (1 , cons (2 , ni l ) ) , cons (3 , ni l ) )

Figure 2.4: Results of evaluating the restriction.

Focusing only in the body of the restriction after the introduction of
a fresh name, one can conceive that the environment is similar to the one
shown in Figure 2.4. In this Figure, other than the fresh name, the environ-
ment resembles the one presented in the previous section (Figure 2.2), so a
shortcut is made directly to the test agent present in the definition, recall-
ing that variables left and right are instantiated with the lists contained in
the shown message, because the matching is successful, and res is not yet
instantiated.

The condition stated in the test agent illustrated in (2.3) is that the
concatenation of two integer lists results in another integer list. For the
first and second list determined values are used, specified through the data
constructor cons, while a non instantiated variable is used for the third ar-
gument, meaning that, if successful, the test reduction will instantiate the
variable with the value corresponding to the result of the concatenation.

// concatenation(argument list ,argument list , result )

[ concatenation( cons(1,cons(2,nil))︸ ︷︷ ︸
data constructor

, cons(3,nil)︸ ︷︷ ︸
data constructor

, res︸︷︷︸
variable

)

︸ ︷︷ ︸
test agent

]
(2.3)

To reduce the agent present in the illustrated test, the message construc-
tion that composes it is launched in an encapsulated environment, meaning
that no interference is made to the initial environment through the reduction
of the test agent, except possibly in the instantiation of variables declared
in the definition, which makes sense, keeping in mind that a test condition
is being handled. If through a series of reductions this encapsulated envi-
ronment is led to contain only the inaction agent or persistent agents the
test is successful.

For the sake of illustration consider that the encapsulated environment
referred is at this starting point composed as illustrated in Figure 2.5, re-
garding that the definition present in the initial environment is accessible
because definitions are accessible in all contexts.

One can easily note that the message is “matchable” to the definition’s
acceptance pattern. Since the definition’s test agent is empty and the accep-
tance pattern has only one term the definition will be activated, causing the
instantiation of variables left , right and res with the values contained in the
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def l e f t , r i ght , r e s : l i s t [ integer ] in
concatenat ion ( l e f t , r i ght , r e s ) [ ]

new conc : ( l i s t [ integer ] , l i s t [ integer ] )msg in
(

conc ( l e f t , r e s )
| def x : integer ; l s t , r : l i s t [ integer ] in

conc ( cons (x , l s t ) , cons (x , r ) ) [ ] conc ( l s t , r )
| com conc ( nil , r i g h t ) [ ] inaction

)
|
concatenat ion ( cons (1 , cons (2 , ni l ) ) , cons (3 , ni l ) , r e s )

Figure 2.5: The first stage of the test agent reduction.

new conc : ( l i s t [ integer ] , l i s t [ integer ] )msg in
(

conc ( cons (1 , cons (2 , ni l ) ) , r e s )
| def x : integer ; l , r : l i s t [ integer ] in

conc ( cons (x , l ) , cons (x , r ) ) [ ] conc ( l , r )
| com conc ( nil , cons (3 , ni l ) ) [ ] inaction

)

Figure 2.6: Second stage.

message (cons(1,cons(2,nil)), cons(3,nil) and res, respectively). Figure 2.6 illus-
trates the new environment to consider after the activation of the definition,
focusing only in the continuation agent, regarding the referred instantiation
of variables.

At this stage there is a restriction construction to handle, which will
cause the introduction of fresh names in the environment. To help to form
an intuitive idea, Figure 2.7 shows the evolution of the program. This is
a good tutorial example to explain why these unique names are required
to guarantee isolation, because the different executions of the concatenation

algorithm might be running concurrently so if no isolation was ensured the
necessary message passing to the algorithm would not be protected, and
the confusion that would arise from wrong message passing would cause
incorrect results.

Following the introduction of the fresh name, the environment is com-

FRESH CONC( cons (1 , cons (2 , ni l ) ) , r e s )
| def x : integer ; l , r : l i s t [ integer ] in

FRESH CONC( cons (x , l ) , cons (x , r ) ) [ ] FRESH CONC( l , r )
| com FRESH CONC( nil , cons (3 , ni l ) ) [ ] inaction

Figure 2.7: Third stage.
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FRESH CONC( cons ( 2 , ni l ) , R)
| def x : integer ; l s t , r : l i s t [ integer ] in

FRESH CONC( cons (x , l s t ) , cons (x , r ) ) [ ] FRESH CONC( l s t , r )
| com FRESH CONC( nil , cons (3 , ni l ) ) [ ] inaction

Figure 2.8: Fourth stage.

FRESH CONC( nil , R’ )
| def x : integer ; l s t , r : l i s t [ integer ] in

FRESH CONC( cons (x , l s t ) , cons (x , r ) ) [ ] FRESH CONC( l s t , r )
| com FRESH CONC( nil , cons (3 , ni l ) ) [ ] inaction

Figure 2.9: Fifth stage.

posed of a message, a definition and a command. A command is a very
similar construction to the definition, differing only in the fact that after
activated, the definition remains accessible for usage, while the command
does not, thus the persistent and non persistent characterization.

Looking at the command one can realize that the message present in
the environment is not “matchable” to the command’s acceptance pattern,
because the first argument of the message is the list containing elements 1

and 2 (cons(1,cons(2,nil))) and would have to be the empty list (nil) in order
for the matching to succeed. On the other hand the definition’s pattern
is able to match the message because the first argument assumes the same
form, while the second involves an unification of the variable res. Due to
the matching x now takes value 1, while lst takes value cons(2,nil) and finally
res takes the form of cons(1,R) (bearing in mind that x has been instanti-
ated) where R has not an established value. Figure 2.8 shows the resulting
environment, differing only in the presented message.

The same procedure would again occur, resulting in the environment
shown in Figure 2.9, causing R to take the cons(2,R’) form and therefore
causing res to take the cons(1, cons(2, R’)) form.

The message will now match the command’s acceptance pattern, because
it’s first argument is nil, causing R’ to be instantiated with cons(3,nil) and
consequently res will be instantiated with the value cons(1,cons(2,cons(3,nil))).
As the result of the command activation the inaction agent is published
and the command disappears so the resulting environment is as shown in
Figure 2.10, composed only by the inaction agent and a definition, which
means that the test has succeeded.

Returning to the initial environment, present in Figure 2.4, the success
of the test implicates the activation of the definition and therefore the res

variable is instantiated with the referred value, which is published through
the print construct, a special message that would be collected by a system
agent that prints it’s contents to the screen.
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def x : integer ; l s t , r : l i s t [ integer ] in
FRESH CONC( cons (x , l s t ) , cons (x , r ) ) [ ] FRESH CONC( l s t , r )

| inaction

Figure 2.10: Sixth stage.

To finish off this introduction, a fundamental element of the language
has to be mentioned: types. As expected the basic types are present in
the POLY language, namely integer, real, string and boolean. To join the set
of predefined types comes the very useful list type and also the previously
referred msg type. The type used for the concatenation construct is again
shown in (2.4).

( list [integer], list [integer], list [integer])msg (2.4)

In this example the most important type constructions are present, start-
ing at the concatenation type itself, which corresponds to a compound type,
and ending at the basic type level (integer), not forgetting the parametric
type present in the compound type arguments ( list [integer]).

The usual basic types are used as could be expected, while msg has a
special meaning, standing for a message construction and therefore being ca-
pable of placement in the execution environment, and list has a usage detail,
regarding it’s parametric form, which is the specification of the type of the
list’s elements, being it’s generic form submissible to any type instantiation
and therefore capable of representing any kind of lists.

The remaining type construction, the compound type, represents a com-
pound structure used for data construction, for example the concatenation

construct or the list constructor (cons) type shown in (2.5).

(integer, list [integer])list [integer] (2.5)

Looking at the cons type and keeping in mind that the language supports
parametric types, surfaces an idea in order to make the POLY constructors
more flexible and useful: polymorphic constructors. The idea present is no
surprise, because the list type has already introduced it, and it involves
the creation of constructors that handle any kind of type. This idea is very
useful in the list constructor because the construction involved is completely
independent of the type of the elements of the list. The specification of the
cons construct as a polymorphic constructor is shown in (2.6).

declare cons: [X]︸︷︷︸
parameter list

(X, list [X]) list [X]; (2.6)

The X identifier represents a type parameter, so when cons is actually
used this parameter will be replaced with the actual type that is being used,
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being this instantiation done implicitly.
A key feature of the POLY language is the possibility to specify a poly-

morphic acceptance pattern, allowing, for instance, type generic algorithms
to be written as so, instead of being replicated for each type of elements
they handle. To introduce these polymorphic patterns one must mention
an additional element of the definition (or command), which are the type
variables identified in (2.7).

def <X>︸︷︷︸
type variables

left , right , res : list [X] in concatenation( left , right , res) [] ...

(2.7)
Identifier X, a type variable declared in the definition, will stand as a uni-

versal type, being it’s scope the whole agent, from the variable declaration
to the continuation agent. The basic idea is that the acceptance pattern,
due to the variable’s declaration, is receptive to concatenation messages that
take any kind of lists as arguments ( list [X]). This characteristic gives the in-
tended support for generic algorithms, as is, for instance, the concatenation
algorithm that works for any kind of lists.

The type variables will work somewhat like value variables, being also
instantiated at some point. For type variables the instantiation will occur
as a consequence of the matching procedure, being the “values” the types
present in the messages. After the pattern matching procedure, a type
variable can be seen as a regular type because the referred instantiation will
indeed replace it with a regular type.

As one can notice, in POLY, some types can acquire great complexity, and
to handle that, it is possible to declare type abbreviations in a construct
similar to the previously presented declare construct. The specification of
this top level name declaration is shown in (2.8) as well as it’s usage, using
the cons type as the example.

type︸︷︷︸
keyword

consT︸ ︷︷ ︸
identifier

[X]︸︷︷︸
parameter list

: (X, list [X]) list [X]︸ ︷︷ ︸
abbreviated type

;

declare cons[W]: consT[W];

(2.8)

In chapter 4 there is a complete presentation of the type system, which
along with the syntax and semantics explanation will give a concise definition
of the language, being the information presented at this point sufficient to
give a starting point for the language study.
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Chapter 3

Syntax

In this chapter the POLY language syntax is thoroughly defined through
the language’s lexical elements and grammar. Following the complete de-
scription of the language’s syntax, this text provides a simple example of
a POLY program, aiming at a complementary presentation of the language,
and finally focuses on the implementation issues that seem more relevant to
mention.

3.1 Lexical Elements

As usual, lexical elements are the basic symbols from which programs are
built. Lexical elements are either literals, reserved words, special characters,
or identifiers. Literals denote either special values or types; namely numeric
literals, string literals, list literals, boolean literals, and type literals, where
the first are composed of integer literals and real literals.

〈Literal〉 ::= 〈ValueLiteral〉 | 〈TypeL〉
〈ValueLiteral〉 ::= 〈NumericL〉 | 〈StringL〉 | 〈BooleanL〉 | 〈ListL〉
〈NumericL〉 ::= 〈IntegerL〉 | 〈RealL〉

The following subsections give a precise definition of all lexical elements.

3.1.1 Numeric literals

Numeric literals are either integer literals or real literals. An integer literal
is a non-empty sequence of digits, eventually preceded by the character “−”.

〈Digit〉 ::= 0 | · · · | 9

〈IntegerL〉 ::= [−] 〈Digit〉+

A real literal is an integer literal possibly followed by the character “.”,
followed by a sequence of zero or more digits, possibly followed by a “E”
character and another integer literal, and where either the “.” or the “E”
must necessarily occur.
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〈RealL〉 ::= 〈IntegerL〉 [ . 〈Digit〉+] [ E 〈IntegerL〉 ]

Examples 〈IntegerL〉: 12, −12. 〈RealL〉: −10.0E1, 12E−3, 0.02.

3.1.2 String literals

A string literal is a sequence of character specifications inside double quote
characters “””. A character specification is either

• Any printable unicode character.

• The two character sequence “\n”, interpreted as the end-of-line char-
acter.

• The two character sequence “\t”, interpreted as the tabbing character.

• A sequence of characters of the form “\ddd” where ddd is a sequence of
up to three digits, interpreted as the unicode character with decimal
code ddd, meaning that ddd must be a value less than 256.

• A sequence of characters “\ˆa”, where a is any character with unicode
code n in the range 64−95, interpreted as the unicode character with
decimal code n− 64.

• The two character sequence “\””, interpreted as the double quote char-
acter “””.

• The character “\”, causing the contents of the input stream up to the
next occurrence of “\” to be ignored, while composed of formatting
characters (e.g. “\t”, “\n” or “ ”).

Examples 〈StringL〉: ”\thello\n”, ”hello\ \ my \” world \””.

3.1.3 Boolean Literals

A boolean literal is either one of the usual boolean constants.

〈BooleanL〉 ::= false | true

3.1.4 List Literals

The only list literal is the identifier standing for the empty list.

〈ListL〉 ::= nil
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3.1.5 Type Literals

A type literal is either one of the expected basic types, the list type or the
message type.

〈TypeL〉 ::= integer | real | string | boolean | list | msg

3.1.6 Reserved Words

Reserved words look like identifiers, but are actually keywords which signal
the constructs of the language. All the reserved words are shown bellow.

〈Reserved〉 ::= com | declare | def | in | inaction | infix |
new | prefix | suffix | type

3.1.7 Identifiers

An identifier is a sequence of characters, chosen either among the upper and
lower case letters, the digits, and the underscore character, or among the
special symbol characters, in such a way that the first character is either a
letter or a symbol character. In the first case, the identifier is called a name,
in the second case the identifier is called an operator.

〈Upper〉 ::= A | · · · | Z

〈Lower〉 ::= a | · · · | z

〈Symbol〉 ::= / | ! | $ | # | % | & | ∗ | + | . | : |
< | > | = | ? | @ | ˆ | | | ˜ | − | \

〈Letter〉 ::= 〈Lower〉 | 〈Upper〉 | _
〈Identifier〉 ::= 〈Operator〉 | 〈Name〉
〈Operator〉 ::= 〈Symbol〉+
〈Name〉 ::= 〈Letter〉 (〈Letter〉 | 〈Digit〉 ) ∗

Examples 〈Name〉: Hello2, poly lang. 〈Operator〉: $$, +.

3.1.8 Special Characters

The following characters have reserved meanings.

〈SpecialChar〉 ::= [ | ] | : | ; | | | & | ( | ) | , |
< | >

3.1.9 Comments

Any text between “/∗” and “∗/”, and any text from an occurrence of “//”
to the end of the line, is considered a comment in the source code.
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3.2 Grammar

3.2.1 Compilation Units

A POLY application is a compilation unit. A compilation unit is composed
by a series of type and symbol declarations, possibly followed by a process
(the body of the compilation unit).

〈Unit〉 ::= 〈Declarations〉 [〈Process〉]
〈Declarations〉 ::= (〈Declaration〉 ; )∗

〈Declaration〉 ::= 〈Typedecl〉 | 〈Symboldecl〉
〈TypeArg〉 ::= 〈Name〉
〈TypeArgs〉 ::= 〈TypeArg〉 ( , 〈TypeArg〉)∗
〈Typedecl〉 ::= type 〈Name〉 [ [ 〈TypeArgs〉 ] ] [ = 〈Type〉 ]
〈Symboldecl〉 ::= declare 〈Identifier〉 : [ [〈TypeArgs〉 ]] 〈Type〉

[〈Assocspec〉 〈Precspec〉]
〈Assocspec〉 ::= prefix | infix | suffix

〈Precspec〉 ::= 〈Digit〉

Some remarks can be already stated at this point about type and sym-
bol declarations in order to clarify the declaration constructions. A type
declaration may state more than a type abbreviation, in which the reduced
form is specified after the equals symbol, it can also be used to declared a
new type name, so no reduced form will appear.

For a symbol declaration the associated type is always present, being
optional the specification of associative and precedence information in order
to establish the syntactic power of an operator. In both cases it is possible
to declare a set of distinct type parameters that specify that the declared
name is type parametric, which for symbols allows the introduction of poly-
morphism in the POLY language.

The scope of the declared names is the entire compilation unit, starting
at the point where the name was declared.

For the sake of illustration a list of declarations is shown in the next
subsection.

3.2.2 Types

POLY is a strongly typed language. Therefore the declaration of new identi-
fiers involves type expressions.

〈PrimitiveType〉 ::= 〈TypeL〉
〈BaseType〉 ::= ( 〈Name〉 | 〈PrimitiveType〉 ) [ [〈Types〉 ]]
〈Type〉 ::= 〈BaseType〉 | 〈Constructortype〉
〈Constructortype〉 ::= ( 〈Types〉 ) 〈BaseType〉
〈Types〉 ::= 〈Type〉( ,〈Type〉)∗
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As expected type forms consider type literals and identifiers as their
basis. From there the construction of new types is possible through the
parametrization of a type name or literal, which causes the parameters of
the type to be replaced by the types given as arguments. It is also possible
to define a compound type which represents the POLY constructor form,
given by a collection of types for the arguments and a return type, where a
compound type may not surface.

The following examples will help to illustrate the mentioned concepts,
for both types and declarations.

Examples

〈Typedecl〉:
type tree;

type product[X,Y];

type prop = msg;

type channel[X] = (X)msg;

type stack[A] = list[A].

〈Symboldecl〉:
declare qsort:( list [integer], list [integer])msg;

declare reverse:[X]( list [X], list [X])msg;

declare :::[ X](X, list [X]) list [X] infix 6;

declare pipe:channel[integer];

declare pair:[X,Y](X,Y)product[X,Y].

3.2.3 Processes

Process expressions contemplate the parallel composition of processes, the
definition, the command, the message form, the restriction construction and
the inaction agent.
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〈Process〉 ::= 〈Simple〉 | 〈Composition〉
〈Simple〉 ::= 〈Inaction〉

| 〈Restriction〉
| 〈Command〉
| 〈Definition〉
| 〈Message〉
| (〈Process〉)

〈Inaction〉 ::= inaction

〈Message〉 ::= 〈Term〉
〈Restriction〉 ::= new 〈Decls〉 in 〈Simple〉
〈Command〉 ::= com [ < 〈TypeArgs〉 > ] 〈BasicCommand〉
〈Definition〉 ::= def [ < 〈TypeArgs〉 > ] 〈BasicCommand〉
〈BasicCommand〉 ::= [〈Decls〉 in] [〈Input〉] 〈Test〉 〈Simple〉
〈Decls〉 ::= 〈Ids〉 :〈Type〉 ( ;〈Ids〉 :〈Type〉)∗
〈Ids〉 ::= 〈Identifier〉 ( ,〈Identifier〉)∗
〈Test〉 ::= [] | [〈Process〉 ]
〈Input〉 ::= 〈Term〉 (& 〈Input〉)∗
〈Composition〉 ::= 〈Simple〉 ( | 〈Simple〉)∗

While the semantics of these language constructions will be explained
later on, it is important to mention the scope of the present declarations.
For the restriction agent the new identifiers can be present throughout the
restrictions continuation. For the definition and command both type param-
eters identifiers (given by the optional 〈TypeArgs〉) and new identifiers can
be found in the agent’s pattern, in the test agent and also in the continuation
agent.

3.2.4 Terms

POLY terms are no more than the constructor form and it’s related specifi-
cations, when it comes to operator usage.

〈Term〉 ::= 〈SimpleTerm〉
| 〈Term〉 〈Binop〉 〈SimpleTerm〉
| 〈Preop〉 〈Term〉
| 〈Term〉 〈Postop〉

〈SimpleTerm〉 ::= 〈Name〉
| 〈ValueLiteral〉
| (〈Term〉)
| 〈Identifier〉(〈Terms〉)

〈Terms〉 ::= 〈Term〉 ( ,〈Term〉)∗
〈Binop〉 ::= 〈Operator〉
〈Preop〉 ::= 〈Operator〉
〈Postop〉 ::= 〈Operator〉
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declare : : : [ X] (X, l i s t [X] ) l i s t [X ] in f ix 6 ;
declare r e v e r s e : [X] ( l i s t [X] , l i s t [X] )msg ;

def <Z> l , r : l i s t [ Z ] in r e v e r s e ( l , r ) [ ]
new rev : ( l i s t [ Z ] , l i s t [ Z ] )msg in
(

rev ( l , ni l )
| def x : Z ; l , r : l i s t [ Z ] in rev (x : : l , r ) [ ] rev ( l , x : : r )
| com rev ( nil , r ) [ ] inaction

)

Figure 3.1: Sample POLY code.

declare +. : ( string , string ) string inf ix 6 ;
declare word : ( string )msg ;

word (” h e l l o ”+.” world ”)

Figure 3.2: Operator declaration and usage.

3.3 Sample Code

For the sake of illustration, Figure 3.1 presents a sample compilation unit.

3.4 Implementation

The static checker that was developed for the POLY language makes use of
two collaborating tools to capture the presented syntax specification. For
the lexical analyzer JLex [Lex] was used while CUP [CUP] ensured the
parser. Both specifications made for these tools are a straightforward im-
plementation of the presented syntax, but there are some interesting details
regarding operator parsing and error information.

In order to handle operator syntactic power for names declared at the
compilation unit level, the parser holds the declared operators in a deter-
mined table, which allows the lexical analyzer to check if the symbol string
in hand is in fact a declared operator. The problem here is that the prece-
dence of the operator can not be defined at that time, but a simple solution
was arranged to deal with this problem: there is a fixed number of prece-
dence values (the chosen value is ten, which probably is more than enough)
and the respective token values, leaving to the lexical analyzer the simple
task of returning an appropriate operator token, while the parser makes
no fuss about it. Figure 3.2 shows the declaration and usage of a string
concatenation constructor.

To ensure some helpful information at grammar error level, the imple-
mented static checker reproduces the parser’s transition machine, while han-
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***

Syntax error: Found ’|’ in line 2, column 0

* Expecting *

infix operator

prefix operator

suffix operator

NAME

integer constant

real constant

String constant

nil

true

false

(

com

def

new

inaction

declare

type

* Context *

declare word:(string)msg;

|

word("hello")

***

Figure 3.3: Syntactic error information.

dling the error in order to find out what kind of token was expected by the
parser, helping the user to correct the problem. This was one of the efforts
made in an attempt to make the static checker as user friendly as possible.
Figure 3.3 shows how the information is presented to the user in the form
of expected tokens.

In appendix B you can find the complete specification of the grammar
for the CUP parser generator, provided as a text output of the grammar
that the CUP tool offers.

To close this section, it is important to mention that the grammar builds
an abstract syntactic tree while it is parsing the source file, which will be
used for the type checking algorithm. A complete listing of the nodes that
compose this abstract syntactic tree is shown in the class listing, presented
in appendix C, where all the nodes have their class names prefixed with
AST - from abstract syntactic tree.

For more information on compiler implementation, regarding these and
other related issues, refer to [App98].
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Chapter 4

Types

There is a large number of formal methods to ensure that a system behaves
correctly with respect to some specification, being the most common the
type systems because of their simplicity/effectivity duality in their task of
ensuring that determined runtime errors do not occur. For detailed infor-
mation on type systems consult [Pie02].

Regarding that the communication of processes is a corner stone of the
POLY language, it was a central aspect in the development of the type system
in order to ensure the absence of a great deal of communication errors, which
are the most probable runtime errors in POLY. In this chapter POLY’s types
are thoroughly explained, firstly through the motivation that stirred their
creation and secondly through a formal definition of the type system. To
close this chapter a reference is made to implementation issues that seem
more relevant to mention.

4.1 Motivation

The better way to introduce the earlier motivation in the development of
POLY’s type system is to provide an example, like the one present in Fig-
ure 4.1, adapted from Figure 2.3, where types would certainly give a help-
ing hand. In this example a complete mess is made in the usage of the
concatenation constructor, appearing as a message with one integer argument
(present in the test agent) and then in a definition pattern, with the expected
three arguments.

def l e f t , r i ght , r e s in concatenat ion ( l , r , r e s ) [ ] . . .
|
def [ concatenat ion (1 ) ] . . .

Figure 4.1: Malformed program.
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declare concatenat ion :
( l i s t [ integer ] , l i s t [ integer ] , l i s t [ integer ] )msg ;

def l , r , r e s : l i s t [ integer ] in concatenat ion ( l , r , r e s ) [ ] . . .
|
def [ concatenat ion (1 ) ] . . .

Figure 4.2: Malformed program with types.

declare concatenat ion :
( l i s t [ integer ] , l i s t [ integer ] , l i s t [ integer ] )msg ;

declare cons : ( integer , l i s t [ integer ] ) l i s t [ integer ] ;

def l , r , r e s : l i s t [ integer ] in concatenat ion ( l , r , r e s ) [ ] . . .
|
def i n t s : l i s t [ integer ]

[ concatenat ion ( cons ( 1 , ni l ) , cons ( 2 , ni l ) , i n t s ) ] . . .

Figure 4.3: Typing correct program.

The result of such a malformed program is that no successful computa-
tion can occur because the agent’s pattern is unsatisfiable.

If types were introduced in the language it would be possible for a static
checker to reject this kind of situation, being their usage explicit in the
POLY language due to two considerations: user simplicity and ambiguity
resolution.

The program is again shown in Figure 4.2, now containing type decla-
rations. The problem, easily identified, rests in the message, which form
differs completely in respect to the constructor declaration. Presented in
Figure 4.3 is a typing correct program.

From this first example one can already identify the first types consid-
ered for the POLY language: the expected basic types - for instance the
integer present in the example - and the compound type forms (for ex-
ample the ( list [integer], list [integer], list [integer])msg used as the type of
concatenation), being the first essential to any useful language while the sec-
ond necessary to establish a framework for the language’s data constructors.

The other type form present in the poly language is the type constructor,
for instance list . This type form allows the constructions of types through
their parametrization, like in list [integer], and therefore the suited name for
these types is type constructor.

Through the top level declaration construct type it is possible to intro-
duce new type constructors in POLY as is shown in Figure 4.4. The declara-
tion present in the example introduces consType as a type constructor, used
to create types for list constructors such as the consInt or the consBool.

The existence of type constructors justifies their classification, like the
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type consType [X]=(X, l i s t [X] ) l i s t [X ] ;
declare cons Int : consType [ integer ] ;
declare consBool : consType [ boolean ] ;

Figure 4.4: Type constructor.

one that types provide to values, meaning that types will have their own
types, referred to as kinds.

Regarding the type constructors, a straightforward classification comes
to mind, which is the number of parameters involved, meaning that kinds
will be no more than integers that corresponds to the number of parameters
of the type constructor. When the arguments replace the parameters the
type construction is established, so it’s kind is 0. For example, while consType

as itself has kind 1, consType[integer] has kind 0, because one argument can
be applied to the first case while none can in the latter.

Along with parametric types POLY supports type parametric values, be-
ing an example shown in (4.1) where the declared value represents a list
constructor able to handle any kind of lists. This polymorphic operator is
very useful, as are all type generic data constructors, being essential to the
intended support of type generic algorithms.

declare cons:[X](X, list [X]) list [X]; (4.1)

The usage of these constructors is the only exception to the explicit
typing present in POLY, because they are used without reference to the type
argument that is present, therefore requiring it’s inference for type checking
purposes. An example of this non explicit use of polymorphic values is
shown in (4.2), where one can easily notice that the type argument being
implicitly provided is integer.

cons(1, nil) (4.2)

An implicit notion is present in the usage of these type parametric values,
concerning the fact that the arguments must capture all the type parameters
to ensure that a valid instantiation can be obtained regarding the used
arguments. Therefore, both in type and value top level declaration, this
incorrect usage of type parameters must not appear.

An interesting remark to be made about the example shown in (4.2) is
the usage of nil, which is a polymorphic value, so no explicit specification of
the type argument is made. In nil’s case the inference of the type argument
can be made through the information provided by the placement of nil.
For instance, in the presented example, the type inferred for the empty list
would be list [integer] because of the implicit association made through the
cons type argument. If a substitution is made to this type argument, as is
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declare concatenat ion : [X] ( l i s t [X] , l i s t [X] , l i s t [X] )msg ;

def <X> l , r , r e s : l i s t [X ] in concatenat ion ( l , r , r e s ) [ ] . . .

Figure 4.5: Type variables.

shown in (4.3), the type determined for the second argument is list [integer]

and therefore nil’s type must be the same.

([X](X, list [X]) list [X])[integer] → (integer, list [integer])list [integer] (4.3)

An example that illustrate the correct form, regarding the referred type
coherence, of constructor cons is shown in (4.4), while an example of incorrect
cons usage is given in (4.5). The idea present is that nested constructors must
have return types equivalent to the argument types where they are placed,
as could be expected.

cons(1, cons(2, nil)) (4.4)

cons(1, cons(true, nil)) (4.5)

An intuition on this type coherence present in the constructors can be
provided through the presented examples, and it simply refers to the chosen
declaration of the constructor. In the cons case the intent is to create a
list constructor that builds lists of elements of any kind, but between the
elements the type remains the same.

A remark to be made at this point is the fact that a message must
be type grounded, meaning that all type parameters must be instantiated,
considering the referred type coherence. An example that shows an incorrect
message term is shown in (4.6), where either the concatenation type parameter
or the nil’s type parameters can not be instantiated.

concatenation(nil , nil , nil) (4.6)

To fulfill the support of type generic algorithms, along with polymorphic
constructors, comes the need of type variables present in the definition and
command, used to confer polymorphism to acceptance patterns. An example
of the usage of these type variables is shown in Figure 4.5.

Type variables work somewhat like value variables: they are instantiated
during the pattern matching procedure and the types that instantiate them
will work as any other in the continuation agent.

In the example shown, the idea is to provide a type generic list concate-
nation algorithm, which is an instance of an algorithm that makes sense to
be type independent, in this case, in regard to the type of the list’s elements.
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declare concatenat ion : [X] ( l i s t [X] , l i s t [X] , l i s t [X] )msg ;
declare cons : [X] (X, l i s t [X] ) l i s t [X ] ;

def l1 , l2 , l 3 : l i s t [ integer ] in concatenat ion ( l1 , l2 , l 3 ) [ ] . . .
|
def i n t s : l i s t [ integer ] in [ concatenat ion ( cons ( 1 , ni l ) , cons ( 2 ,

ni l ) , i n t s ) ] . . .
|
def boo l s : l i s t [ boolean ] in [ concatenat ion ( cons ( true , ni l ) , cons

( false , ni l ) , boo l s ) ] . . .

Figure 4.6: Dynamic versus static type checking.

To obtain the intended idea, it is required that the concatenation con-
structor declaration makes it type parametric, as it is in the illustrated
declaration, which ensures that the constructor is able to handle any kind
of lists. Secondly it is necessary to consider the type variable present in the
definition, which will stand for an universal type, meaning that the pattern
term is matchable to any concatenation message regardless of the type of the
elements of the lists.

There is a set of problems that surface when developing the support
for this language feature, namely an important trade-off between dynamic
and static type checking, also referable as runtime and compile time type
checking. In the first case it is possible to maintain a complete freedom in
the usage of this feature while in the second there are some restrictions that
have to be made to ensure the correct behavior of the system. The next
section covers the details that concern this problem.

4.1.1 Pattern matching

Figure 4.6 provides an example of a program that shows where the problem
lies, which is in the declaration of the variables used in the acceptance
pattern. The declarations present in the first definition, illustrated in the
example, state that the pattern is only receptive to integer lists, but looking
at the usage examples, one can notice that there is no problem in the boolean
usage, other than it can not be handled in the referred definition.

If dynamic type checking is used, the handling of the boolean lists would
simply be rejected by the presented definition, due to runtime verification
of the types involved in the pattern matching, but this procedure is already
a heavy task and overloading it would only make it more inefficient. On
the other hand, static checking can’t reject any of the presented processes
but there will be trouble when the booleans are handled, because there is
no type information at runtime, meaning that restrictions will have to be
placed in order to establish a system free from runtime type verification.

The basic idea is that if the acceptance pattern type checks correctly
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declare concatenat ion : [X] ( l i s t [X] , l i s t [X] , l i s t [X] )msg ;
declare cons : [X] (X, l i s t [X] ) l i s t [X ] ;

def <X> l1 , l2 , l 3 : l i s t [X ] in concatenat ion ( l1 , l2 , l 3 ) [ ] . . .
|
def i n t s : l i s t [ integer ] in [ concatenat ion ( cons ( 1 , ni l ) , cons ( 2 ,

ni l ) , i n t s ) ] . . .
|
def boo l s : l i s t [ boolean ] in [ concatenat ion ( cons ( true , ni l ) , cons

( false , ni l ) , boo l s ) ] . . .

Figure 4.7: Program suitable for static checking.

than all messages that also type check correctly are matching candidates
to the pattern, meaning that no type restrictions are present, thus ensur-
ing the absence of runtime errors due to incompatible types present in the
matching procedure. The previous example is again presented in Figure 4.7,
reconfigured in order to be validated through the static type checker.

Using the type variable at the definition level, it is ensured that the de-
sired property stands in the presented example, because the type variable
provides the desired universal polymorphism in the acceptance pattern, be-
ing the most reasonable usage when the intent is to specify a type generic
algorithm.

However, it is still possible to define particular cases through the usage
of concrete values or upper level variables in the pattern, because values and
instantiated variables can ground the pattern term to a determined type.
The reason behind this argument is that no message having the same val-
ues or instantiated variables, and therefore no message that is a matching
candidate, will have a different type. An example of value usage in the ac-
ceptance pattern is shown in Figure 4.8, where the concatenation construct
appears restricted to list of integer handling due to it’s first argument. Look-
ing at the example, one can easily realize that no other concatenation message
other than one holding integer lists is a matching candidate. In such cases
the variables must be declared accordingly, meaning that no type variables
must be present, only the particular types, as in the example shown.

This property, however, does not stand for polymorphic values, because
different messages containing the same value might have different types in-
volved. If, for instance, nil is used in a pattern it will not be able, by itself,
to ground the pattern term when it comes to the elements of the list involved
in that argument, due to the fact that it is possible that this polymorphic
value surfaces in different messages having different types.

Like polymorphic values, variables do not support this property, being
the justification the same: distinct messages can hold different types and be
a matching candidate with respect to a variable, if the declared type of the
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declare concatenat ion : [X] ( l i s t [X] , l i s t [X] , l i s t [X] )msg ;
declare cons : [X] (X, l i s t [X] ) l i s t [X ] ;

def l2 , l 3 : l i s t [ integer ] in concatenat ion ( cons (1 , ni l ) , l2 , l 3 )
[ ] . . .

|
def i n t s : l i s t [ integer ] in [ concatenat ion ( cons ( 1 , ni l ) , cons ( 2 ,

ni l ) , i n t s ) ] . . .
|
def boo l s : l i s t [ boolean ] in [ concatenat ion ( cons ( true , ni l ) , cons

( false , ni l ) , boo l s ) ] . . .

Figure 4.8: Usage of values in the acceptance pattern.

declare op : [ X,Y] (X,Y)msg ;

def <Z> a , b : Z in op (a , b ) [ ] . . .
| op (1 , true )

Figure 4.9: Type variable incorrect usage in a single term.

variable is disregarded.
Hence variable usage in the acceptance pattern will be an important fo-

cus of the pattern matching type verification. Their declaration must be
coherent in regard to their usage, meaning that, to assure the non establish-
ment of type restrictions, the variables must be declared in such a way that
any value, contained in a matching candidate message, is supported by the
type, therefore justifying the usage of type variables.

Regarding the correct usage of type variables, in such a way that they
stand for the generic type intended, an important verification must be made
to guarantee the independence between them. The example shown in Fig-
ure 4.9 illustrates one case where there is an dependency established between
the type variables. The message present in the example shows why variables
a and b must not share the type variable Z, because the op constructor sup-
ports different types on it’s arguments, so a type restriction is the one thing
making the matching impossible.

Another example can be found in Figure 4.10 where the type informa-
tion is being shared in two different pattern terms. Once again type-blind
matching is possible, but the type variable would have to take two different
values, which is absurd.

While the properties referred above report to the minimal level of gen-
erality that the type variables must support, another set of restrictions was
established on the usage of type variables, regarding their semantic inter-
pretation, that enforce the usage of type variables with the precise level of
generality required, instead of allowing a free usage of their generic power.
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declare op : [X] (X)msg ;

def <Z> a , b : Z in op ( a ) && op (b) [ ] . . .
| op (1 )
| op ( true )

Figure 4.10: Type variable incorrect usage in different terms.

declare op : [X] ( l i s t [X] )msg ;

def <Z> a : Z in op ( a ) [ ] . . .
| def <Z> b : l i s t [ Z ] in op (b) [ ] . . .
| op ( cons (1 , ni l ) )
| op ( cons ( true , ni l ) )

Figure 4.11: Type variable generality.

An example is shown in Figure 4.11 where the first definition is typing
incorrect due to a declaration of a variable of a unnecessary level of gener-
ality, in contrast with the second definition that declares a variable that is
sufficiently generic.

Having presented the intuition required for the comprehension of POLY’s
types, the next sections complete their description as well as formally present
the the type system.

4.1.2 POLY’s types

To strengthen the ideas presented previously this section illustrates the al-
lowed type forms in POLY, which are roughly presented in the grammar
presented in (4.7).

BT ::= b ∈ Basic | id

AT ::= BT [CT1, . . . , CTn] (n ≥ 0)
CT ::= (CT1, . . . , CTn)AT | AT | X
TS ::= [X1, . . . , Xn]CT (n ≥ 0)

(4.7)

Starting by the last production TS, it shows that a type scheme may
(or not) be a type constructor, in which case a set of type parameter names
[X1, . . . , Xn] is priorly given. Production CT refers to compound types
that consisted in a sequence of compound types (CT1, . . . , CTn), followed
by a return type that must be a basic type, possibly with type construction
parameters, as is shown in production AT . Production CT production also
resolves into a type parameter (X) or simply an atomic type (AT ). Finally,
a basic type (BT ) is either a predefined type (Basic), like integer or boolean,
or an identifier represented by id.
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The following examples may help to clarify the admissible type construc-
tions.

• integer

A basic type.

• list [boolean]

A type constructor, representing list of booleans.

• [X, Y](X, (Y)msg)msg

A parametric compound type constructor, being X and Y the type
parameters.

• [X](X, list [X]) list [X]

The list constructor type.

4.2 Rule specification

Before presenting the type system itself, keeping in mind that what is in-
tended is a formal type system, it is necessary to fully illustrate the notation
of the type rules, which are the basis of the type system.

The basic element in a type rule is a judgment, represented as shown
below, where = is an assertion, which form varies as is discussed further,
and Γ is the environment of the evaluation, where are present associations
between names and their types or their kinds and reductions, depending if
they are a value or a type, respectively.

Γ ` =
Using the presented notation for the judgment, it is possible to show the

general form of a type rule.

(Rule name)
Γ1 ` =1 · · ·Γn ` =n

Γ ` =
(Annotations)

Above the line appear the premises of the rule (Γi ` =i) while the con-
clusion appears below the line. The idea is that the conclusion is valid if all
the premises also are. This general form is present in the following type sys-
tem, but there are some details concerning the different forms of assertions
that need to be cleared at this stage, so a more exhaustive list of judgment
form is shown.
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4.2.1 Judgment notation

• Declaration judgments

Γ ` D ⇒ Γ′

This form of judgment is used for the top level name declaration in the
POLY language (D), specified by declare or type, where the assertion
produces a new environment, represented by Γ′.

• Agent judgments
Γ ` A OK

This notation is used in agent verification rules and it simply represents
that a determined agent, represented by A, is well formed.

• Kind judgments
Γ ` T :: K ⇒ T ′

This notation is used when the evaluation is being made on a type,
represented by T , so the necessary information to be retrieved by the
assertion is the kind of the type and a reduction, represented by K
and T ′, respectively.

• Term judgments
Γ ` u : T

Here the idea is to denote that a term, represented by u, has a deter-
mined type, given by T .

• Pattern term judgments

Γ ` term(u) ⇒ (S, T, Z)

The presented judgement is used to establish not only the type of term
u, represented by T , but also to conceive a type identification equation
system, identified by S, regarding u’s inner structure, and also the
variable set, represented by Z, that was obtained while conceiving S.

4.3 Type system

Finally, this section presents the formal type system through a set of rules
that use the notations explained in the previous section.
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4.3.1 Unit verification

As explained earlier a POLY program is composed of a sequence (possibly
empty) of declarations and possibly an agent. The rules that specify how
the unit verification is handled are presented in (4.8).

(Unit)
Γ ` D ⇒ Γ′ Γ′ ` A ⇒ OK

Γ ` D; A ⇒ OK

(Declaration list)
Γ ` D1 ⇒ Γ′ Γ′ ` D2 ⇒ Γ′′ · · ·Γn−1 ` Dn ⇒ Γn

Γ ` D1; · · · ; Dn ⇒ Γn

(4.8)

The rule, identified by Unit, simply illustrates that a POLY compilation
unit is a valid program when the declarations are correctly typed and the
agent is well formed regarding them. The second rule, Declaration list,
simply constructs the new environment through the evaluation of all the
declarations present in the program, extending the environment declaration
by declaration.

4.3.2 Declaration verification

The set of rules illustrated in (4.9) refer to the top level declaration of types
and operators in POLY, so the judgment form that will appear will be the
Declaration judgment.

(Type declaration)

Γ ` type id[X1, . . . , Xn] ⇒ Γ, id :: n
(∀i, j i 6= j ⇒ Xi 6= Xj)

(Type declaration with abbreviation)
Γ, X1 :: 0, . . . , Xn :: 0 ` T :: 0 ⇒ T ′

Γ ` type id[X1, . . . , Xn] = T ⇒ Γ, id :: n = [X1, . . . , Xn]T ′
(X1, . . . , Xn are present in T in argument positions.)

(Symbol declaration)
Γ, X1 :: 0, . . . , Xn :: 0 ` T :: 0 ⇒ T ′

Γ ` declare id : [X1, . . . , Xn]T ⇒ Γ, id : [X1, . . . , Xn]T ′
(X1, . . . , Xn are present in T in argument positions.)

(4.9)

The first rule, identified by Type declaration, simply shows that when
a new name is declared as a type, with a given set (possibly empty) of
parameters, a new environment is created by adding the association between
the declared type and it’s kind to the previously established environment.
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The Type declaration with abbreviation rule handles the declaration of
a type name given as an abbreviation of a type scheme. The type scheme,
represented by T , is checked both for its possible reduction and, evidently,
for its validity in an extended environment, containing the declaration of
the type parameters. Having the premise valid the association between the
declared name and both the kind and the reduced type scheme is established
as an extension of the old environment. The annotation presented refers to
the fact that all type parameters must be present in argument positions
in T , as could be expected, because it makes no sense to declare a data
constructor with a return type that is not present in it’s arguments. An
example of a verification using this rule is given in (4.10).

· · ·
{∅, X :: 0} ` (X,list [X]) list [X] :: 0 ⇒ (X,list [X]) list [X]

∅ ` type consType[X]=(X,list[X])list[X] ⇒
{∅, consType :: 1 = [X](X,list [X]) list [X]}

(4.10)

Finally the Symbol declaration rules shows the same form present in its
predecessor, only differing because it is an operator declaration, not a type,
so there is no kind present in the association. Illustration (4.11) shows a
verification example.

· · ·
{consType :: 1 = [X](X,list [X]) list [X]} ` consType[integer] :: 0 ⇒

(integer,list [integer])list [integer]

{consType :: 1 = [X](X,list [X]) list [X]} ` declare consInt:consType[integer] ⇒
{· · · , consInt : (integer,list [integer])list [integer]}

(4.11)

4.3.3 Agent verification

In this section the rules, shown in (4.12), refer to the type checking of an
agent so the judgment form used is the agent judgment that simply states,
as mentioned earlier, that a determined agent construction is well formed.
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(Inaction)

Γ ` inaction OK

(Parallel composition)
Γ ` P OK Γ ` Q OK

Γ ` P | Q OK

(Restriction)
Γ, v1 : T1, . . . , vn : Tn ` P OK

Γ ` new v1 : T1; . . . ; vn : Tn in P OK

(Message)
Γ ` M : msg

Γ ` M OK
(M is type grounded)

(Definition)
replace({M1, . . . , Mt}, {v1, . . . , vk}) ⇒

({M ′
1, . . . , M

′
t}, {v′1, . . . , v′m}, γ)

Γ, Y1 :: 0, . . . , Ym :: 0, v′1 : Y1, . . . , v
′
m : Ym ` term(M ′

1) ⇒
(S1, msg, Z1)

...
Γ, Y1 :: 0, . . . , Ym :: 0, v′1 : Y1, . . . , v

′
m : Ym ` term(M ′

t) ⇒
(St, msg, Zt)

σ = mgun(S1 ∪ . . . ∪ St, {Y } ∪ Z1 ∪ . . . ∪ Zt)
ϕ = mgun(

⋃
q:Yq∈dom(σ)∧∃l.γ(v′q)=vl

{Tl = σ(Yq)}, {X})
Γ, X1 :: 0, . . . , Xn :: 0, v1 : T1, . . . , vk : Tk ` P OK
Γ, X1 :: 0, . . . , Xn :: 0, v1 : T1, . . . , vk : Tk ` Q OK

Γ ` def < X1, . . . , Xn > v1 : T1; . . . ; vk : Tk in M1& . . .&Mt [P ]Q OK
(v1, . . . , vk do not occur as heads of M1, . . . , Mt)
({Y1, . . . , Ym} is a set of fresh names)
(∀i∈1,...,n∃j ϕ(Xi) = Wj ∀i,j∈1,...,n ϕ(Xi) = ϕ(Xj) ⇒ i = j)

(4.12)
The Inaction rule is trivial: the agent that does nothing is well formed, as

could be expected. Referring to the parallel composition of agents, the sec-
ond rule, identified by Parallel composition, illustrates that it is well formed
if the agents that compose it are well formed. The third rule, Restriction,
shows that a restriction is well formed when its continuation also is, evalu-
ated in an extended environment containing the new variable declarations.

Following comes the Message rule that simply illustrates that a message
must resolve to predefined type msg - through term verification - to ensure
that the agent composed by it is well formed. There is, however, an im-
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portant remark to be made regarding the annotation shown that is the fact
that a message must not have, in all it’s imbricated terms and in itself, type
parameters that have not been instantiated.

Finally comes the Definition rule, being the command such an identical
case that the rule would only differ in the specified keyword, so only the rule
shown is the one for the definition.

This last rule states that a definition agent is well formed if the pattern,
the test agent and the continuation agent are typing coherent. In order to
state the typing correctness of the pattern a possible verification goes by
inferring the types of the variables, looking only at the pattern to do so, and
then crosschecking them with the declarations present in the definition.

If the types inferred for the variables are equivalent to the ones declared,
it is ensured that no typing restrictions are made to the pattern matching
operation, because the inference can only bring up the most generic types
possible, so if the declarations are equivalent then they do not enforce any
typing restrictions.

The inference of the types of the variables is made effective by evaluating
all the pattern terms considering a replacement of each variable occurrence
with a fresh variable associated with a type variable (refer to section 4.5),
being the latter used to hold the inferred information. The first premise of
the rule specifies this substitution of every occurrence of a fresh variable with
a fresh name while the following t rules handle the construction of equation
systems, one per each pattern term, where the equations represent the iden-
tification of declared types versus used types (the details are presented in
section 4.3.6). These rules also state that the return type encountered for
the pattern term is the expected msg predefined type.

The following premise states that there must exist a most general unifier
(refer to section 4.4) for the equation system resulting from the union of the
ones mentioned above, considering as variables the type variables associated
with the introduced fresh names and the type parameters of encountered
polymorphic constructs. As expected, the solution of the most general uni-
fication algorithm is a substitution for all the considered variables such that
the system is solved, which means that each type variable has an expected
type that can be found in the value that the substitution enforces on it,
providing the intended inferred type information.

The image set of this substitution is composed of two sorts of elements,
namely any kind of valid type construction or special type variables that rep-
resent that through the context information it was not possible to determine
a ground type, appearing both in isolation or inside a type construction. Im-
plicit in this reasoning is the fact that nested constructors that have type
dependencies will have this relation present wether through the assignment
of their type parameters to the same type construct, grounded or not, or
simply through an identification equation if no type parameters are involved.

With the information retrieved in the previous step it is possible to check
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declare op : [X] (X,X)msg ;
declare other op : [ X,Y] (X,Y)msg ;

def <X, Y> x :X; y :Y in op (x , y ) [ ] . . .
|
def <X> x , y :X in other op (x , y ) [ ] . . .

Figure 4.12: Incorrect usage of acceptance patterns.

if all the occurrences of the variable are coherent with themselves but also
with the declared type through the the determining of a most general unifier
to an equation system where are present the identifications between each
inferred information for each fresh type variable and the type information
present at the declaration level. The variables considered for the solution
of the system are the type variables present at the definition level, being
a valid solution a substitution that for each type variable associates the
referred special type variables that represent the absence of a restriction to
a ground type, or in other words, it basically states the intended idea that
type variables must not be restricted to any sort of ground type.

An important remark to be made about the agent’s pattern is related to
the first annotation made in the type rule, which concerns the fact that the
variables declared in the definition must not surface as heads of any construc-
tor terms present in the agent’s pattern, which would make it impossible to
satisfy, because there can be no constructions having that identifier as their
head in any message, due to it’s declaration being present only at the time
of the introduction of the definition.

It is also essential to ensure that all type variables belong to the domain
of the substitution, meaning that the pattern matching captures all type
information, and that they all have distinct values in the image of the sub-
stitution, representing the absence of associations between type variables,
as specified in the third annotation.

The reason that the referred correspondence is strictly one to one is a
condition necessary to the assurance that no type restrictions are made: If
two definition type variables were to have a correspondence to the same
type special constant, a restriction would be established because the two
type variables would not be independent, thus, not as generic as required;
if two special constants were to have an association with a single definition
type variable, that would mean that the type variable could assume two
different types at the same time, which, of course, is impossible.

Presented in Figure 4.12 are two examples of why the referred condition
is imposed. In the first definition type variables X and Y are used to capture
a single possible type value. In the second definition, the opposite occurs:
a constructor used to capture two values of any type is being used in the
pattern with two variables of the same type, which is no more than a par-
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ticular case of the specified constructor and therefore a matching restriction
is established.

An interesting remark is that the non establishment of restrictions be-
tween pattern terms is ensured by the referred condition of strict corre-
spondence, because from different pattern terms must surface different spe-
cial type variables, thus providing the guarantee that no type variables are
shared between pattern terms.

Having guaranteed the correctness of the agent’s pattern, it is also neces-
sary to state that the test agent and the continuation agent are well formed,
being this verification made in an environment extended with the new vari-
able declarations and also with the type parameters present in the definition
agent, as is shown in the two final premises of the rule.

The usage of generic types gives the intended support for the non es-
tablishment of restrictions at the pattern matching level, therefore making
dynamic type checking unnecessary. The example presented in Figure in
(4.17) can help to ground the referred ideas involving pattern term verifica-
tion.

· · ·
replace({op(cons(x, lst ))}, {x, lst}) ⇒

({op(cons(x ’, lst ’) )}, {x’, lst ’}, {x’ ← x, lst ’ ← lst})
(4.13)

· · ·
{op : [V ]( list [V])msg, cons : [Z](Z, list [Z]) list [Z],

Y1 :: 0, Y2 :: 0, x’ : Y1, lst ’ : Y2} `
term(op(cons(x ’, lst ’) )) ⇒

({Z = Y1; list [Z ] = Y2; list [V ] = list [Z ]}, msg, {Z, V })

(4.14)

{V ← W ′} ◦ {W ← W ′} ◦ {Y2 ← list [W ]} ◦ {Z ← W} ◦ {Y1 ← W} =
mgun({Z = Y1; list [Z ] = Y2; list [V ] = list [Z ]}, {Z, V } ∪ {Y1, Y2})

(4.15)

{X ← W ′} = mgun({X = W ′; list [X ] = list [W ′
]}, {X}) (4.16)

( 4.13) ( 4.14) ( 4.15) ( 4.16) · · ·
{op : [V ]( list [V])msg, cons : [Z](Z, list [Z]) list [Z]} `

def < X > x:X; lst : list [X] in op(cons(x, lst )) [] · · · OK

(4.17)

4.3.4 Kind verification

The rules for kind verification, presented in (4.18), are used when it is neces-
sary to validate a type construction, so there will be kind judgments present,
as they were shown above.
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(Id)

Γ, T :: K ` T :: K ⇒ T

(Abbreviation)

Γ, T :: K = T ′ ` T :: K ⇒ T ′

(Predefined)
b :: K ∈ TK

Γ ` b :: K ⇒ b

(Compound type)
Γ ` T1 :: 0 ⇒ T ′1 · · ·Γ ` Tn :: 0 ⇒ T ′n Γ ` T :: 0 ⇒ T ′

Γ ` (T1, . . . , Tn)T :: 0 ⇒ (T ′1, . . . , T ′n)T ′
(T ′ ∈ AT )

(Parametric)
Γ ` U :: n ⇒ U Γ ` T1 :: 0 ⇒ Z1 · · ·Γ ` Tn :: 0 ⇒ Zn

Γ ` U [T1, . . . , Tn] :: 0 ⇒ U [Z1, . . . , Zn]

(Parametric abbreviation)
Γ ` T :: n ⇒ [X1, . . . , Xn]U Γ ` T1 :: 0 ⇒ Z1 · · ·Γ ` Tn :: 0 ⇒ Zn

Γ ` T [T1, . . . , Tn] :: 0 ⇒ U{X1←Z1} · · · {Xn←Zn}
(4.18)

The first rule, identified by Id, is used when a type, represented by T , is
being evaluated. With respect to the information present in the environment
the assertion determines that the type has kind K and that it is completely
reduced. This latter condition is not present in the type given in rule Abbre-
viation, where the information provided by the environment indicates that
the type has a reduction, identified by T ′, and kind K. The existence of
this reduced form is explained because of the possibility to declare types as
abbreviations of any type scheme, which is the case presented in (4.19).

{consType :: 1 = [X](X,list [X]) list [X]} `
consType :: 1 ⇒ [X](X,list [X]) list [X]

(4.19)

Rule Predefined illustrates the verification of a type name that is present
in the basic type forms, such as integer or list . The conclusion is similar to
the Id rule because both refer to reduced types with a determined kind.

The fourth rule, identified by Compound type, shows the verification of
a compound type. The premises state that all the types of the arguments
of the compound type must be well formed and that all must be a type,
meaning that no type constructors are present. If the premises are valid, the
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reduction to the compound type is established through the composition of
the reduced forms of all the types of the arguments. The judgment concludes
this reduced form and also that the compound type has kind 0, because it
is also a type, not a type constructor.

To validate a parametric type scheme come the two final rules, which
are Parametric and Parametric abbreviation. The first one concerns a type
construction involving a reduced type form, so the necessary premises are
that the type must have a kind correspondent to the number of arguments
being applied and that the arguments are all well formed, being the type
evaluated for the parametric type scheme very similar to it’s initial form but
considering the reduced forms found for it’s arguments, as can be noticed in
(4.20).

(Predefined)
∅ ` list :: 1 ⇒ list

(Predefined)
∅ ` integer :: 0 ⇒ integer

∅ ` list [integer] :: 0 ⇒ list [integer]

(4.20)

The last rule has a similar form to it’s predecessor but differs in one
important detail: the type constructor involved is an abbreviation. The
premises for the rule are essentially the same, it is in the conclusion that the
difference is handled. Because the type has a reduced form it is necessary
to apply a substitution of the parameters present in the reduction type
scheme to the intended types, determined by the reduction of the applied
type arguments, hence obtaining the desired construction. The conclusion
states not only the reduced form of the parametric type given, but also, that
it corresponds to a type, not a type constructor. An example is shown in
(4.21).

(Abbreviation)
{consType :: 1 = [X](X,list [X]) list [X]} `

consType :: 1 ⇒ [X](X,list [X]) list [X]

(Predefined)
{· · · } ` integer :: 0 ⇒ integer

{consType :: 1 = [X](X,list [X]) list [X]} `
consType[integer] :: 0 ⇒ (integer,list [integer])list [integer]

(4.21)

4.3.5 Term verification

In this section the evaluation is being made on constructions that can be
either messages or any other that can be found as arguments in a message
form. The notation encountered for the judgment is the term judgment.
The rules for this kind of verification are illustrated in (4.22).
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(Value literal)

Γ ` v : T
(v is a value literal and T is the associated type)

(Identifier)

Γ, id : T ` id : T

(Constructor)
Γ ` id : [X1, . . . , Xk](T1, . . . , Tn)T Γ ` u1 : γ(T1) · · ·Γ ` un : γ(Tn)

Γ ` id(u1, . . . , un) : γ(T )
(X1, . . . , Xk are fresh names)
(∃γ.dom(γ) = {X1, . . . , Xk})

(4.22)
The rule identified by Value literal is quite simple and only states that

a determined value, belonging to the predefined values of the language, has
a given type, like true would have type boolean. The Identifier rule is also
very simple and states that a determined identifier has a type determined
by the association present in the environment.

The third rule, namely Constructor, handles the verification of a com-
pound term, and it states that it’s validity is ensured if the name used as
the head of the term has a corresponding type respectively to it’s usage
and that all the used arguments have also corresponding types to the ones
present in the associated type, attending to a valid substitution. The term
resolves to the type identified as it’s return type, once again regarding the
valid substitution, which refers to a valid instantiation of the type param-
eters declared for the compound type. The example shown in (4.23) refers
to an evaluation, using this rule.

(Identifier)
{cons : [X](X,list [X]) list [X]}
` cons : [X](X,list [X]) list [X]

(Value literal)
{· · · } ` 1 : integer

(Value literal)
{· · · } ` nil : list [integer]

{cons : [X](X,list [X]) list [X]} ` cons(1,nil) : list [integer]

(4.23)

4.3.6 Pattern term verification

The rules present in this section, illustrated in (4.24), refer to constructor
verification when they occur in an agents acceptance pattern, so the pattern
term judgment is present.
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(Pattern constructor)
Γ ` id : [Z1, . . . , Zk](T1, . . . , Tn)T

Γ ` term(u1) ⇒ (S1, U1, V1) · · ·Γ ` term(un) ⇒ (Sn, Un, Vn)
Γ ` term(id(u1, . . . , un)) ⇒

(S1 ∪ . . . ∪ Sn ∪ {T1 = U1; . . . ; Tn = Un}, T,
{Z1, . . . , Zk} ∪ V1 ∪ · · · ∪ Vn)

(Z1, . . . , Zn are fresh names)

(Pattern identifier)

Γ, id : [Z1, . . . , Zn]T ` term(id) ⇒ (∅, T, {Z})

(Pattern value literal)

Γ ` term(v) ⇒ (∅, T, {Z})
(v is a value literal and [Z1, . . . , Zn]T is the associated type)

(4.24)

Rule Pattern identifier simply returns the type associated to the identi-
fier and rule Pattern value literal returns the corresponding type associated
with the given value literal, being also established, for both rules, empty
sets representing the non existing type identification equations, and the sets
of type parameters that were encountered.

Rule Pattern constructor looks at the declared type for the term head
identifier and forms the equations corresponding to used versus declared
types, returning an accumulated equation system, because inner terms might
have formed equation system themselves, and the term’s return type, as well
as the set of type parameters encountered in the arguments along with the
ones present in the constructor being evaluated, as can be seen in (4.25).

(Identifier)
{cons : [X](X,list [X]) list [X]}
` cons : [X](X,list [X]) list [X]

(Pattern value literal)
{· · · } ` term(1) ⇒

(∅, integer, ∅)

(Pattern value literal)
{· · · } ` term(nil) ⇒
(∅, [Z] list [Z], {Z})

{cons : [X](X,list [X]) list [X]} ` term(cons(1,nil)) ⇒
(∅ ∪ ∅ ∪ {X = integer; list [X ] = list [Z ]}, list [X], {X,Z})

(4.25)

4.4 Most general unification

The following set of rules give a framework for a straightforward specification
of a normalized most general unification algorithm.
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The idea is basically to provide an equation system resolution based
on the (type) variables and on the deconstructing of elaborate type forms.
Doing so step by step in an equation system will lead to the establishment
of the intended restrictions over the system variables, contained in the set
given as the second argument for the mgu.

(Empty)

({}, S) ⇒ {}

(Variable link)
({E1{X ← W}{X ← W}; . . . ; En{X ← W}{X ← W}}, S ∪ {W}) ⇒ σ

({X = Y ; E1; . . . ;En}, S) ⇒ σ ◦ {X ← W} ◦ {Y ← W}
(X, Y ∈ S)
(W is a fresh name)

(Variable I)
({E1{X ← T}; . . . ; En{X ← T}}, S) ⇒ σ

({X = T ; E1; . . . ;En}, S) ⇒ σ ◦ {X ← T}
(X ∈ S)

(Variable II)
({E1{X ← T}; . . . ; En{X ← T}}, S) ⇒ σ

({T = X; E1; . . . ;En}, S) ⇒ σ ◦ {X ← T}
(X ∈ S)

(Parametric type resolution)
({X1 = Y1; . . . ; Xn = Yn;E1; . . . ; En}, S) ⇒ σ

({id[X1, . . . , Xn] = id[Y1, . . . , Yn]; E1; . . . ; En}, S) ⇒ σ

(Constructor type resolution)
({U1 = T1; . . . ;Un = Tn; U = T ;E1; . . . ; En}, S) ⇒ σ

({(U1, . . . , Un)U = (T1, . . . , Tn)T ; E1; . . . ; En}, S) ⇒ σ

An example of the usage of this mgu algorithm specification is presented
in (4.26), complementing the pattern verification presented in (4.17).

({}, {Z, V, Y1, Y2,W,W ′}) ⇒ {}
({V = W}, {Z, V, Y1, Y2,W}) ⇒ {V ← W ′} ◦ {W ← W ′}

({ list [V ] = list [W ]}, {Z, V, Y1, Y2,W}) ⇒ {V ← W ′} ◦ {W ← W ′}
({ list [W ] = Y2; list [V ] = list [W ]}, {Z, V, Y1, Y2,W}) ⇒

{V ← W ′} ◦ {W ← W ′} ◦ {Y2 ← list [W ]}
({Z = Y1; list [Z ] = Y2; list [V ] = list [Z ]}, {Z, V, Y1, Y2}) ⇒

{V ← W ′} ◦ {W ← W ′} ◦ {Y2 ← list [W ]} ◦ {Z ← W} ◦ {Y1 ← W}
(4.26)

42



4.5 Variable replacement

This section presents a possible implementation of the replace algorithm,
which simply constructs, given a set of terms and a set of variable names,
a new set of terms where each occurrence of a variable, contained in the
argument set, is replaced by a fresh variable name. Along with this new set
of terms the other two results of the algorithm are the set of new variables
and a substitution that associates each new name with the name it replaced.

(Variable in unitary set)

replace({vj}, {v1, . . . , vk}) ⇒ ({v′1}, {v′1}, {v′1 ← vj}
(j ∈ 1, . . . , k and v′1 is a fresh name)

(Identifier in unitary set)

replace({id}, {v1, . . . , vk}) ⇒ (∅, ∅, γ)
({id} ∩ {v1, . . . , vk} = ∅ and γ is the identity substitution)

(Constructor in unitary set)
replace({a1, . . . , an}, {v1, . . . , vk})
⇒ ({a′1, . . . , a′n}, {v′1, . . . , v′m}, γ)

replace({id(a1, . . . , an)}, {v1, . . . , vk})
⇒ ({id(a′1, . . . , a

′
n)}, {v′1, . . . , v′m}, γ)

(Variable in n-ary set)
replace({t2, . . . , tw}, {v1, . . . , vk})
⇒ ({t′2, . . . , t′w}, {v′1, . . . , v′m}, γ)

replace({vj , t2, . . . , tw}, {v1, . . . , vk})
⇒ ({v′m+1, t

′
2, . . . , t

′
w}, {v′1, . . . , v′m, v′m+1}, γ + {v′m+1 ← vj})

(j ∈ 1, . . . , k and v′m+1 is a fresh name)

(Identifier in n-ary set)
replace({t2, . . . , tw}, {v1, . . . , vk})
⇒ ({t′2, . . . , t′w}, {v′1, . . . , v′m}, γ)

replace({id, t2, . . . , tw}, {v1, . . . , vk})
⇒ ({id, t′2, . . . , t

′
w}, {v′1, . . . , v′m}, γ)

({id} ∩ {v1, . . . , vk} = ∅)

(Constructor in n-ary set)
replace({a1, . . . , an, t2, . . . , tw}, {v1, . . . , vk})
⇒ ({a′1, . . . , a′n, t′2, . . . , t

′
w}, {v′1, . . . , v′m}, γ)

replace({id(a1, . . . , an), t2, . . . , tw}, {v1, . . . , vk})
⇒ ({id(a′1, . . . , a

′
n), t′2, . . . , t

′
w}, {v′1, . . . , v′m}, γ)
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4.6 Implementation

The implementation of the type checker was made in a straightforward man-
ner in respect to the specifications shown in this chapter. The language used
in the development was Java [Jav] and, because Java elegantly supports sub-
typing, a Visitor scheme was used, consisting of no more than a case analysis
on the class of the element being evaluated and therefore on the type being
evaluated. This scheme, therefore, allows for an elegant treatment of all the
abstract syntactic tree nodes, which are created by the parser. The eval-
uation starts when the whole program abstract syntactic tree is “visited”.
Appendix D shows the Visitor interface.

An essential element to the type check analysis is the environment where
the declarations of both types and values are present, being the predefined
types and values, such as integer and nil, introduced in the environment at
creation time. To implement the environment hashtables were used, where
the associations between names and their types or kinds and abbreviations
are kept, depending if the name refers to a value or a kind, respectively.

To represent the scope of evaluation the environment holds a list of
hashtables, being the current scope represented in the current cell of this
list and the previous accessible by references. A scope is introduced when
either a definition, a command or a restriction is being evaluated, which
makes sense if one is to look to the scope of the declared variables in these
constructions. Fresh scopes are also introduced when the evaluation is being
made on a type or value declaration, through the language’s top level dec-
laration constructs, when there are type parameters involved, because it is
very simple to introduce and remove these associations in the environment
by introducing and then removing a fresh scope.

The considerations made in regard to the introduction of fresh scopes
makes name hiding possible, being the only necessary condition the intro-
duction of the same name in a different language construction. However,
because the environment was developed in a sense to make it the most
generic possible, the environment would support name hiding in the same
level because it holds linked lists as the values of the associations, being the
current value at the head and the shadowed values in the rest of the list,
ordered correspondingly to their hiding order.

As can be noticed, no wheel was reinvented in the development of the
type checker when it comes to the data structures involved, but considering
the simplicity of the POLY constructs, regarding scope and other considera-
tions that refer to the type checking, it makes sense that the data structures
are also simple. There are, however, complex details that the type checker
must resolve, as is for instance the message and the pattern type checking.

Because POLY offers polymorphic constructors it is necessary to evaluate
messages that use these constructors in such a way that assures that their
usage is being made coherently in respect to their declaration. In order to
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declare op : [X] (X)msg ;
declare cons : [X] (X, l i s t [X] ) l i s t [X ] ;

op ( cons ( 1 , cons ( 2 , ni l ) ) ) // Correct
|
op ( cons ( 1 , cons ( true , ni l ) ) ) // Inco r r e c t

Figure 4.13: Polymorphic constructor usage.

achieve this, recalling the Constructor rule, a correct substitution must be
established for the type parameters involved, being the considered resolution
of this problem, in the development of the POLY static checker, the usage of
the mgu algorithm. Considering the equations that identify the types of the
arguments used against the types present in the declaration of the construc-
tor, it is possible to determine a valid substitution of the constructor’s type
parameters, and also, at top level, to determine if all type parameters have
instantiations, allowing the type checker to conclude if a message construct
is type grounded.

In the example shown in Figure 4.13 we can see a correct and an incorrect
usage of a message construction. In the first case a substitution would be
established for the type parameters, restricting them to integers, while in the
second case no correct substitution is possible, because the type parameters
can not be restricted to two different values. The mgu application to the
equation system referred, will give the type checker the information needed
to accept or reject message constructions in a very similar way as one of the
steps required for pattern term evaluation.

So the mgu algorithm is essential to the type checking procedure, both
in pattern terms and message constructions. The implementation of this
algorithm is straightforward, as referred, from the specification provided
previously, and basically consists in a case analysis on the type form in-
volved in order to determine the correct rule to apply. Other than that, the
algorithm needs only to keep track of the restrictions to complete it’s task.

When a type error occurs, for instance due to a impossible resolution of
an equation system by the mgu algorithm, an exception is launched, holding
some error relative information. To help the POLY programmer optimize he’s
programming task, these exceptions do not cause the type checking proce-
dure to fail immediately, being the evaluation point passed over to the next
process, meaning the process that is in parallel composition with the pro-
cess that caused the error to occur, allowing multiple errors to appear in just
one static checker execution. This is also true in the top level declarations,
where the next declarations will be evaluated (and not the process) if one
of the declarations launches a type error exception. An example of a type
error information is shown in Figure 4.14.

To finish off this comment on the implementation of the type checker
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***

Found Type Error while evaluating agents pattern present in line 26, column 29

* Variable declarations and usage makes pattern typing incoherent *

* Context *

def <X> x, y:X; l:list[X] in op(x, l, y, l) [] inaction

|

***

***

Found Type Error while evaluating ’opInteger(true)’ in line 30, column 4

* Term construction is typing incoherent *

* Context *

|

def opInteger(true) [] inaction

|

***

Figure 4.14: Type error information.

a small, but nevertheless important, remark must be made which is the
usage, in the type checking procedure, of a unique fresh names generator,
used for instance in the evaluation of constructors in order to consider their
type parameters as unique identifiers, avoiding messy conclusions because
of name interference. This name generator uses a special character that can
not occur in any type scheme in order to assure that the created names are
truly unique.
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Chapter 5

Semantics

From an informal point of view the semantics of the language has been
presented, starting in the example shown in section 2.1 and ending in the
analysis of the type system presented in chapter 4. In order to provide
the proper formalism of the language operational semantics, this chapter
presents the reduction rules that illustrate system evolution.

5.1 Reduction rules

The most important reduction step in the POLY language is the activation
of a definition (or a command, regarding their similarity). Other reduc-
tion steps involve the propagation of reductions through the restriction and
parallel composition constructions. The following set of rules, extracted
from [Cai99], illustrate the reductions present in the POLY language.

(Restriction reduction)
Σ, x : T ` P → Σ, x : T ` Q

Σ ` new x: T in P → Σ ` new x: T in Q

(Composition reduction)
Σ ` P → Σ ` Q

Σ ` P | R → Σ ` Q | R

(Definition reduction)
σ : X → T, x → T σ(pi) = mi Σ ` σ(Q) ∗→ √

Σ ` mi∈1...n | def <X>k∈1...lx : T j∈1...d in ps∈1...n [Q ] R →
Σ ` σ(R) | def <X>k∈1...lx : T j∈1...d in ps∈1...n [Q ] R

The first rule, identified by Restriction reduction, simply shows that if the
continuation of a restriction has a possible reduction then the restriction will
have itself a reduction, where the continuation is replaced by it’s reduction.
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Rule Composition reduction illustrates that if there is a reduction of one of
the agents then the composition has the expected reduced form, consisting
in the composition of the reduction and the other agent.

Rule Definition reduction shows that this reduction, as previously ex-
plained, is established when there are messages and a definition in the en-
vironment, such as the messages match the definition’s acceptance pattern
through a valid substitution in respect to the definition’s value and type
variables, and also if the test agent successfully reduces.

The successful reduction of the test agent involves launching it in an
encapsulated environment and finding that, through a series of reductions,
this environment is led to contain only persistent agents, namely definitions,
and/or the inactive agent.

Both in the pattern matching procedure and in the test reduction an
instantiation of variables may occur. In the first case the values used, are
the ones that are present in the messages that matched the pattern in cor-
respondence with the variable placement in the pattern terms. Also due to
the matching procedure is the complete instantiation of type variables, if
type variables are used. In the second case the values that make the test
successful are the ones used to instantiate the respective variables, if any.
Because of this, one can use the test agent in a declarative style, somewhat
using unification as means of capturing values.

The test agent, along with it’s declarative power, represents a guard for
the activation of the definition, meaning that it holds a determined condition
that must be verified. From a semantical viewpoint, this is the key feature
of this definition (and command) component. The acceptance pattern is
also capable of holding a condition, along with it’s usage in providing input
for the definition, through case analysis specified in the pattern constructors
- but only case analysis base on value and not on type, once again, unless
primitive values are used.

The activation of the definition implies the launching of the continuation
agent in the environment, obviously affected by the instantiation of the
variables, which are replaced with their respective values.

A final remark must be made, which is that both the command and the
definition support everything stated up to this point, being the difference
between these two POLY constructions the fact that the definition remains
available after activation whilst the command does not. So the only differ-
ence that would exist in the rule would reside in the concluded reduced form,
which, for the command rule, would only contain the continuation agent -
regarding the referred substitution.
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5.2 Initial environment

A POLY program is composed by a set of top level declarations, either of type
or value nature, and a process, that can be considered as the body of the
program. The reduction of the process is made through the steps explained
in the previous section, being the environment considered the one created
from the top level declarations, providing the rules shown in section 4.3.2
the basis of this creation.
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Chapter 6

Subject reduction

This chapter concerns the usual result that one tries to achieve when develop-
ing a type system that basically refers to the ability of programs respecting
type discipline while dynamically evolving. Since it is very technical one
can always believe that the proof is well established and simply get the idea
that if a determined process is well typed and this process evolves to another
one, then this last one will be well typed. This gives us an interesting result
because it allows us to say that no type errors will occur at runtime, partic-
ularly errors regarding the usage of type variables to confer polymorphism
to the agent’s acceptance pattern.

The first sections of the chapter involve simpler theorems that are proved
separately just to facilitate reading, being established results used only in
following sections. The last section contains the subject reduction theorem.

6.1 Value substitution in terms

Lemma 6.1.1 If the judgements Γ, y : T ` t : V and Γ ` m : T are
derivable, so is Γ ` t{y ← m} : V .

Proof By induction on the structure of the typing derivation.

(Case of Constructor)
We have

Γ, y : T ` f(u1, . . . , un) : σ(U) (6.1)

and
Γ ` m : T (6.2)

(6.1) is concluded from:

Γ, y : T ` ui : σ(Ti) (for i = 1, . . . , n) (6.3)

and
Γ, y : T ` f : [X](T1, . . . , Tn)U (6.4)
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By induction hypothesis on (6.3), we conclude

Γ ` ui{y ← m} : σ(Ti) (for i = 1, . . . , n) (6.5)

We must then consider two possible cases: either y = f or y 6= f .

(Case of y = f)
We must have

T = [X](T1, . . . , Tn)U

Also, (6.4) is of the form

Γ, f : [X](T1, . . . , Tn)U ` f : [X](T1, . . . , Tn)U

and (6.2) is of the form

Γ ` m : [X](T1, . . . , Tn)U (6.6)

(Case of y 6= f)
In this case, from (6.4) we immediately get

Γ ` f : [X](T1, . . . , Tn)U (6.7)

by weakening on y.

Either from (6.7) and (6.5), or (6.6) and (6.5), depending on whether y 6=
f or y = f , respectively, by an application of (Constructor), comes the
intended conclusion

Γ ` f(u1, . . . , un){y ← m} : σ(U) (6.8)

(f(u1, . . . , un){y ← m} = f{y ← m}(u1{y ← m}, . . . , un{y ← m}))
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(Case of Identifier)
We have

Γ, y : T ` id : U (6.9)

and
Γ ` m : T (6.10)

We must consider two possible cases: either y = id or y 6= id.

(Case of y = id)
We must have

T = U

Also, (6.9) is of the form

Γ, id : U ` id : U

and (6.10) is of the form
Γ ` m : U (6.11)

(Case of y 6= id)
In this case, from (6.9) we immediately get

Γ ` id : U (6.12)

by weakening on y.

Either from (6.11) or from (6.12), depending on whether y = id or y 6= id,
respectively, comes the intended conclusion

Γ ` id{y ← m} : U (6.13)

(Case of Value literal)
We have

Γ, y : T ` v : V (6.14)

and
Γ ` m : T (6.15)

Regarding that v 6= y, the intended conclusion is obtained from (6.14) by
weakening on y

Γ ` v{y ← m} : V (6.16)
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6.2 Value substitution in pattern terms

Lemma 6.2.1 If the judgements Γ, w : U ` term(t) ⇒ (S, T, Z) and Γ `
m : U are derivable, so is Γ ` term(t{w ← m}) ⇒ (S, T, Z).

Proof By induction on the structure of the typing derivation.

(Case of Pattern identifier)
We have

Γ, w : U ` term(id) ⇒ (∅, T, {Z}) (6.17)

and
Γ ` m : U (6.18)

We must consider two possible cases: either id = w or id 6= w.

(Case of id = w)
We must have

[Z]T = U

Also, (6.17) is of the form

Γ, id : [Z]T ` term(id) ⇒ (∅, T, {Z})
and (6.18) is of the form

Γ ` m : [Z]T

so m : [Z]T ∈ Γ which, by application of the (Pattern identifier) gives us

Γ ` term(m) ⇒ (∅, T, {Z}) (6.19)

(Case of id 6= w)
In this case, from (6.17) we immediately get

Γ ` term(id) ⇒ (∅, T, {Z}) (6.20)

by weakening on w.

Either from (6.19) or (6.20), depending on whether id = w or id 6= w,
respectively, comes the intended conclusion

Γ ` term(id{w ← m}) ⇒ (∅, T, {Z}) (6.21)

(Case of Pattern value literal)
We have

Γ, w : U ` term(v) ⇒ (∅, T, {Z}) (6.22)

and
Γ ` m : U (6.23)

Regarding that v 6= w, the intended conclusion is obtained from (6.22) by
weakening on y

Γ ` term(v{w ← m}) ⇒ (∅, T, {Z}) (6.24)
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(Case of Pattern constructor)
We have

Γ, w : U ` term(id(u1, . . . , un))
⇒ (S1 ∪ . . . ∪ Sn ∪ {T1 = U1; . . . ; Tn = Un}, T, {Z} ∪ V1 ∪ . . . ∪ Vn)

(6.25)
and

Γ ` m : U (6.26)

(6.25) is concluded from

Γ, w : U ` term(ui) ⇒ (Si, Ui, Vi) (for i = 1, . . . , n) (6.27)

and
Γ, w : U ` id : [Z](T1, . . . , Tn)T (6.28)

by induction hypothesis on (6.27), we conclude

Γ ` term(ui{w ← m}) ⇒ (Si, Ui, Vi) (for i = 1, . . . , n) (6.29)

We must then consider two possible cases: either id = w or id 6= w.

(Case of id = w)
We must have

U = [Z](T1, . . . , Tn)T

Also, (6.28) is of the form

Γ, id : [Z](T1, . . . , Tn)T ` id : [Z](T1, . . . , Tn)T

And (6.26) is of the form

Γ ` m : [Z](T1, . . . , Tn)T (6.30)

(Case of id 6= w)
In this case, from (6.28) we immediately get

Γ ` id : [Z](T1, . . . , Tn)T (6.31)

by weakening on w.

Either from (6.30) and (6.29), or (6.31) and (6.29), depending on whether
id = w or id 6= w, respectively, by an application of (Pattern constructor),
comes the intended conclusion

Γ ` term(id(u1, . . . , un){w ← m})
⇒ (S1 ∪ . . . ∪ Sn ∪ {T1 = U1; . . . ; Tn = Un}, T, {Z} ∪ V1 ∪ . . . ∪ Vn)

(6.32)
(id(u1, . . . , un){w ← m} ≡ id{w ← m}(u1{w ← m}, . . . , un{w ← m}))

54



6.3 Value substitution in processes

Lemma 6.3.1 If the judgements Γ, w : U ` P OK and Γ ` m : U are
derivable, so is Γ ` P{w ← m} OK.

Proof By induction on the structure of the typing derivation.

(Case of Definition)
We have

Γ, w : U ` def < X > v1 : T1; . . . ; vk : Tk in M1& . . .&Mt [P ]Q OK (6.33)

and
Γ ` m : U (6.34)

(6.33) is concluded from

replace({M1, . . . , Mt}, {v1, . . . , vk}) ⇒ ({M ′
1, . . . , M

′
t}, {v′1, . . . , v′m}, γ)

(6.35)
and

Γ, w : U, Y :: 0, v′1 : Y1, . . . , v
′
m : Ym ` term(M ′

i) ⇒ (Si, msg, Zi)
(for i = 1, . . . , t)

(6.36)

and
σ = mgun(S1 ∪ . . . ∪ St, {Y } ∪ Z1 ∪ . . . ∪ Zt) (6.37)

and
ϕ = mgun(

⋃

q:Yq∈dom(σ)∧∃l.γ(v′q)=vl

{Tl = σ(Yq)}, {X}) (6.38)

and
Γ, w : U,X :: 0, v1 : T1, . . . , vk : Tk ` P OK (6.39)

and
Γ, w : U,X :: 0, v1 : T1, . . . , vk : Tk ` Q OK (6.40)

From (6.35), knowing that for all i ∈ 1, . . . , k vk 6= w, we conclude

replace({M1{w ← m}, . . . ,Mt{w ← m}}, {v1, . . . , vk}) ⇒
({M ′

1{w ← m}, . . . ,M ′
t{w ← m}}, {v′1, . . . , v′m}, γ)

(6.41)

Also, we know that

Γ, w : U, Y :: 0, v′1 : Y1, . . . , v
′
m : Ym ≡ Γ, Y :: 0, v′1 : Y1, . . . , v

′
m : Ym, w : U

(6.42)
and that

Γ, w : U,X :: 0, v1 : T1, . . . , vk : Tk ≡ Γ, X :: 0, v1 : T1, . . . , vk : Tk, w : U
(6.43)
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By Lemma 6.2.1, having (6.36) and (6.34) and considering (6.42), we con-
clude

Γ, Y :: 0, v′1 : Y1, . . . , v
′
m : Ym ` term(M ′

i{w ← m}) ⇒ (Si, msg, Zi)
(for i = 1, . . . , t)

(6.44)
By induction hypothesis on (6.39), considering (6.43), we conclude

Γ,X :: 0, v1 : T1, . . . , vk : Tk ` P{w ← m} OK (6.45)

By induction hypothesis on (6.40), considering (6.43), we conclude

Γ,X :: 0, v1 : T1, . . . , vk : Tk ` Q{w ← m} OK (6.46)

From (6.41), (6.44), (6.37), (6.38), (6.45) and (6.46), by an application of
(Definition), comes the intended conclusion

Γ ` (def < X > v : T in M1& . . . &Mt [P ]Q){w ← m}} OK (6.47)

((def < X > v : T in M1& . . . &Mt [P ]Q){w ← m}
≡

def < X > v : T in M1{w ← m}& . . .&Mt{w ← m}
[P{w ← m} ]Q{w ← m})

(Case of Message)
We have

Γ, w : U ` M OK (6.48)

and
Γ ` m : U (6.49)

(6.48) is concluded from

Γ, w : U ` M : msg (6.50)

By Lemma 6.1.1, having (6.50) and (6.49), we conclude

Γ ` M{w ← m} : msg (6.51)

From (6.51), by an application of (Message), comes the intended conclusion

Γ ` M{w ← m} OK (6.52)

(Case of Restriction)
We have

Γ, w : U ` new v1 : T1; . . . ; vn : Tn in P OK (6.53)
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and
Γ ` m : U (6.54)

(6.53) is concluded from

Γ, w : U, v1 : T1, . . . , vn : Tn ` P OK (6.55)

Also, we know that

Γ, w : U, v1 : T1, . . . , vn : Tn ≡ Γ, v1 : T1, . . . , vn : Tn, w : U (6.56)

By induction hypothesis on (6.55), considering (6.56), we conclude

Γ, v1 : T1, . . . , vn : Tn ` P{w ← m} OK (6.57)

From (6.57), by an application of (Restriction), comes the intended conclu-
sion

Γ ` (new v1 : T1; . . . ; vn : Tn in P ){w ← m} OK (6.58)

((new v1 : T1; . . . ; vn : Tn in P ){w ← m}
≡

new v1 : T1; . . . ; vn : Tn in P{w ← m})
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(Case of Parallel composition)
We have

Γ, w : U ` P | Q OK (6.59)

and
Γ ` m : U (6.60)

(6.59) is concluded from

Γ, w : U ` P OK (6.61)

and
Γ, w : U ` Q OK (6.62)

By induction hypothesis on (6.61), we conclude

Γ ` P{w ← m} OK (6.63)

By induction hypothesis on (6.62), we conclude

Γ ` Q{w ← m} OK (6.64)

From (6.63) and (6.64), by an application of (Parallel composition), comes
the intended conclusion

Γ ` (P | Q){w ← m} OK (6.65)

((P | Q){w ← m} ≡ P{w ← m} | Q{w ← m})

(Case of Inaction)
We have

Γ, w : U ` inaction OK (6.66)

and
Γ ` m : U (6.67)

Since inaction{w ← m} ≡ inaction, the conclusion is obtained by an appli-
cation of (Inaction)

Γ ` inaction{w ← m} OK (6.68)
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6.4 Type substitution in terms

Lemma 6.4.1 If γ and σ are substitutions over Y , being γ(Yi)
.= σ(Yi){X ←

U}, having {Y } ∩ (vars(U)∪ {X}) = ∅, then {X ← U} ◦ σ(T ) = γ(T{X ←
U})
Proof The equivalence is straightforward, regarding the {Y } ∩ (vars(U) ∪
{X}) = ∅ precondition.

{X ← U} ◦ σ(T ) = {X ← U} ◦ σ(T{X ← U}) = γ(T{X ← U}) (6.69)

Lemma 6.4.2 If the judgements Γ, X :: 0, Γ′ ` t : V and Γ ` U :: 0 are
derivable, so is Γ,Γ′{X ← U} ` t : V {X ← U}.
Proof By induction on the structure of the typing derivation.

(Case of Constructor)
We have

Γ, X :: 0, Γ′ ` f(a1, . . . , an) : σ(T ) (6.70)

and
Γ ` U :: 0 (6.71)

(6.70) is concluded from:

Γ, X :: 0,Γ′ ` ai : σ(Ti) (for i = 1, . . . , n) (6.72)

and
Γ, X :: 0, Γ′ ` f : [Y ](T1, . . . , Tn)T (6.73)

By induction hypothesis on (6.72), we conclude

Γ, Γ′{X ← U} ` ai : σ(Ti){X ← U} (for i = 1, . . . , n) (6.74)

Considering γ(Yi)
.= {X ← U} ◦ σ(Yi), regarding that σ(Ti){X ← U} ≡

{X ← U} ◦ σ(Ti) and that {Y } ∩ (vars(U) ∪ {X}) = ∅, by Lemma 6.4.1,
from (6.74) we get

Γ, Γ′{X ← U} ` ai : γ(Ti{X ← U}) (for i = 1, . . . , n) (6.75)

From (6.73), considering (6.71) and that (vars(U) ∩ {Y } = ∅), we conclude

Γ, Γ′{X ← U} ` f : [Y ](T1{X ← U}, . . . , Tn{X ← U})T{X ← U} (6.76)

From (6.76) and (6.75), by an application of (Constructor), we obtain

Γ, Γ′{X ← U} ` f(a1, . . . , an) : γ(T{X ← U}) (6.77)

From (6.77), once again by Lemma 6.4.1, comes the intended conclusion

Γ, Γ′{X ← U} ` f(a1, . . . , an) : σ(T ){X ← U} (6.78)

(σ(T ){X ← U} ≡ {X ← U} ◦ σ(T ))
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(Case of Identifier)
We have

Γ, X :: 0, Γ′ ` id : T (6.79)

and
Γ ` U :: 0 (6.80)

The intended conclusion is straightforward from (6.79) and (6.80)

Γ, Γ′{X ← U} ` id : T{X ← U} (6.81)

(Case of Value literal)
We have

Γ, X :: 0, Γ′ ` v : V (6.82)

and
Γ ` U :: 0 (6.83)

The intended conclusion, due to V {X ← U} = V , is straightforward from
(6.82)

Γ,Γ′{X ← U} ` v : V {X ← U} (6.84)
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6.5 Type substitution in pattern terms

Lemma 6.5.1 If the judgements Γ, X :: 0, Γ′ ` term(t) ⇒ (S, T, Z) and
Γ ` U :: 0 are derivable, so is Γ,Γ′{X ← U} ` term(t) ⇒ (S, T, Z){X ←
U}.

Proof By induction on the structure of the typing derivation.

(Case of Pattern constructor)
We have

Γ, X :: 0, Γ′ ` term(id(u1, . . . , un))
⇒ (S1 ∪ . . . ∪ Sn ∪ {T1 = U1; . . . ; Tn = Un}, T, {Z} ∪ V1 ∪ . . . ∪ Vn)

(6.85)
and

Γ ` U :: 0 (6.86)

(6.85) is concluded from

Γ, X :: 0, Γ′ ` term(ui) ⇒ (Si, Ui, Vi) (for i = 1, . . . , n) (6.87)

and
Γ, X :: 0, Γ′ ` id : [Z](T1, . . . , Tn)T (6.88)

By induction hypothesis on (6.87), we conclude

Γ,Γ′{X ← U} ` term(ui) ⇒ (Si, Ui, Vi){X ← U} (for i = 1, . . . , n) (6.89)

((Si, Ui, Vi){X ← U} ≡ (Si{X ← U}, Ui{X ← U}, Vi)

From (6.88), regarding (6.86) and {Z} ∩ {X} = ∅, we obtain

Γ,Γ′{X ← U} ` id : [Z](T1{X ← U}, . . . , Tn{X ← U})T{X ← U} (6.90)

From (6.90) and (6.89), by an application of (Pattern constructor), comes
the intended conclusion

Γ, Γ′{X ← U} ` term(id(u1, . . . , un))
⇒ (S1 ∪ . . . ∪ Sn ∪ {T1 = U1; . . . ; Tn = Un}, T,

{Z} ∪ V1 ∪ . . . ∪ Vn){X ← U}
(6.91)

((S1 ∪ . . . ∪ Sn ∪ {T1 = U1; . . . ; Tn = Un}, T,

{Z} ∪ V1 ∪ . . . ∪ Vn){X ← U}
≡

(S1{X ← U} ∪ . . . ∪ Sn{X ← U} ∪ {T1{X ← U} = U1{X ← U}; . . . ;
Tn{X ← U} = Un{X ← U}}, T{X ← U}, {Z} ∪ V1 ∪ . . . ∪ Vn))
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(Case of Pattern identifier)
We have

Γ, X :: 0,Γ′ ` term(id) ⇒ (∅, T, {Z}) (6.92)

and
Γ ` U :: 0 (6.93)

From (6.92) and (6.93) comes the intended conclusion

Γ, Γ′{X ← U} ` term(id) ⇒ (∅, T, {Z}){X ← U} (6.94)

((∅, T, {Z}){X ← U} ≡ (∅, T{X ← U}, {Z})

(Case of Pattern value literal)
We have

Γ, X :: 0, Γ′ ` term(v) ⇒ (∅, T, {Z}) (6.95)

and
Γ ` U :: 0 (6.96)

Regarding that T{X ← U} = T , from (6.95) comes the intended conclusion

Γ, Γ′{X ← U} ` term(v) ⇒ (∅, T, {Z}){X ← U} (6.97)
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6.6 Type substitution in processes

Lemma 6.6.1 If σ and γ are two substitutions such that dom(σ)∩Im(γ) =
∅ and dom(σ) ∩ dom(γ) = ∅, then σ ◦ γ ≡ σ + γ.

Proof If σ does not act upon any element introduced by γ and the domains
are independent then the substitutions are also independent, and can be
written as so.

Definition 6.6.2 A substitution γ is the most general unification (mgu) of
an equation system S if γ is an unifier, meaning that ∀(T = T ′) ∈ S γ(T ) =
γ(T ′), and if it is most general, meaning that ∀γ′ unifier of S ∃σ : γ′ = σ◦γ.

Lemma 6.6.3 If γ is mgu of S, having {Y } as domain, for all X and U
such that {X} ∩ {Y } = ∅ and vars(U) = ∅, then γ′ is mgu of S{X ← U},
where γ′ = {X ← U} ◦ γ.

Proof Regarding the definition of mgu it is necessary to prove that γ′ is
unifier and that it is most general.
(Unifier)
Because γ is mgu of S we have that

∀(T = T ′) ∈ S γ(T ) = γ(T ′) (6.98)

From (6.98) we can write

∀(T = T ′) ∈ S {X ← U} ◦ γ(T ) = {X ← U} ◦ γ(T ′) (6.99)

Because {X} ∩ {Y } = ∅ and vars(U) ∩ {Y } = ∅, recalling that dom(γ) =
{Y }, from (6.99) we conclude

∀(T = T ′) ∈ S {X ← U} ◦ γ(T{X ← U}) = {X ← U} ◦ γ(T ′{X ← U})
(6.100)

Recalling that γ′ = {X ← U} ◦ γ, from (6.100) we get that

∀(T = T ′) ∈ S γ′(T{X ← U}) = γ′(T ′{X ← U}) (6.101)

Regarding that for all (W = W ′) ∈ S{X ← U} there is (T = T ′) ∈ S such
that W = T{X ← U} and W ′ = T ′{X ← U}, we conclude

∀(W = W ′) ∈ S{X ← U} γ′(W ) = γ′(W ′) (6.102)
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(Most general)
Considering γ′′ an unifier of S{X ← U}

∀(W = W ′) ∈ S{X ← U} γ′′(W ) = γ′′(W ′) (6.103)

Regarding that if (W = W ′) ∈ S{X ← U} then there is T = T ′ ∈ S such
that W = T{X ← U} and W ′ = T ′{X ← U}, we conclude

∀(T = T ′) ∈ S γ′′(T{X ← U}) = γ′′(T ′{X ← U}) (6.104)

(6.104) can be written as

∀(T = T ′) ∈ S γ′′ ◦ {X ← U}(T ) = γ′′ ◦ {X ← U}(T ′) (6.105)

So, from (6.105) we conclude that γ′′◦{X ← U} is unifier of S, and knowing
that γ is mgu of S we get that

∃σ : γ′′ ◦ {X ← U} = σ ◦ γ (6.106)

Knowing that X ∈ dom(γ′′ ◦ {X ← U}) we conclude that X ∈ dom(σ ◦ γ)
but since dom(γ) = {Y } we get that X ∈ dom(σ), which allows us to write
(6.106) as

γ′′ ◦ {X ← U} = (σbX+σbX) ◦ γ (6.107)

We can also establish a sum from γ′′ ◦ {X ← U} in regard to it’s domain,
considering the partition obtained due to X, which, considering (6.107),
gives us

γ′′bX+γ′′b{vars(U)}◦{X ← U} = (σbX+σbX) ◦ γ (6.108)

Looking at the substitution on the left hand side of the equation we con-
clude that {X} ∩ Im(γ′′bX+γ′′b{vars(U)}◦{X ← U}) = ∅, because {X} ∩
vars(S{X ← U}) = ∅, which allows us to conclude that {X}∩Im(σbX) = ∅
and that {X} ∩ Im(σbX) = ∅, which along with dom(σbX) = {X} and
{X} ∩ dom(σbX) = ∅, by Lemma 6.6.1, from (6.108) we conclude

γ′′bX+γ′′b{vars(U)}◦{X ← U} = (σbX◦σbX) ◦ γ (6.109)

Considering now the domain partition obtained from considering the sum
established from γ in regard to X in (6.109), we obtain

γ′′bX+γ′′b{vars(U)}◦{X ← U} = σbX◦σbX◦γbX+σbX◦σbX◦γbX (6.110)

Restricting both sides of (6.110), discarding X, we obtain

γ′′b{vars(U)}◦{X ← U} = σbX◦σbX◦γbX (6.111)
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From (6.111), regarding that {X} ∩ dom(γ) = ∅ and {X} ∩ dom(σbX) = ∅,
we conclude

σbX= γ′′b{vars(U)}◦{X ← U} (6.112)

Restricting both sides of (6.110), discarding X, we obtain

γ′′bX= σbX◦σbX◦γbX (6.113)

From (6.113) and (6.112) we conclude

γ′′bX= γ′′b{vars(U)}◦{X ← U} ◦ σbX◦γbX (6.114)

Recalling that {X} ∩ Im(σbX) = ∅ and knowing that Im({X ← U}) = ∅,
since vars(U) = ∅, from (6.114) we conclude

γ′′bX= γ′′b{vars(U)}◦σbX◦{X ← U} ◦ γbX (6.115)

Since from {X} ∩ dom(γ′′) = ∅ we get that γ′′bX= γ′′ and from dom(γ) =
{Y } we get that γbX= γ, recalling that γ′ = {X ← U} ◦ γ and considering
substitution ψ = γ′′b{vars(U)}◦σbX , from (6.115) we obtain the intended
conclusion

γ′′ = ψ ◦ γ′ (6.116)

From (6.102) and (6.116), regarding Definition 6.6.2, we conclude that γ′ is
mgu of S{X ← U}.

Lemma 6.6.4 If the judgements Γ, X :: 0,Γ′ ` P OK and Γ ` U :: 0 are
derivable, so is Γ,Γ′{X ← U} ` P{X ← U} OK.

Proof By induction on the structure of the typing derivation.

(Case of Definition)
We have

Γ, X :: 0, Γ′ ` def < Z > v1 : T1; . . . ; vk : Tk in M1& . . .&Mt [P ]Q OK
(6.117)

and
Γ ` U :: 0 (6.118)

(6.117) is concluded from

replace({M1, . . . , Mt}, {v1, . . . , vk}) ⇒ ({M ′
1, . . . , M

′
t}, {v′1, . . . , v′m}, γ)

(6.119)
and

Γ, X :: 0, Γ′, Y :: 0, v′1 : Y1, . . . , v
′
m : Ym ` term(M ′

i) ⇒ (Si, msg, Ri)
(for i = 1, . . . , t)

(6.120)
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and
σ = mgun(S1 ∪ . . . ∪ St, {Y } ∪R1 ∪ . . . ∪Rt) (6.121)

and
ϕ = mgun(

⋃

q:Yq∈dom(σ)∧∃l.γ(v′q)=vl

{Tl = σ(Yq)}, {Z}) (6.122)

(∀i∈1,...,h, Zi ∈ {Z} ∃j : ϕ(Zi) = Wj)
(∀i,j∈1,...,h : Zi, Zj ∈ {Z} ϕ(Zi) = ϕ(Zj) ⇒ i = j)

(6.123)

and
Γ, X :: 0, Γ′, Z :: 0, v1 : T1, . . . , vk : Tk ` P OK (6.124)

and
Γ, X :: 0, Γ′, Z :: 0, v1 : T1, . . . , vk : Tk ` Q OK (6.125)

Regarding that {X} ∩ {Y } = ∅ we have

∀i∈1,...,k Yi{X ← U} = Yi (6.126)

and noticing that {X} ∩ {Z} = ∅ we also have

∀i∈1,...,h, Zi ∈ {Z} : Zi{X ← U} = Zi (6.127)

By Lemma 6.5.1, having (6.120) and (6.118), considering (6.126), we obtain

Γ, Γ′{X ← U}, Y :: 0, v′1 : Y1, . . . , v
′
m : Ym ` term(M ′

i) ⇒
(Si, msg, Ri){X ← U} (for i = 1, . . . , t)

(6.128)

((Si, msg, Ri){X ← U} ≡ (Si{X ← U}, msg, Ri))

By induction hypothesis on (6.124), considering (6.127), we conclude

Γ, Γ′{X ← U}, Z :: 0, v1 : (T1{X ← U}), . . . , vk : (Tk{X ← U})
` P{X ← U} OK

(6.129)

By induction hypothesis on (6.125), considering (6.127), we conclude

Γ, Γ′{X ← U}, Z :: 0, v1 : (T1{X ← U}), . . . , vk : (Tk{X ← U})
` Q{X ← U} OK

(6.130)

From (6.121), regarding that vars(U) = ∅, concluded from (6.118), and that
{X} ∩ ({Y } ∪R1 ∪ . . . ∪Rt) = ∅, by Lemma 6.6.3 we conclude

{X ← U}◦σ = mgun((S1∪ . . .∪St){X ← U}, {Y }∪R1∪ . . .∪Rt) (6.131)

((S1 ∪ . . . ∪ St){X ← U} ≡ (S1{X ← U} ∪ . . . ∪ St{X ← U}))
We must know consider the new equation system

⋃

q:Yq∈dom(σ)∧∃l.γ(v′q)=vl

{(Tl{X ← U}) = {X ← U} ◦ σ(Yq)} (6.132)

66



≡ (
⋃

q:Yq∈dom(σl)∧∃l.γ(v′q)=vl

{Tl = σ(Yq)}){X ← U}

From (6.122), noticing that dom(ϕ) = {Z}, having {X} ∩ {Z} = ∅ and,
from (6.118), vars(U) = ∅, by Lemma 6.6.3, {X ← U}◦ϕ is mgu of (6.132).
From (6.123) we know that

∀i∈1,...,h, Zi ∈ {Z} ∃j : ϕ(Zi) = Wj

∀i,j∈1,...,h : Zi, Zj ∈ {Z} ϕ(Zi) = ϕ(Zj) ⇒ i = j
(6.133)

From (6.133), noticing that ∀jWj{X ← U} = Wj we conclude

∀i∈1,...,h, Zi ∈ {Z} ∃j : {X ← U} ◦ ϕ(Zi) = Wj (6.134)

Also from (6.133), noticing that ∀i{X ← U} ◦ ϕ(Zi) = ϕ(Zi), we get that
{X ← U} ◦ ϕ(Zi) = {X ← U} ◦ ϕ(Zj) ≡ ϕ(Zi) = ϕ(Zj), so

∀i,j∈1,...,h : Zi, Zj ∈ {Z} {X ← U} ◦ ϕ(Zi) = {X ← U} ◦ ϕ(Zj) ⇒ i = j
(6.135)

From (6.119), (6.128), (6.131), (6.129) and (6.130), and having {X ← U}◦ϕ
mgu of (6.132) and conditions (6.134) and (6.135), by an application of
(Definition), comes the intended conclusion

Γ, Γ′{X ← U} ` (def < Z > v : T in M1& . . .&Mt [P ]Q){X ← U}} OK
(6.136)

((def < Z > v : T in M1& . . .&Mt [P ]Q){X ← U}
≡

def < Z > v : T{X ← U} in M1& . . . &Mt [P{X ← U} ]Q{X ← U})

(Case of Message)
We have

Γ, X :: 0, Γ′ ` M OK (6.137)

and
Γ ` U :: 0 (6.138)

(6.137) is concluded from

Γ, X :: 0, Γ′ ` M : msg (6.139)

By Lemma 6.4.2, having (6.139) and (6.138), we conclude

Γ, Γ′{X ← U} ` M : msg{X ← U} (6.140)

(msg{X ← U} ≡ msg)

From (6.140), by an application of (Message), we obtain

Γ, Γ′{X ← U} ` M OK (6.141)
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Since (M{X ← U} ≡ M), from (6.141) comes the intended conclusion

Γ, Γ′{X ← U} ` M{X ← U} OK (6.142)

(Case of Restriction)
We have

Γ, X :: 0, Γ′ ` new v1 : T1; . . . ; vn : Tn in P OK (6.143)

and
Γ ` U :: 0 (6.144)

(6.143) is concluded from

Γ, X :: 0,Γ′, v1 : T1, . . . , vn : Tn ` P OK (6.145)

By induction hypothesis on (6.145) we conclude

Γ,Γ′{X ← U}, v1 : (T1{X ← U}), . . . , vn : (Tn{X ← U})
` P{X ← U} OK

(6.146)

From (6.146), by an application of (Restriction), comes the intended con-
clusion

Γ, Γ′{X ← U} ` (new v1 : T1; . . . ; vn : Tn in P ){X ← U} OK (6.147)

((new v1 : T1; . . . ; vn : Tn in P ){X ← U}
≡

new v1 : (T1{X ← U}); . . . ; vn : (Tn{X ← U}) in P{X ← U})
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(Case of Parallel composition)
We have

Γ, X :: 0,Γ′ ` P | Q OK (6.148)

and
Γ ` U :: 0 (6.149)

(6.148) is concluded from

Γ, X :: 0, Γ′ ` P OK (6.150)

and
Γ, X :: 0, Γ′ ` Q OK (6.151)

By induction hypothesis on (6.150), we conclude

Γ, Γ′{X ← U} ` P{X ← U} OK (6.152)

By induction hypothesis on (6.151), we conclude

Γ,Γ′{X ← U} ` Q{X ← U} OK (6.153)

From (6.152) and (6.153), by an application of (Parallel composition), comes
the intended conclusion

Γ, Γ′{X ← U} ` (P | Q){X ← U} OK (6.154)

((P | Q){X ← U} ≡ P{X ← U} | Q{X ← U})

(Case of Inaction)
We have

Γ, X :: 0, Γ′ ` inaction OK (6.155)

and
Γ ` U :: 0 (6.156)

Since inaction{X ← U} ≡ inaction, the conclusion is obtained by an appli-
cation of (Inaction)

Γ, Γ′{X ← U} ` inaction{X ← U} OK (6.157)
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6.7 Type inference

Lemma 6.7.1 If we have σ = mgun(S∪V,Z) then exists φ and γ such that
σ = γ ◦ φ, φ = mgun(S, Z ′) and γ = mgun(φ(V ), Z ′′).

Proof We have
σ = mgun(S ∪ V,Z) (6.158)

From (6.158) we conclude that σ unifies S, so S is solvable, and more pre-
cisely, S has a most general solution

∃φ.φ = mgun(S,Z ′) (6.159)

From (6.159), recalling Definition 6.6.2 and that σ unifies S we conclude

∃γ.σ = γ ◦ φ (6.160)

We must now show that γ is the most general unifier of φ(V ), which is
established proving that it is an unifier and that it is most general.

(Unifier)
As well as being an unifier of S we know that σ unifies V , so

∀X = Y ∈ V.σ(X) = σ(Y ) (6.161)

From (6.161) and (6.160) we get that

∀X = Y ∈ V.γ ◦ φ(X) = γ ◦ φ(Y ) (6.162)

Considering the desired set of identifications φ(V ), from (6.162) we ob-
tain

∀φ(X) = φ(Y ) ∈ φ(V ).γ(φ(X)) = γ(φ(Y )) (6.163)

From (6.163), through the introduction of new variables, comes the in-
tended conclusion

∀W = Z ∈ φ(V ).γ(W ) = γ(Z) (6.164)

(Most general)
Considering Φ as an unifier of φ(V ), we get that

∀W = Z ∈ φ(V ).Φ(W ) = Φ(Z) (6.165)

From (6.165), noticing that for all W,Z such that W = Z ∈ φ(V ), there
exist X, Y such that X = Y ∈ V , W = φ(X) and Z = φ(Y ), we obtain

∀φ(X) = φ(Y ) ∈ φ(V ).Φ(φ(X)) = Φ(φ(Y )) (6.166)

(6.166) gives us

∀X = Y ∈ V.Φ ◦ φ(X) = Φ ◦ φ(Y ) (6.167)
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We can extend the identification set considered in (6.167) from V to
S ∪ V , because we know that φ unifies S, which leads us to

∀X = Y ∈ S ∪ V.Φ ◦ φ(X) = Φ ◦ φ(Y ) (6.168)

which means that Φ ◦ φ is an unifier of S ∪ V , so, from (6.158) and
Definition 6.6.2, we can conclude that

∃ψ.Φ ◦ φ = ψ ◦ σ (6.169)

From (6.169) and (6.160) we can write

Φ ◦ φ = ψ ◦ γ ◦ φ (6.170)

Recalling that no other restriction was made on Φ, (6.170) leads us to
the intended conclusion

∀Φ unifier of φ(V ).∃ψ.Φ = ψ ◦ γ (6.171)

From (6.164) and (6.171) we conclude

γ = mgun(φ(V ), Z ′′) (6.172)

The intended conclusion is therefore presented in (6.159), (6.160) and (6.172).

Lemma 6.7.2 Having Φ = {t1, . . . , tw}, if, for all j ∈ 1, . . . , w, the judg-
ments Γ, Y :: 0, x : Y ` term(tj) ⇒ (Sj , Uj , Zj) and Γ ` tj{x ← v} : Bj are
derivable, and if σ = mgun(S1 ∪ . . . ∪ Sw, {Y } ∪ Z1 ∪ . . . ∪ Zw) then

• for all i such that xi ∈ vars(Φ), exists Vi such that the judgment
Γ ` vi : Vi is derivable;

• and exists δ such that

– for all j ∈ 1, . . . , w, Bj = δ(σ(Uj));

– for all j such that xj ∈ vars(Φ), Vj = δ ◦ σ(Yj).

Proof By induction on the size of the multiset (Φ).

(Case of a single element)

(Case of Identifier)

We have
Φ = {id} (6.173)

71



and
Γ, Y :: 0, x : Y ` term(id) ⇒ (∅, U, Z) (6.174)

and
Γ ` id{x ← v} : B (6.175)

and
σ = mgun(∅, {Y } ∪ {Z}) (6.176)

We must now consider two separate cases: either xi 6= id for all i or exists i
such that xi = id.

(Case of xi 6= id for all i)
We must have

B = U (6.177)

From (6.176) we obtain
σ(U) = U (6.178)

From (6.177) and (6.178), considering δ as the identity substitution, then
it satisfies the desired property

B = δ(σ(U)) (6.179)

Since vars(Φ) ∩ {x} = ∅, the result presented in (6.179) is the only one
required for this case.

(Case of exists i such that xi = id)
We must have

U = Yi (6.180)

From (6.175) we obtain
Γ ` vi : B (6.181)

(6.181) gives us
B = Vi (6.182)

Let us consider δ such that

δ(Yi) = Vi (6.183)

Considering (6.183) and regarding that σ(Yi) = Yi, we obtain

Vi = δ ◦ σ(Yi) (6.184)

From (6.180), (6.182) and (6.183), regarding once again that σ(Yi) = Yi,
we conclude

B = δ(σ(U)) (6.185)

Since, in this case vars(Φ) ∩ {x} = xi, the results shown in (6.181),
(6.184) and (6.185) correspond to the intended conclusion.

The intended conclusion is obtained from either (6.179) or (6.181), (6.184)
and (6.185) depending if xi 6= id for all i or exists i such that xi = id, re-
spectively, being the proof shown for the former identical to the one required
for the value literal case.
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(Case of Constructor)

We have
Φ = {f(u1, . . . , un)} (6.186)

and

Γ, Y :: 0, x : Y ` term(f(u1, . . . , un))
⇒ (S1 ∪ . . . ∪ Sn ∪ {T1 = U1; . . . ; Tn = Un}, A, {Z} ∪W1 ∪ . . . ∪Wn)

(6.187)
and

Γ ` f(u1, . . . , un){x ← v} : B (6.188)

and

σ = mgun(S1 ∪ . . . ∪ Sn ∪ {T1 = U1; . . . ; Tn = Un},
{Y } ∪ {Z} ∪W1 ∪ . . . ∪Wn)

(6.189)

(6.187) is concluded from

Γ, Y :: 0, x : Y ` term(uj) ⇒ (Sj , Uj ,Wj) for all j ∈ 1, . . . , n (6.190)

and from
Γ, Y :: 0, x : Y ` f : [Z](T1, . . . , Tn)A (6.191)

(6.188) is concluded from the existence of ϕ such that

Γ ` uj{x ← v} : ϕ(Tj) for all j ∈ 1, . . . , n (6.192)

and that
ϕ(A) = B (6.193)

and from
Γ ` f : [Z](T1, . . . , Tn)A (6.194)

From (6.189), by Lemma 6.7.1, there exists ψ, γ such that

σ = γ ◦ ψ (6.195)

and
ψ = mgun(S1 ∪ . . . ∪ Sn, {Y } ∪W1 ∪ . . . ∪Wn) (6.196)

and
γ = mgun(ψ({T1 = U1; . . . ; Tn = Un}),
{Y } ∪ {Z} ∪W1 ∪ . . . ∪Wn ∪ Im(ψ))

(6.197)

By induction hypothesis on (6.190), (6.192) and (6.196), we conclude, for
all i such that xi ∈ vars({u1, . . . , un}), there exists Vi such that

Γ ` vi : Vi (6.198)
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and that exists θ such that, for all j ∈ 1, . . . , n

ϕ(Tj) = θ(ψ(Uj)) (6.199)

and that, for all i such that xi ∈ vars({u1, . . . , un})

Vi = θ ◦ ψ(Yi) (6.200)

Let us now consider substitution ϕ + θ. This substitution is an unifier of
ψ({T1 = U1; . . . ;Tn = Un}), if

(ϕ + θ)(ψ(Tj)) = (ϕ + θ)(ψ(Uj)) for all j ∈ 1, . . . , n (6.201)

Looking at the left hand side of the equation presented in (6.201), regarding
that dom(ψ) ∩ vars(Tj) = ∅, for all j ∈ 1, . . . , n, since vars(Tj) ⊆ {Z} and
{Z} ∩ vars(S1 ∪ . . . ∪ Sn) = ∅, and from the latter dom(ψ) ∩ {Z} = ∅, we
get that

(ϕ + θ)(ψ(Tj)) = (ϕ + θ)(Tj) for all j ∈ 1, . . . , n (6.202)

From (6.202), noticing that dom(θ) ∩ vars(Tj) = ∅, through a similar rea-
soning, we conclude

(ϕ + θ)(ψ(Tj)) = ϕ(Tj) for all j ∈ 1, . . . , n (6.203)

Looking at the right hand side of the equation presented in (6.201), regarding
that ϕ(ψ(Uj)) = ψ(Uj), for all j ∈ 1, . . . , n, since dom(ϕ) = {Z} and
{Z} ∩ vars(Uj) = ∅, for j in the referred bounds, and {Z} ∩ Im(ψ) = ∅, we
obtain

(ϕ + θ)(ψ(Uj)) = θ(ψ(Uj)) for all j ∈ 1, . . . , n (6.204)

From (6.204) and (6.199), we conclude

(ϕ + θ)(ψ(Uj)) = ϕ(Tj) for all j ∈ 1, . . . , n (6.205)

Combining (6.203) and (6.205) we conclude

(ϕ + θ)(ψ(Tj)) = (ϕ + θ)(ψ(Uj)) for all j ∈ 1, . . . , n (6.206)

(6.206) gives us that ϕ+ θ is an unifier of ψ({T1 = U1; . . . ; Tn = Un}) which
allows us to conclude, from (6.197) and Definition 6.6.2, that exists δ such
that

ϕ + θ = δ ◦ γ (6.207)

Regarding that {Z} ⊆ dom(γ), from (6.207), splitting substitution γ in
regard to it’s domain, we get

ϕ + θ = δ ◦ (γbZ+γbZ) (6.208)

74



From (6.208), knowing that dom(ϕ) = {Z}, by restricting the domains on
both sides, we get

θ = δ ◦ γbZ (6.209)

Recalling result (6.200) where i is such that xi ∈ vars({u1, . . . , un}), using
(6.209), we conclude

Vi = δ ◦ γbZ◦ψ(Yi) (6.210)

Regarding that, for the referred bounds of i, γbZ◦ψ(Yi) = γ ◦ψ(Yi), because
{Z}∩ {Y } = ∅ and Im(ψ)∩{Z} = ∅, from (6.210) and (6.195) we conclude

Vi = δ ◦ σ(Yi) (6.211)

We must now show that δ is such that

B = δ(σ(A)) (6.212)

from (6.212), recalling that ϕ(A) = B and using (6.195), we obtain

ϕ(A) = δ(γ ◦ ψ(A)) (6.213)

Regarding that δ(γ ◦ ψ(A)) ≡ (δ ◦ γ) ◦ ψ(A), (6.213) is equivalent to

ϕ(A) = (δ ◦ γ) ◦ ψ(A) (6.214)

from (6.214), using (6.207), we obtain

ϕ(A) = (ϕ + θ) ◦ ψ(A) (6.215)

Regarding that ψ(A) = A and θ(A) = A, since vars(A) ⊆ {Z} and {Z} ∩
dom(ψ) = ∅ and {Z} ∩ dom(θ) = ∅, we obtain

ϕ(A) = ϕ(A) (6.216)

(6.216) gives us the intended conclusion

B = δ(σ(A)) (6.217)

Since vars(Φ) = vars({u1, . . . , un}), the intended conclusion is presented in
(6.198), (6.211) and (6.217).

(Case of multiple elements)

(Case of Identifier as the first element)

We have
Φ = {id, t2, . . . , tw} (6.218)

and
Γ, Y :: 0, x : Y ` term(id) ⇒ (∅, U1, Z) (6.219)
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and

Γ, Y :: 0, x : Y ` term(tj) ⇒ (Sj , Uj , Zj) for all j ∈ 2, . . . , w (6.220)

and
Γ ` id{x ← v} : B1 (6.221)

and
Γ ` tj{x ← v} : Bj for all j ∈ 2, . . . , w (6.222)

and
σ = mgun(S2 ∪ . . . ∪ Sw, {Y } ∪ Z2 ∪ . . . ∪ Zw) (6.223)

By induction hypothesis on (6.220), (6.222) and (6.223), we conclude that
for all i such that xi ∈ vars({t2, . . . , tw}), there exists Vi such that

Γ ` vi : Vi (6.224)

and that exists δ such that, for all j ∈ 2, . . . , w

Bj = δ(σ(Uj)) (6.225)

and that, for all i such that xi ∈ vars({t2, . . . , tw})

Vi = δ ◦ σ(Yi) (6.226)

We must now consider two separate cases: either xi 6= id for all i or exists i
such that xi = id.

(Case of xi 6= id for all i)
We must have

B1 = U1 (6.227)

Regarding that vars(U1) ∩ dom(σ) = ∅, we obtain

σ(U1) = U1 (6.228)

From (6.227) and (6.228), regarding that δ(B1) = B1 since vars(B1) = ∅,
we conclude

B1 = δ(σ(U1)) (6.229)

Since vars(Φ) = vars({t2, . . . , tw}), the results given by induction hy-
pothesis and the one presented in (6.229) are the only ones required for this
case.

(Case of exists i such that xi = id)
We must have

U1 = Yi (6.230)

From (6.221) we conclude

Γ ` vi : B1 (6.231)
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(6.231) gives us
B1 = Vi (6.232)

We must now consider two different cases: either xi ∈ vars({t2, . . . , tw})
or {xi} ∩ vars({t2, . . . , tw}) = ∅.

(Case of xi ∈ vars({t2, . . . , tw}))
In this case the results obtained through induction hypothesis give us

the intended conclusion, being the coherence of Vi guaranteed by (6.224)
and (6.231).

(Case of {xi} ∩ vars({t2, . . . , tw}) = ∅)
Let us consider θ defined by

θ = δ + {Yi ← Vi} (6.233)

Regarding that σ(Yi) = Yi and that (δ+{Yi ← Vi})Yi = {Yi ← Vi}(Yi) =
Vi, we conclude

Vi = θ ◦ σ(Yi) (6.234)

From (6.226) and (6.233), regarding that θ ◦ σ(Yk) = δ ◦ σ(Yk) when
k 6= i, we conclude that for all j such that xj ∈ vars(Φ)

Vj = θ ◦ σ(Yj) (6.235)

Regarding that B1 = Vi, U1 = Yi, σ(Yi) = Yi and that θ(Yi) = Vi, we
conclude

B1 = θ(σ(U1)) (6.236)

From (6.225) and (6.236), regarding that θ(σ(Uk)) = δ(σ(Uk)) when
k 6= i, we conclude that for all j ∈ 1, . . . , w

Bj = θ(σ(Uj)) (6.237)

The results required for this case are presented in (6.224), (6.231), (6.235)
and (6.237).

The intended conclusion is obtained either from (6.224), (6.226) and (6.225)
when exists i such that id = xi and xi ∈ vars({t2, . . . , tw}), and when, along
with (6.229), xi 6= id for all i (identical when considering value literals), or
from (6.224), (6.231), (6.235) and (6.237) when exists i such that id = xi

and {xi} ∩ vars({t2, . . . , tw}) = ∅.
(Case of Constructor as the first element)

We have
Φ = {f(u1, . . . , un), t2, . . . , tw} (6.238)

and

Γ, Y :: 0, x : Y ` term(f(u1, . . . , un))
⇒ (S1 ∪ . . . ∪ Sn ∪ {T1 = U1; . . . ;Tn = Un}, Q1, {Z} ∪W1 ∪ . . . ∪Wn)

(6.239)
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and

Γ, Y :: 0, x : Y ` term(tj) ⇒ (Pj , Qj , Rj) for all j ∈ 2, . . . , w (6.240)

and
Γ ` f(u1, . . . , un){x ← v} : B1 (6.241)

and
Γ ` tj{x ← v} : Bj for all j ∈ 2, . . . , w (6.242)

and

σ = mgun(S1 ∪ . . . ∪ Sn ∪ {T1 = U1; . . . ; Tn = Un} ∪ P2 ∪ . . . ∪ Pw,

{Y } ∪ {Z} ∪W1 ∪ . . . ∪Wn ∪R2 ∪ . . . ∪Rw)
(6.243)

(6.239) is concluded from

Γ, Y :: 0, x : Y ` term(uj) ⇒ (Sj , Uj ,Wj) for all j ∈ 1, . . . , n (6.244)

and from
Γ, Y :: 0, x : Y ` f : [Z](T1, . . . , Tn)Q1 (6.245)

(6.241) is concluded from the existence of ϕ such that

Γ ` uj{x ← v} : ϕ(Tj) for all j ∈ 1, . . . , n (6.246)

and that
ϕ(Q1) = B1 (6.247)

and from
Γ ` f : [Z](T1, . . . , Tn)Q1 (6.248)

From (6.243), by Lemma 6.7.1, there exists ψ, γ such that

σ = γ ◦ ψ (6.249)

and

ψ = mgun(S1 ∪ . . .∪Sn ∪P2 ∪ . . .∪Pw, {Y }∪W1 ∪ . . .∪Wn ∪R2 ∪ . . .∪Rw)
(6.250)

and
γ = mgun(ψ({T1 = U1; . . . ; Tn = Un}),
{Y } ∪ {Z} ∪W1 ∪ . . . ∪Wn ∪ Im(ψ))

(6.251)

By induction hypothesis on (6.244), (6.240), (6.246), (6.242) and (6.250), we
conclude, for all i such that xi ∈ vars({u1, . . . , un, t2, . . . , tw}), there exists
Vi such that

Γ ` vi : Vi (6.252)
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and that exists θ such that, for all j ∈ 1, . . . , n

ϕ(Tj) = θ(ψ(Uj)) (6.253)

and, for all j ∈ 2, . . . , w
Bj = θ(ψ(Qj)) (6.254)

and that, for all i such that xi ∈ vars({u1, . . . , un, t2, . . . , tw})
Vi = θ ◦ ψ(Yi) (6.255)

Let us now consider substitution ϕ + θ. This substitution is an unifier of
ψ({T1 = U1; . . . ;Tn = Un}), if

(ϕ + θ)(ψ(Tj)) = (ϕ + θ)(ψ(Uj)) for all j ∈ 1, . . . , n (6.256)

Looking at the left hand side of the equation presented in (6.256), regarding
that dom(ψ) ∩ vars(Tj) = ∅, for all j ∈ 1, . . . , n, since vars(Tj) ⊆ {Z} and
{Z}∩vars(S1∪. . .∪Sn∪P2∪. . . Pw) = ∅, and from the latter dom(ψ)∩{Z} =
∅, we get that

(ϕ + θ)(ψ(Tj)) = (ϕ + θ)(Tj) for all j ∈ 1, . . . , n (6.257)

From (6.257), noticing that dom(θ) ∩ vars(Tj) = ∅, through a similar rea-
soning, we conclude

(ϕ + θ)(ψ(Tj)) = ϕ(Tj) for all j ∈ 1, . . . , n (6.258)

Looking at the right hand side of the equation presented in (6.256), regarding
that ϕ(ψ(Uj)) = ψ(Uj), for all j ∈ 1, . . . , n, since dom(ϕ) = {Z} and
{Z} ∩ vars(Uj) = ∅, for j in the referred bounds, and {Z} ∩ Im(ψ) = ∅, we
obtain

(ϕ + θ)(ψ(Uj)) = θ(ψ(Uj)) for all j ∈ 1, . . . , n (6.259)

From (6.259) and (6.253), we conclude

(ϕ + θ)(ψ(Uj)) = ϕ(Tj) for all j ∈ 1, . . . , n (6.260)

Combining (6.258) and (6.260) we conclude

(ϕ + θ)(ψ(Tj)) = (ϕ + θ)(ψ(Uj)) for all j ∈ 1, . . . , n (6.261)

(6.261) gives us that ϕ+ θ is an unifier of ψ({T1 = U1; . . . ; Tn = Un}) which
allows us to conclude, from (6.251) and Definition 6.6.2, that exists δ such
that

ϕ + θ = δ ◦ γ (6.262)

Regarding that {Z} ⊆ dom(γ), from (6.262), splitting substitution γ in
regard to it’s domain, we get

ϕ + θ = δ ◦ (γbZ+γbZ) (6.263)
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From (6.263), knowing that dom(ϕ) = {Z}, by restricting the domains on
both sides, we get

θ = δ ◦ γbZ (6.264)

Recalling result (6.255) where i is such that xi ∈ vars({u1, . . . , un, t2, . . . , tw}),
using (6.264), we conclude

Vi = δ ◦ γbZ◦ψ(Yi) (6.265)

Regarding that, for the referred bounds of i, γbZ◦ψ(Yi) = γ ◦ψ(Yi), because
{Z}∩ {Y } = ∅ and Im(ψ)∩{Z} = ∅, from (6.265) and (6.249) we conclude

Vi = δ ◦ σ(Yi) (6.266)

We must now show that δ is such that, for all j ∈ 1, . . . , w

Bj = δ(σ(Qj)) for all j ∈ 2, . . . , w (6.267)

Let us consider two separate cases: either j = 1 or j ∈ 2, . . . , w.

(Case of j = 1)

We intend to prove
B1 = δ(σ(Q1)) (6.268)

From (6.268), recalling that ϕ(Q1) = B1 and using (6.249), we obtain

ϕ(Q1) = δ(γ ◦ ψ(Q1)) (6.269)

Regarding that δ(γ ◦ ψ(Q1)) ≡ (δ ◦ γ) ◦ ψ(Q1), (6.269) is equivalent to

ϕ(Q1) = (δ ◦ γ) ◦ ψ(Q1) (6.270)

from (6.270), using (6.262), we obtain

ϕ(Q1) = (ϕ + θ) ◦ ψ(Q1) (6.271)

Regarding that ψ(Q1) = Q1 and θ(Q1) = Q1, since vars(Q1) ⊆ {Z} and
{Z} ∩ dom(ψ) = ∅ and {Z} ∩ dom(θ) = ∅, we obtain

ϕ(Q1) = ϕ(Q1) (6.272)

from (6.272) we conclude

B1 = δ(σ(Q1)) (6.273)

(Case of j ∈ 2, . . . , w)

We intend to prove
Bj = δ(σ(Qj)) (6.274)
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From (6.274), using (6.249), we obtain

Bj = δ(γ ◦ ψ(Qj)) (6.275)

Since δ(γ ◦ ψ(Qj)) ≡ (δ ◦ γ) ◦ ψ(Qj), (6.275) is equivalent to

Bj = (δ ◦ γ) ◦ ψ(Qj) (6.276)

From (6.276), using (6.262), we obtain

Bj = (ϕ + θ) ◦ ψ(Qj) (6.277)

Regarding that ϕ(ψ(Qj)) = ψ(Qj), from (6.277) we obtain

Bj = θ ◦ ψ(Qj) (6.278)

Since (6.254) proves (6.278) we conclude

Bj = δ(σ(Qj)) (6.279)

Joining (6.273) and (6.279) we obtain

Bj = δ(σ(Qj)) for all j ∈ 1, . . . , w (6.280)

Since vars(Φ) = vars({u1, . . . , un, t2, . . . , tw}), the intended conclusion is
presented in (6.252), (6.266) and (6.280).
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6.8 Subject Reduction

Lemma 6.8.1 If the judgment Γ ` P OK is derivable and Γ ` P → Γ `
Q, conformingly to the language’s operational semantics, then the judgment
Γ ` Q OK is also derivable.

Proof By induction on the structure of the reduction derivation.

(Case of Restriction reduction)
We have

Γ ` new v1 : T1; . . . ; vn : Tn in P OK (6.281)

and
Γ ` new v1 : T1; . . . ; vn : Tn in P OK
→ Γ ` new v1 : T1; . . . ; vn : Tn in Q OK

(6.282)

(6.281) is concluded from

Γ, v1 : T1, . . . , vn : Tn ` P (6.283)

and (6.282) is concluded from

Γ, v1 : T1, . . . , vn : Tn ` P → Γ, v1 : T1, . . . , vn : Tn ` Q (6.284)

By induction hypothesis on (6.283) and (6.284), we conclude

Γ, v1 : T1, . . . , vn : Tn ` Q (6.285)

From (6.285), by an application of (Restriction), comes the intended con-
clusion

Γ ` new v1 : T1; . . . ; vn : Tn in Q OK (6.286)

(Case of Composition reduction)
We have

Γ ` P | R OK (6.287)

and
Γ ` P | R → Γ ` Q | R (6.288)

(6.287) is concluded from
Γ ` P OK (6.289)

and
Γ ` R OK (6.290)

and (6.288) is concluded from

Γ ` P → Γ ` Q (6.291)
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By induction hypothesis on (6.289) and (6.291), we conclude

Γ ` Q OK (6.292)

From (6.292) and (6.290), by an application of (Parallel composition), comes
the intended conclusion

Γ ` Q | R OK (6.293)

(Case of Definition reduction)
We have

Γ ` m1 | · · · | mt | def < X1, . . . , Xn > v1 : T1; . . . ; vk : Tk

in M1& . . .&Mt [P ]Q OK
(6.294)

and

Γ ` m1 | · · · | mt | def < X1, . . . , Xn > v1 : T1; . . . ; vk : Tk

in M1& . . .&Mt [P ]Q OK
→

Γ ` σ(Q)
| def < X1, . . . , Xn > v1 : T1; . . . ; vk : Tk in M1& . . .&Mt [P ]Q OK

(6.295)
(6.295) is concluded from

σ(Mi) = mi (for i = 1, . . . , t) (6.296)

and
Γ ` σ(P ) ∗→ √

(6.297)

where σ : X → T, v → T , meaning that σ comprehends in it’s domain type
variables (X) and value variables (v) which are mapped to types (T) and
values (T ), respectively.

From (6.294), regarding the derivation of the definition, we obtain

replace({M1, . . . , Mt}, {v1, . . . , vk}) ⇒ ({M ′
1, . . . , M

′
t}, {v′1, . . . , v′m}, γ)

(6.298)
and

Γ, Y1 :: 0, . . . , Ym :: 0, v′1 : Y1, . . . , v
′
m : Ym ` term(M ′

j) ⇒ (Sj , msg, Zj)
for all j ∈ 1, . . . , t

(6.299)
and

θ = mgun(S1 ∪ . . . ∪ St, {Y } ∪ Z1 ∪ . . . ∪ Zt) (6.300)

and
ϕ = mgun(

⋃

q:Yq∈dom(θ)∧∃l.γ(v′q)=vl

{Tl = θ(Yq)}, {X}) (6.301)
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and
Γ, X1 :: 0, . . . , Xn :: 0, v1 : T1, . . . , vk : Tk ` P OK (6.302)

and
Γ, X1 :: 0, . . . , Xn :: 0, v1 : T1, . . . , vk : Tk ` Q OK (6.303)

Regarding the domain of σ it is possible to establish from it a sum of sub-
stitutions, respective to either types (σbt) or to values (σbv)

σ = σbt+σbv (6.304)

From (6.296) and (6.304), regarding that value substitution is the only one
to take place in (6.296), we conclude

σbv(Mi) = mi for all i ∈ 1, . . . , t (6.305)

(6.294) gives us, from the derivation of the messages, that

Γ ` mi OK for all i ∈ 1, . . . , t (6.306)

From (6.305) and (6.306) we obtain

Γ ` σbv(Mi) OK for all i ∈ 1, . . . , t (6.307)

Knowing that σbv is of the form {v1 ← c1, . . . , vk ← ck}, from the derivation
of (6.307) we obtain

Γ ` Mi{v1 ← c1, . . . , vk ← ck} : msg for all i ∈ 1, . . . , t (6.308)

Regarding that for all i ∈ 1, . . . , t Mi = M ′
i{v′1 ← γ(v′1), . . . , v

′
m ← γ(v′m)},

from (6.308) we conclude

Γ ` (M ′
i{v′1 ← γ(v′1), . . . , v

′
m ← γ(v′m)})

{v1 ← c1, . . . , vk ← ck} : msg for all i ∈ 1, . . . , t
(6.309)

(6.309) can be written as

Γ ` M ′
i{v′1 ← σbv(γ(v′1)), . . . , v

′
m ← σbv(γ(v′m))} : msg for all i ∈ 1, . . . , t

(6.310)
By Lemma 6.7.2 considering that Φ = {M ′

1, . . . ,M
′
t}, from (6.299), (6.310)

and (6.300) we conclude that for all i such that v′i ∈ vars(Φ) and γ(v′i) = vj ,
exists Aj such that

Γ ` cj : Aj (6.311)

and that exists δ, such that, for all i such that v′i ∈ vars(Φ) and γ(v′i) = vj

Aj = δ ◦ θ(Yi) (6.312)
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From (6.301) we have that

ϕ(Tj) = ϕ(θ(Yi)) for j, i such that Yi ∈ dom(θ) ∧ γ(v′i) = vj (6.313)

from (6.313), knowing that dom(ϕ) = {X}, we obtain

ϕ(Tj) = θ(Yi) for j, i such that Yi ∈ dom(θ) ∧ γ(v′i) = vj (6.314)

Regarding that for all i such that v′i ∈ vars(Φ) we have that Yi ∈ dom(θ)
and that exists j such that γ(v′i) = vj , from (6.312) and (6.314) we obtain

Aj = δ ◦ ϕ(Tj) (6.315)

From (6.315) and (6.311) we conclude

Γ ` cj : δ ◦ ϕ(Tj) (6.316)

From (6.316) we obtain σbt, which is to say

σbt= δ ◦ ϕ (6.317)

From (6.303), by Lemma 6.6.4 (n times), regarding that Γ ` σbt(Xi) :: 0,
for i ∈ 1, . . . , n, we conclude

Γ, v1 : σbt(T1), . . . , vk : σbt(Tk) ` σbt(Q) OK (6.318)

From (6.318), by Lemma 6.3.1 (k times), regarding (6.316), we conclude

Γ ` σbv(σbt(Q)) OK (6.319)

From (6.319) and (6.304) we obtain

Γ ` σ(Q) OK (6.320)

From the derivation of (6.294) we have

Γ ` def < X1, . . . , Xn > v1 : T1; . . . ; vk : Tkin M1& . . . &Mt [P ]Q OK
(6.321)

From (6.320) and (6.321), by an application of (Parallel composition), comes
the intended conclusion

Γ ` σ(Q)
| def < X1, . . . , Xn > v1 : T1; . . . ; vk : Tkin M1& . . .&Mt [P ]Q OK

(6.322)
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Chapter 7

Closing remarks

The development of the POLY static checker contributed mainly to the study
of types in concurrent based languages. A main focus of the presented work
was the introduction of polymorphism in the language, which was a task
that revealed to be somewhat tricky.

The more time consuming study went to the acceptance pattern veri-
fication. The first path that was pursued was, as a first approach usually
is, mostly brute force driven, being the idea then, to consider generic types
associated with each type parameter encountered in the pattern, being un-
necessary generality assured.

After that the ideas came close to their final form, except when it came
to an important assertion, that we believed was true at that point, which
was considering that the same variable usage in two pattern terms would
guarantee that they could share the same type variables, because the same
value would be present in the matching candidate messages. This assertion
was denied when we came to realize that syntactic equality does not assure
type equality, meaning that the same identifier may occur associated to
different types, because of the existence of polymorphic values in POLY, such
as nil.

Finally we arrived at the presented considerations, which we believe to
be an elegant form of handling universal polymorphism in this language.

The POLY language development was, therefore, useful in the better un-
derstanding of types in pattern matching based languages in a concurrent
setting, starting at the more simple issues involved in such contexts but spe-
cially in making some sense of the usage of polymorphism in such languages,
always bearing in mind the guarantees that types offer in assuring error free
programs.
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Appendix A

User manual

In order to give some helpful information about how to use the developed
POLY static checker, this appendix outlines the main procedures involved in
the usage of this application.

Firstly the required software, which consists in an installation of a java
development kit [Jav], and an installation of the referred parsing tools
JLex [Lex] and CUP [CUP]. Refer to the installation instructions of these
distributions for help on this procedure.

The static checker is available in two versions, one dedicated to windows
and other to linux. They only differ in the presented <README> file, in
some helpful files and in the application used to compress the provided files.
The different files consist no more than useful linux shell scripts and DOS
batch files, used in generating the static checker’s parser (<genSource>)
and in compiling the hole application (<compile>). All these instructions
are presented in detail in the <README> files, with a special remark for the
windows version regarding the specification of the <CLASSPATH> environment
variable.

After decompressing the <PolyC> package a directory tree is established,
being present in the root directory <POLY> the <README> and the scripts,
in the <bin> directory the Java code, in the <source> directory the source
code and in the <doc> directory the Javadoc generated documentation.

Finally we are able to use the static checker. Of course POLY source code
must be developed to provide input to the application, unless your intent
is simply to try it out, and in that case sample POLY programs that are
present in the <bin> directory can be used, contained in files with extensions
<.poly>. The referred extension is required for the files that we wish to
provide the static checker as input. A usage example is shown in (A.1).

java PolyC.Main program.poly (A.1)

After running the application one of two things will occur: the program
provided as input is syntactically and typing correct or it is not. In the first
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******************

Parsing successful

******************

******************

Type verification successful

******************

Figure A.1: Successful parsing and type checking presentation.

***

Syntax error: Found ’def’ in line 9, column 0

* Expecting *

|

* Context *

def <X> x:X in conx(x, nil) [] inaction

def <Y> x, y:Y; l:list[Y] in conx(x, cons(y, l)) [] inaction

|

***

Figure A.2: Syntactic error presentation.

case the messages presented in Figure A.1 will appear and in the second or
a syntax error (Figure A.2) is shown or at least one type error is presented
(Figure A.3).

There are two optional arguments for the application which are <-d>
after the filename specification, that produces debug information, and <-h>
before the filename, that gives application usage information. The debug
information that is presented, when the <-d> argument is provided to the
application, regards the referred equation systems that the type checker must
solve in order to ensure type validity, both in the verification of messages

******************

Parsing successful

******************

***

Found Type Error while evaluating agents pattern present in line 26, column 29

* Variable declarations and usage makes pattern typing incoherent *

* Context *

def <X> x, y:X; l:list[X] in op(x, l, y, l) [] inaction

|

***

Figure A.3: Type error presentation.
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******************

***Verifying Definition***

Line: 8 Column: 0

***

***Term Equations***

Line: 8 Column: 15

Equation 0

ASTBaseType: TypeId: list [ASTBaseType: TypeId: $Param1 ]

ASTBaseType: TypeId: list [ASTBaseType: TypeId: $Param3 ]

Equation 1

ASTBaseType: TypeId: $Param1

ASTBaseType: TypeId: $Param2

***

***Pattern Equations***

Equation 0

ASTBaseType: TypeId: X

ASTBaseType: TypeId: $open$Param4

***

Figure A.4: Type error presentation.

and in the verification of acceptance patterns.
The illustration presented in Figure A.4 shows an example extracted

from a debug output, where are present the equation systems, containing
type form identifications, where type parameter identifiers may surface, eas-
ily identified in the example, because they all contain $Param in their string.

After that come the usual programming tasks, like debugging, fixing and
running...
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Appendix B

Grammar

===== Terminals =====
[ 0 ]EOF [ 1 ] e r r o r [ 2 ] BINOP0 [ 3 ] BINOP1 [ 4 ] BINOP2
[ 5 ]BINOP3 [ 6 ] BINOP4 [ 7 ] BINOP5 [ 8 ] BINOP6 [ 9 ] BINOP7
[ 1 0 ]BINOP8 [ 1 1 ]BINOP9 [ 1 2 ]PREOP0 [ 1 3 ]PREOP1 [ 1 4 ]PREOP2
[ 1 5 ]PREOP3 [ 1 6 ]PREOP4 [ 1 7 ]PREOP5 [ 1 8 ]PREOP6 [ 1 9 ]PREOP7
[ 2 0 ]PREOP8 [ 2 1 ]PREOP9 [ 2 2 ]POSTOP0 [ 2 3 ]POSTOP1 [ 2 4 ]POSTOP2
[ 2 5 ]POSTOP3 [ 2 6 ]POSTOP4 [ 2 7 ]POSTOP5 [ 2 8 ]POSTOP6 [ 2 9 ]POSTOP7
[ 3 0 ]POSTOP8 [ 3 1 ]POSTOP9 [ 3 2 ]COMMA [ 3 3 ]NAME [ 3 4 ] INTEGER
[ 3 5 ]REAL [ 3 6 ] STRING [ 3 7 ] NIL [ 3 8 ]TRUE [ 3 9 ]FALSE
[ 4 0 ]PARL [ 4 1 ]PARR [ 4 2 ]SQUAREBRL [ 4 3 ]SQUAREBRR [ 4 4 ]COLON
[ 4 5 ]LT [ 4 6 ]GT [ 4 7 ] SEMI [ 4 8 ]AMPERSAND [ 4 9 ]COM
[ 5 0 ] IN [ 5 1 ]DEF [ 5 2 ]NEW [ 5 3 ] PIPE [ 5 4 ] INACTION
[ 5 5 ]PREFIX [ 5 6 ] INFIX [ 5 7 ] SUFFIX [ 5 8 ]OPERATOR [ 5 9 ]DECLARE
[ 6 0 ]TYPE [ 6 1 ] INTTYPE [ 6 2 ]BOOLTYPE [ 6 3 ]REALTYPE [ 6 4 ]STRINGTYPE
[ 6 5 ]MSGTYPE [ 6 6 ]LISTTYPE

=====Non te rmina l s =====
[ 0 ]$START [ 1 ] terms [ 2 ] types [ 3 ] t ype op t i ona l [ 4 ] a r g op t i ona l
[ 5 ] type a rg s [ 6 ] type par s [ 7 ] i d type [ 8 ] p r im i t i v e t yp e [ 9 ] typeL
[ 1 0 ] base type [ 1 1 ] c on s t ru c t o r type [ 1 2 ] type [ 1 3 ] l ong type [ 1 4 ]

in t ege rL
[ 1 5 ] r ea lL [ 1 6 ] s t r ingL [ 1 7 ] booleanL [ 1 8 ] l i s t L [ 1 9 ] s imple term
[ 2 0 ] term [ 2 1 ] v a l u e l i t e r a l [ 2 2 ] type arg [ 2 3 ] t e s t body [ 2 4 ] t e s t
[ 2 5 ] i d s [ 2 6 ] vars [ 2 7 ] d e c l s [ 2 8 ] d e c l s op [ 2 9 ] message
[ 3 0 ] input [ 3 1 ] proc zone [ 3 2 ] basic command [ 3 3 ] command [ 3 4 ]

d e f i n i t i o n
[ 3 5 ] r e s t r i c t i o n [ 3 6 ] s imple [ 3 7 ] p roc e s s [ 3 8 ] t ype de c l [ 3 9 ]

symbol dec l
[ 4 0 ] d e c l a r a t i on [ 4 1 ] d e c l a r a t i o n s [ 4 2 ] un i t [ 4 3 ] binop [ 4 4 ] preop
[ 4 5 ] postop [ 4 6 ] co lon op [ 4 7 ] a s s o c sp e c [ 4 8 ] p r e c spec [ 4 9 ]

i d e n t i f i e r
[ 5 0 ] op t i ona l [ 5 1 ] NT$0 [ 5 2 ] NT$1 [ 5 3 ] NT$2

===== Product ions =====
[ 0 ] $START : : = uni t EOF
[ 1 ] in t ege rL : : = INTEGER
[ 2 ] r ea lL : : = REAL
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[ 3 ] s t r i ngL : := STRING
[ 4 ] booleanL : := TRUE
[ 5 ] booleanL : := FALSE
[ 6 ] l i s t L : := NIL
[ 7 ] v a l u e l i t e r a l : : = intege rL
[ 8 ] v a l u e l i t e r a l : : = rea lL
[ 9 ] v a l u e l i t e r a l : : = s t r ingL
[ 1 0 ] v a l u e l i t e r a l : : = booleanL
[ 1 1 ] v a l u e l i t e r a l : : = l i s t L
[ 1 2 ] typeL : : = INTTYPE
[ 1 3 ] typeL : : = REALTYPE
[ 1 4 ] typeL : : = STRINGTYPE
[ 1 5 ] typeL : : = MSGTYPE
[ 1 6 ] typeL : : = LISTTYPE
[ 1 7 ] typeL : : = BOOLTYPE
[ 1 8 ] s imple term : : = NAME
[ 1 9 ] s imple term : : = v a l u e l i t e r a l
[ 2 0 ] s imple term : : = NAME PARL terms PARR
[ 2 1 ] s imple term : : = binop PARL term COMMA term PARR
[ 2 2 ] s imple term : : = postop PARL term PARR
[ 2 3 ] s imple term : : = PARL term PARR
[ 2 4 ] binop : : = BINOP0
[ 2 5 ] binop : : = BINOP1
[ 2 6 ] binop : : = BINOP2
[ 2 7 ] binop : : = BINOP3
[ 2 8 ] binop : : = BINOP4
[ 2 9 ] binop : : = BINOP5
[ 3 0 ] binop : : = BINOP6
[ 3 1 ] binop : : = BINOP7
[ 3 2 ] binop : : = BINOP8
[ 3 3 ] binop : : = BINOP9
[ 3 4 ] preop : := PREOP0
[ 3 5 ] preop : := PREOP1
[ 3 6 ] preop : := PREOP2
[ 3 7 ] preop : := PREOP3
[ 3 8 ] preop : := PREOP4
[ 3 9 ] preop : := PREOP5
[ 4 0 ] preop : := PREOP6
[ 4 1 ] preop : := PREOP7
[ 4 2 ] preop : := PREOP8
[ 4 3 ] preop : := PREOP9
[ 4 4 ] postop : := POSTOP0
[ 4 5 ] postop : := POSTOP1
[ 4 6 ] postop : := POSTOP2
[ 4 7 ] postop : := POSTOP3
[ 4 8 ] postop : := POSTOP4
[ 4 9 ] postop : := POSTOP5
[ 5 0 ] postop : := POSTOP6
[ 5 1 ] postop : := POSTOP7
[ 5 2 ] postop : := POSTOP8
[ 5 3 ] postop : := POSTOP9
[ 5 4 ] term : := s imple term
[ 5 5 ] term : := s imple term binop term
[ 5 6 ] term : := preop term
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[ 5 7 ] term : := term postop
[ 5 8 ] terms : := term
[ 5 9 ] terms : := terms COMMA term
[ 6 0 ] t ype op t i ona l : :=
[ 6 1 ] t ype op t i ona l : : = SQUAREBRL types SQUAREBRR
[ 6 2 ] p r im i t i v e t ype : : = typeL
[ 6 3 ] i d type : : = NAME
[ 6 4 ] i d type : : = p r im i t i v e t ype
[ 6 5 ] base type : : = id type type op t i ona l
[ 6 6 ] types : : = type
[ 6 7 ] types : : = types COMMA type
[ 6 8 ] c on s t ru c t o r type : : = PARL types PARR base type
[ 6 9 ] type : : = base type
[ 7 0 ] type : : = con s t ru c t o r type
[ 7 1 ] type par s : : = LT type a rg s GT
[ 7 2 ] t e s t body : :=
[ 7 3 ] t e s t body : := proce s s
[ 7 4 ] t e s t : : = SQUAREBRL tes t body SQUAREBRR
[ 7 5 ] i d s : : = NAME
[ 7 6 ] i d s : : = id s COMMA NAME
[ 7 7 ] vars : : = id s COLON type
[ 7 8 ] d e c l s : : = vars
[ 7 9 ] d e c l s : : = de c l s SEMI vars
[ 8 0 ] d e c l s op : :=
[ 8 1 ] d e c l s op : := de c l s
[ 8 2 ] message : : = term
[ 8 3 ] input : :=
[ 8 4 ] input : : = message
[ 8 5 ] input : : = input AMPERSAND message
[ 8 6 ] basic command : : = input t e s t s imple
[ 8 7 ] command : := COM basic command
[ 8 8 ] command : := COM dec l s IN basic command
[ 8 9 ] command : := COM type par s d e c l s op IN basic command
[ 9 0 ] d e f i n i t i o n : : = DEF basic command
[ 9 1 ] d e f i n i t i o n : : = DEF de c l s IN basic command
[ 9 2 ] d e f i n i t i o n : : = DEF type par s d e c l s op IN basic command
[ 9 3 ] r e s t r i c t i o n : : = NEW dec l s IN s imple
[ 9 4 ] s imple : : = INACTION
[ 9 5 ] s imple : : = command
[ 9 6 ] s imple : : = d e f i n i t i o n
[ 9 7 ] s imple : : = r e s t r i c t i o n
[ 9 8 ] s imple : : = message
[ 9 9 ] s imple : : = PARL proce s s PARR
[ 1 0 0 ] p roce s s : : = s imple
[ 1 0 1 ] p roce s s : : = proce s s PIPE simple
[ 1 0 2 ] a s s o c sp e c : : = PREFIX
[ 1 0 3 ] a s s o c sp e c : : = INFIX
[ 1 0 4 ] a s s o c sp e c : : = SUFFIX
[ 1 0 5 ] p r e c spec : : = INTEGER
[ 1 0 6 ] i d e n t i f i e r : : = NAME
[ 1 0 7 ] i d e n t i f i e r : : = OPERATOR
[ 1 0 8 ] op t i ona l : :=
[ 1 0 9 ] op t i ona l : : = a s s o c sp e c p r e c spe c
[ 1 1 0 ] type arg : : = NAME

93



[ 1 1 1 ] type a rg s : : = type arg
[ 1 1 2 ] type a rg s : : = type a rg s COMMA type arg
[ 1 1 3 ] a r g op t i ona l : :=
[ 1 1 4 ] a r g op t i ona l : : = SQUAREBRL type a rg s SQUAREBRR
[ 1 1 5 ] l ong type : :=
[ 1 1 6 ] l ong type : : = BINOP1 type
[ 1 1 7 ] NT$0 : :=
[ 1 1 8 ] NT$1 : :=
[ 1 1 9 ] t ype de c l : : = NT$0 TYPE NAME arg op t i ona l l ong type NT$1

SEMI
[ 1 2 0 ] co lon op : :=
[ 1 2 1 ] co lon op : := COLON
[ 1 2 2 ] NT$2 : :=
[ 1 2 3 ] symbol dec l : : = DECLARE i d e n t i f i e r co lon op a r g op t i ona l

type op t i ona l NT$2 SEMI
[ 1 2 4 ] d e c l a r a t i on : : = type de c l
[ 1 2 5 ] d e c l a r a t i on : : = symbol dec l
[ 1 2 6 ] d e c l a r a t i o n s : :=
[ 1 2 7 ] d e c l a r a t i o n s : : = d e c l a r a t i o n s d e c l a r a t i on
[ 1 2 8 ] proc zone : :=
[ 1 2 9 ] proc zone : : = proce s s
[ 1 3 0 ] un i t : : = d e c l a r a t i o n s proc zone
−−−−−−− Generated by CUP v0 .10 k Parser −−−−−−−
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Appendix C

Class listing

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Hierarchy For Al l Packages

Package H i e r a r ch i e s :
PolyC , PolyC .AST, PolyC .AST. Constructs , PolyC .AST.

Constructs . Terms ,
PolyC .AST. Types , PolyC . Environment , PolyC . Exceptions , PolyC

. Parser ,
PolyC . V i s i t o r

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Class Hierarchy

o c l a s s java . lang . Object
o c l a s s PolyC .AST. ArgList
o c l a s s PolyC .AST. Types . ASTBaseType ( implements PolyC .

AST. Types . IASTType)
o c l a s s PolyC .AST. Constructs . ASTBasicCommand ( implements

PolyC .AST. IASTNode)
o c l a s s PolyC .AST. Constructs .ASTCommand ( implements

PolyC .AST. IASTNode)
o c l a s s PolyC .AST. Constructs . Terms .ASTCompound (

implements PolyC .AST. Constructs . Terms . IASTTerm)
o c l a s s PolyC .AST. Types .ASTCompType ( implements PolyC .

AST. Types . IASTType)
o c l a s s PolyC .AST. Constructs . ASTDecs ( implements PolyC .

AST. IASTNode)
o c l a s s PolyC .AST. Constructs . ASTDefinit ion ( implements

PolyC .AST. IASTNode)
o c l a s s PolyC .AST. Constructs . Terms . ASTFalse ( implements

PolyC .AST. Constructs . Terms . IASTTerm)
o c l a s s PolyC .AST. Constructs . ASTId ( implements PolyC .AST

. IASTNode)
o c l a s s PolyC .AST. Constructs . ASTIds ( implements PolyC .

AST. IASTNode)
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o c l a s s PolyC .AST. Constructs . ASTInaction ( implements
PolyC .AST. IASTNode)

o c l a s s PolyC .AST. Constructs . Terms . ASTInteger (
implements PolyC .AST. Constructs . Terms . IASTTerm)

o c l a s s PolyC .AST. Constructs . ASTMessages ( implements
PolyC .AST. IASTNode)

o c l a s s PolyC .AST. Constructs . ASTModule ( implements PolyC
.AST. IASTNode)

o c l a s s PolyC .AST. Constructs . Terms . ASTNil ( implements
PolyC .AST. Constructs . Terms . IASTTerm)

o c l a s s PolyC .AST. Constructs . ASTOpDeclaration (
implements PolyC .AST. IASTNode)

o c l a s s PolyC .AST. Constructs .ASTParComp ( implements
PolyC .AST. IASTNode)

o c l a s s PolyC .AST. Constructs . Terms . ASTReal ( implements
PolyC .AST. Constructs . Terms . IASTTerm)

o c l a s s PolyC .AST. Constructs . ASTRestr ict ion ( implements
PolyC .AST. IASTNode)

o c l a s s PolyC .AST. Constructs . Terms . ASTString ( implements
PolyC .AST. Constructs . Terms . IASTTerm)

o c l a s s PolyC .AST. Constructs . Terms . ASTTrue ( implements
PolyC .AST. Constructs . Terms . IASTTerm)

o c l a s s PolyC .AST. Constructs . ASTTypeDeclaration (
implements PolyC .AST. IASTNode)

o c l a s s PolyC .AST. Types . ASTTypeId ( implements PolyC .AST.
Types . IASTType)

o c l a s s PolyC .AST. Constructs . ASTVarDec ( implements PolyC
.AST. IASTNode)

o c l a s s PolyC .AST. Constructs . ASTVars ( implements PolyC .
AST. IASTNode)

o c l a s s PolyC . Parser . Dec la ra t i on
o c l a s s PolyC . Environment . ElemList
o c l a s s PolyC . V i s i t o r . EqualCel l
o c l a s s PolyC . V i s i t o r . EqualList
o c l a s s PolyC . Except ions . ErrorCode
o c l a s s PolyC . Environment . HashList
o c l a s s java cup . runtime . l r p a r s e r

o c l a s s PolyC . Parser . Parser
o c l a s s PolyC . Main
o c l a s s PolyC . V i s i t o r .MGU
o c l a s s PolyC . V i s i t o r .NameGen
o c l a s s PolyC . Parser . Symbols
o c l a s s java . lang . Throwable ( implements java . i o .

S e r i a l i z a b l e )
o c l a s s java . lang . Exception

o c l a s s PolyC . Except ions . IVException
o c l a s s PolyC . Except ions . TypeException
o c l a s s PolyC . Except ions .

UndeclaredException
o c l a s s PolyC . Except ions . NonUni f iableExcept ion

o c l a s s PolyC .AST. TokenValue
o c l a s s PolyC . Environment . Type ( implements PolyC .

Environment . IValue , PolyC . V i s i t o r . IVReturn )
o c l a s s PolyC . V i s i t o r . TypeCheck ( implements PolyC .
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Vi s i t o r . IV i s i t o r )
o c l a s s PolyC . Environment . TypeEnvironment ( implements

PolyC . Environment . IEnvironment )
o c l a s s PolyC .AST. TypeList
o c l a s s PolyC . Environment . ValueEnvironment ( implements

PolyC . Environment . IEnvironment )

I n t e r f a c e Hierarchy

o i n t e r f a c e PolyC .AST. IASTNode
o i n t e r f a c e PolyC .AST. Constructs . Terms . IASTTerm
o i n t e r f a c e PolyC .AST. Types . IASTType

o i n t e r f a c e PolyC . Environment . IEnvironment
o i n t e r f a c e PolyC . Environment . IValue
o i n t e r f a c e PolyC . V i s i t o r . IV i s i t o r
o i n t e r f a c e PolyC . V i s i t o r . IVReturn

−−−−−−−−−−−−−−−− Generated by javadoc−−−−−−−−−−−−−−−−
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Appendix D

IVisitor.java

package PolyC . V i s i t o r ;

import PolyC .AST. ∗ ;
import PolyC .AST. Types . ∗ ;
import PolyC .AST. Constructs . ∗ ;
import PolyC .AST. Constructs . Terms . ∗ ;
import PolyC . Except ions . ∗ ;

/∗∗
∗ I n t e r f a c e t ha t r ep r e s en t s the base o f v i s i t o r s o f the

a b s t r a c t s y n t a c t i c t r e e o b j e c t s
∗/

public interface IV i s i t o r {

/∗∗
∗ Vi s i t f o r ASTBaseType
∗/

public IVReturn v i s i t (ASTBaseType as t ) throws IVException ;

/∗∗
∗ Vi s i t f o r ASTBasicCommand
∗/

public IVReturn v i s i t (ASTBasicCommand as t ) throws
IVException ;

/∗∗
∗ Vi s i t f o r ASTCommand
∗/

public IVReturn v i s i t (ASTCommand as t ) throws IVException ;

/∗∗
∗ Vi s i t f o r ASTCompType
∗/

public IVReturn v i s i t (ASTCompType as t ) throws IVException ;

/∗∗
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∗ Vi s i t f o r ASTCompound
∗/

public IVReturn v i s i t (ASTCompound as t ) throws IVException ;

/∗∗
∗ Vi s i t f o r ASTDecs
∗/

public IVReturn v i s i t (ASTDecs as t ) throws IVException ;

/∗∗
∗ Vi s i t f o r ASTDefinition
∗/

public IVReturn v i s i t ( ASTDefinit ion as t ) throws IVException ;

/∗∗
∗ Vi s i t f o r ASTFalse
∗/

public IVReturn v i s i t (ASTFalse a s t ) throws IVException ;

/∗∗
∗ Vi s i t f o r ASTId
∗/

public IVReturn v i s i t (ASTId as t ) throws IVException ;

/∗∗
∗ Vi s i t f o r ASTIds
∗/

public IVReturn v i s i t (ASTIds as t ) throws IVException ;

/∗∗
∗ Vi s i t f o r ASTInaction
∗/

public IVReturn v i s i t ( ASTInaction as t ) throws IVException ;

/∗∗
∗ Vi s i t f o r ASTInteger
∗/

public IVReturn v i s i t ( ASTInteger a s t ) throws IVException ;

/∗∗
∗ Vi s i t f o r ASTMessages
∗/

public IVReturn v i s i t (ASTMessages a s t ) throws IVException ;

/∗∗
∗ Vi s i t f o r ASTModule
∗/

public IVReturn v i s i t (ASTModule a s t ) throws IVException ;

/∗∗
∗ Vi s i t f o r ASTNil
∗/

public IVReturn v i s i t (ASTNil a s t ) throws IVException ;
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/∗∗
∗ Vi s i t f o r ASTOpDeclaration
∗/

public IVReturn v i s i t ( ASTOpDeclaration as t ) throws
IVException ;

/∗∗
∗ Vi s i t f o r ASTParComp
∗/

public IVReturn v i s i t (ASTParComp ast ) throws IVException ;

/∗∗
∗ Vi s i t f o r ASTReal
∗/

public IVReturn v i s i t (ASTReal a s t ) throws IVException ;

/∗∗
∗ Vi s i t f o r ASTRestrict ion
∗/

public IVReturn v i s i t ( ASTRestr ict ion as t ) throws IVException
;

/∗∗
∗ Vi s i t f o r ASTString
∗/

public IVReturn v i s i t ( ASTString as t ) throws IVException ;

/∗∗
∗ Vi s i t f o r ASTTrue
∗/

public IVReturn v i s i t (ASTTrue as t ) throws IVException ;

/∗∗
∗ Vi s i t f o r ASTTypeDeclaration
∗/

public IVReturn v i s i t ( ASTTypeDeclaration as t ) throws
IVException ;

/∗∗
∗ Vi s i t f o r ASTTypeId
∗/

public IVReturn v i s i t (ASTTypeId as t ) throws IVException ;

/∗∗
∗ Vi s i t f o r ASTVarDec
∗/

public IVReturn v i s i t (ASTVarDec as t ) throws IVException ;

/∗∗
∗ Vi s i t f o r ASTVars
∗/

public IVReturn v i s i t (ASTVars as t ) throws IVException ;
}
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