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Paula and Vasco who contributed to a great work environment.

I would like to express my gratitude to Nobuko Yoshida and Mariangiola Dezani-Ciancaglini
for their interest and availability to discuss this work, in particular the conversation type system.
I thank all the members of the jury of my PhD defense for their suggestions to improve the
thesis, in particular Rosario Pugliese and Nobuko Yoshida. I also thank my colleagues from
the Sensoria project for all the interesting discussions, and all the anonymous reviewers that
helped us improve our papers, even by rejecting them.

My thanks to Rui for the companionship during the period of the writing, to Étienne, Paolo
and Graham for their encouragement. To my friends João, Miguel, Renata and Ricardo, my
deepest thanks for always being there.

My sincere thanks to my “in-law” family Maurice, Nadia, Paolo and Rita for their support
and encouragement. My deepest thanks to my sister Cristiana and her husband Jorge, for their
pure friendship. To my parents, António and Conceição who made it all happen, thank you.
Special thanks to my son Tiago for being the joy of my life. To Francesca, for her unquantifiable
support, continuous encouragement and unconditional love: thank you.

This work was supported by the PhD Scholarship SFRH/BD/23760/2005 from the Fundação
para a Ciência e Tecnologia.

v



vi



Abstract

The service-oriented computing paradigm has motivated a large research effort in the past few
years. On the one hand, the wide dissemination of Web-Service technology urged for the devel-
opment of standards, tools and formal techniques that contributed for the design of more reliable
systems. On the other hand, many of the problems presented in the study of service-oriented
applications find an existing work basis in well-established research fields, as is the case of the
study of interaction models that has been an active field of research in the last couple of decades.
However, there are many new problems raised by the service-oriented computing paradigm in
particular that call for new concepts, dedicated models and specialized formal analysis tech-
niques. The work presented in this dissertation is inserted in such effort, with particular focus
on the challenges involved in governing interaction in service-oriented applications.

One of the main innovations introduced by the work presented here is the way in which
multiparty interaction is handled. One reference field of research that addresses the specification
and analysis of interaction of communication-centric systems is based on the notion of session.
Essentially, a session characterizes the interaction between two parties, a client and a server,
that exchange messages between them in a sequential and dual way. The notion of session is
thus particularly adequate to model the client/server paradigm, however it fails to cope with
interaction between several participants, a scenario frequently found in real service-oriented
applications. The approach described in this dissertation improves on the state of the art
as it allows to model and analyze systems where several parties interact, while retaining the
fundamental flavor of session-based approaches, by relying on a novel notion of conversation: a
simple extension of the notion of session that allows for several parties to interact in a single
medium of communication in a disciplined way, via labeled message passing.

The contributions of the work presented in this dissertation address the modeling and analysis
of service-oriented applications in a rigorous way: First, we propose and study a formal model for
service-oriented computing, the Conversation Calculus, which, building on the abstract notion
of conversation, allows to capture the interactions between several parties that are relative to
the same service task using a single medium of communication. Second, we introduce formal
analysis techniques, namely the conversation type system and progress proof system that can
be used to ensure, in a provably correct way and at static verification time (before deploying
such applications), that systems enjoy good properties such as “the prescribed protocols will
be followed at runtime by all conversation participants” (conversation fidelity) and “the system
will never run into a stuck state” (progress).

We give substantial evidence that our approach is already effective enough to model and
type sophisticated service-based systems, at a fairly high level of abstraction. Examples of
such systems include challenging scenarios involving simultaneous multiparty conversations, with
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concurrency and access to local resources, and conversations with a dynamically changing and
unanticipated number of participants, that fall out of scope of previous approaches.
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Sumário

O paradigma da Computação Orientada a Serviços suscitou um imenso esforço de investigação
nos últimos anos. Por um lado, a grande disseminação do uso da tecnologia de Serviços Web
requeria o desenvolvimento de standards, ferramentas e técnicas formais que contribúıssem para
o desenho de sistemas com menos erros de execução. Por outro lado, muitos dos desafios que
se apresentam no estudo de aplicações orientadas a serviços encontram bases de trabalho muito
fortes no seio de diversas comunidades cient́ıficas, como é o caso do estudo de modelos de
interacção que tem sido uma área de investigação muito activa nas últimas décadas. Con-
tudo, existem muitos problemas espećıficos ao paradigma da computação orientada a serviços
que requerem novos conceitos, modelos espećıficos e técnicas de verificação especializadas. O
trabalho apresentado nesta dissertação insere-se nesse esforço, endereçando, em particular, as
problemáticas associadas à interacção entre participantes numa aplicação orientada a serviços.

Um dos aspectos inovadores do trabalho apresentado aqui prende-se com a forma como são
tratadas as interacções entre vários participantes. Uma das abordagens tradicionalmente pro-
postas para modelar a interacção de sistemas orientados a serviços é baseada na noção de sessão.
Essencialmente, uma sessão caracteriza a interacção entre dois participantes, um cliente e um
servidor, que trocam mensagens entre si de uma forma sequencial e dual. A noção de sessão é
então particularmente adequada ao paradigma cliente/servidor, contudo trata-se de uma abor-
dagem que fica aquém quando se trata de modelar interacção entre vários participantes, um
cenário frequente em sistemas orientados a serviços reais. A abordagem aqui descrita melhora o
estado da arte pois permite modelar interacção entre vários participantes de uma forma igual-
mente canónica baseado numa inovadora noção de conversação: uma extensão simples da noção
de sessão que permite que múltiplos participantes interajam no mesmo meio de comunicação de
uma forma disciplinada, através de mensagens etiquetadas.

As contribuições do trabalho apresentado nesta dissertação endereçam a modelação e análise
de aplicações orientadas a serviços de uma forma matematicamente precisa: Em primeiro lugar,
propomos e estudamos um modelo formal para computação orientada a serviços, o “Conversa-
tion Calculus” (cálculo das conversações) que, baseando-se na noção abstracta de conversação,
permite especificar todas as interacções entre várias partes que dizem respeito à mesma tarefa
de serviço usando um único meio de comunicação. Em segundo lugar, introduzimos técnicas
formais, nomeadamente o “conversation type system” (sistema de tipos de conversações) e
o “progress proof system” (sistema de prova de progresso) que permitem garantir boas pro-
priedades dos sistemas, de forma matematicamente demonstrável e em tempo estático de veri-
ficação (antes que as aplicações sejam executadas), tais como “os protocolos previstos vão ser
seguidos pelos intervenientes” (“conversation fidelity”) e “o sistema nunca irá entrar num estado
bloqueado” (“progress”).
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Mostramos, de forma substancial, que na nossa abordagem é desde já posśıvel modelar e
tipificar aplicações orientadas a serviços bastante sofisticadas, a um ńıvel de abstracção bastante
alto. Exemplos de tais sistemas incluem cenários que envolvem várias conversações simultâneas
entre múltiplos participantes, com concorrência e acesso a recursos locais, e conversações com
um número dinâmico e imprevisto de participantes, cenários esses que estão fora do alcance de
abordagens prévias.
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Chapter 1

Introduction

The paradigm of Service-Oriented Computing has motivated much research effort in the past
few years. On the one hand, the wide dissemination of Web-Service technology urged for the
development of standards, tools and formal techniques that would contribute to the design of
more reliable systems — for example, systems that do not exhibit runtime errors and that never
run into deadlocked states. On the other hand, many of the problems presented in the study
of service-oriented applications find an existing work basis in well-established research fields,
as is the case of the study of interaction models that has been a very active field of research
in the last couple of decades. However, there are many new problems raised by the service-
oriented paradigm in particular that call for new concepts, dedicated models and specialized
formal analysis techniques. The work presented in this dissertation is inserted in such effort,
with particular focus on the challenges involved in governing interaction in service-oriented
applications.

This Introduction is divided in three parts and is structured as follows:

• The first part (Section 1.1) sets the background of the work and starts with a brief descrip-
tion of some of the state of the art industry standards for service-oriented technology, so as
to provide the reader with some context and identify some of the problems that motivate
our development (Section 1.1.1); then we present in general lines the research stream in
which our work is inserted in, and discuss some open problems — that fall out of the scope
of related approaches — so as to motivate our work (Section 1.1.2).

• The second part (Section 1.2) introduces our main technical developments: to pinpoint
our contributions we discuss how our approach differs from previous works in order to cope
with the previously mentioned open problems (Section 1.2.1). We proceed by identifying
the key features of service-oriented computing that are at the basis of the design principles
of our development (Section 1.2.2). Then we present our proposed model for service-
oriented computing — the Conversation Calculus — by first describing the primitives
(Section 1.2.3) and by programming some examples (Section 1.2.4). Finally we introduce
the key ideas behind our main contributions at the level of analysis techniques — the
conversation type system and the progress proof system (Section 1.2.5).

• The third and last part (Section 1.3) lists the contributions of the work and describes the
structure of the dissertation.
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1.1 Background

1.1.1 Service-Oriented Software Development

The goal of the service-oriented computing paradigm is to allow to build large systems from
smaller applications that are distributed throughout the network. The motivation is a recurring
argument in software development: (re)use software functionalities that are already available
in order to build more complex applications, instead of building everything from scratch. Fur-
thermore, it is well known that implementing a complex application by separating the basic
functionalities in dedicated modules can contribute to the reliability of the developed software,
as such modules can be separately tested and analyzed. Moreover, such modules can be re-
placed just as long as the external interfaces are kept intact, allowing for easier maintenance
and evolution of the applications. If we are to add to this classical set of arguments the fact
that services run remotely and therefore use remote resources to carry out their tasks, then we
obtain a highly appealing paradigm for software development.

A service-oriented application is built from the collaboration of several partners, each one
contributing by implementing a part of the overall functionality. Such collaborations are typically
established dynamically and without centralized control. Proposed industry standards for Web
Services technology such as UDDI [7] or WS-Discovery [6] give support for the dynamic discovery
of services, while SOAP [50] defines a protocol to support the decentralized information exchange
between Web-Services. A central concern in the development of service-oriented systems is thus
the design of interaction protocols that allow for the decentralized and dynamic collaboration
between several parties in a reliable way.

The Web Services Choreography Description Language (WS-CDL) [60] is one of the proposals
for languages that support the specification of Web-Service interaction. The term choreography
reflects the idea of a decentralized dynamic setting: partners interact as if they were dancers
on a stage, and due to a well-determined choreography everyone knows what they must do in
order for a smooth performance without any bumps or clashes. Such a language provides the
means to structure the interaction protocols and reason about their correctness. At the level
of programming language support for web services we find proposals such as the Web Services
Business Process Execution Language (WS-BPEL) [4]. From a system developer point of view,
it would be interesting to be able to take a WS-BPEL program and check if it complies with a
WS-CDL choreography so as to convey the properties guaranteed by the protocol analysis to the
implementation. Similar problems are at the basis of the proposals of Carbone et al. [30] and
van der Aalst et al. [91]. The first puts forth a methodology for projecting global interaction
specifications, similar to WS-CDL, to local process specifications, so as to guarantee — by
construction — that local processes respect the globally defined choreography. The latter builds
on a translation of (abstract) BPEL process specifications to Petri nets [82] so as to set the
expected global interaction model, which is then used as a reference to be compared with the
actual message exchanges (reported in an event log).

A central concern in service-oriented software development may be expressed by the following
question: “is this service-oriented system implemented over collaborations which follow well-
defined protocols of interaction?”. In general, such a question raises difficult analysis problems
in such a dynamic and decentralized setting, since it involves accounting for all the possible
runtime behaviors of the applications just by looking at their source code. It is an even harder

2



task — not to say impossible — when the semantics of the programming languages considered are
defined in an informal descriptive way, which may leave room for their subjective interpretation
and lead compiler developers to produce different behaviors from the same source code.

This informal discussion motivates the general approach of the work reported in this dis-
sertation, which is to develop models equipped with a mathematically defined semantics and
formal analysis techniques over such models, in order to provide mechanisms that give answers
about critical properties of the developed applications at static verification time. Typically, such
models and techniques are not intended to be directly usable in practice, as they have to abstract
from many details in order to make the theories tractable and presentable. However, they are
intended to serve as a foundational basis for the design of practical programming languages and
software development methodologies, so it is important to aim at general, simple and readable
ideas in order to allow for them to be conveyed to a more practical setting.

1.1.2 Models of Interaction

The pioneering work of Milner back in the 80’s can be referred to as one of the most influential
work at the origins of the research field on models of interaction. The Calculus of Communi-
cating Systems (CCS) proposed by Milner in 1980 [74], already presented the basic elements
of interaction in a minimal and elegant way, and perhaps more importantly, put forth a math-
ematical interpretation of these basic ingredients. The CCS model does not comprehend a
notion of distribution, as it does not explicitly consider sites nor localities, instead it presents
a more abstract model for general concurrent interaction, regardless of the spatial configura-
tion of systems. One of the basic distilled ingredients to specify such concurrent interactions
is the parallel composition of processes, denoted in CCS by ProcessA | ProcessB which repre-
sents that ProcessA and ProcessB are running in parallel or simultaneously. Other ingredient
is a communication mechanism that allows for parallel processes to synchronize, namely action
capabilities for which there is a notion of duality, e.g., inputs and outputs. In CCS we specify
by act .ProcessA a process that is willing to exercise the action act , and after which proceeds in
accordance to what is specified by ProcessA. Considering act is the dual action of act then:

act .ProcessA | act .ProcessB

specifies the parallel composition of two processes that are willing to perform dual actions. Hence
they can synchronize and evolve to the configuration ProcessA | ProcessB , an evolution which
is usually written with the help of the → symbol (P → Q means P evolves to Q):

act .ProcessA | act .ProcessB → ProcessA | ProcessB

Another primitive allows to specify alternative behavior, the choice operator. The specification
act .ProcessA + otherAct .ProcessB denotes a process that is willing to perform action act and
evolve to ProcessA or perform action otherAct and evolve to ProcessB . For instance, if placed
in a context that is willing to perform the dual of act , we have the following evolution:

act .ProcessC | act .ProcessA + otherAct .ProcessB → ProcessC | ProcessA

Actions in CCS are represented by names and their dual actions by their co-names. Names
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can be specified to be known only to a part of the system. For instance, in the following:

ProcessC | (νact)(act .ProcessA | act .ProcessB)

we specify by (νact) the hiding of name act to the part of the system act .ProcessA | act .ProcessB
making it unaccessible to ProcessC . In such way, it is possible to specify some process inter-
actions which are local to a part of the system. In fact, the only way to introduce a notion
of spatial configuration in CCS is through name hiding: if some name is known only to a part
of the overall system and cannot be forged by other parts, then we can identify a subsystem
corresponding to the part of the system where that name is known. Such spatial configurations
do not aim at representing physical distribution, being more general and able to capture notions
of logical distribution.

The CCS model failed to capture dynamic systems due to the fact that the spatial config-
uration provided by the name hiding is hardwired. This led to the proposal of the π-Calculus
by Milner et al. [79], which extended the CCS with the capability of name passing. By allow-
ing names to be passed around between processes, the π-Calculus model is able to capture the
dynamic configuration of systems. For instance, consider the following specification:

letsTalk(x).x(“hi”) | (νprivateChat)( letsTalk(privateChat).privateChat(msg) )

which represents the parallel composition of two processes, where the one on the left hand side
is waiting to receive a name through a communication on letsTalk , and after which uses this
received name to send a text message (“hi”), and the one on the right hand side, that is willing
to send a private name on letsTalk , and after which waits to receive a text message on that
private name. Through a synchronization on letsChat the name privateChat is passed between
the processes, which allows the process on the left to dynamically get to know name privateChat :

letsTalk(x).x(“hi”) | (νprivateChat)( letsTalk(privateChat).privateChat(msg) )
→
(νprivateChat)( privateChat(“hi”) | privateChat(msg) )

Notice the scope of the name hiding (or name restriction, to be more accurate with π-Calculus
terminology) is enlarged as a consequence of the communication (commonly referred to as scope
extrusion). This ability to model systems with such dynamic configurations through name
mobility lifted the π-Calculus to the status of the reference foundational model for specifying
dynamic concurrent systems. It has motivated and influenced countless research efforts on
the modeling and analysis of concurrent systems. It has also influenced the design of several
prototype programming languages [8, 46, 86, 93, 97].

Among the most popular analysis techniques for programming languages in general we iden-
tify type systems. Types provide mechanisms to prevent runtime errors, and are also sometimes
useful to extract information about programs that helps reasoning about their runtime behavior.
For the π-Calculus in particular there have been many type systems proposals for multiple pur-
poses. The first type system for the π-Calculus was Milner’s sorting system [77] which addressed
the problem of arity mismatch errors in communication, i.e., when communications cannot take
place because the output and input disagree on the length of the tuple being communicated.
Afterwards, other type disciplines were proposed to address the consistent usage of names for
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input and output introduced by Pierce et al. [84], to impose linearity constraints on the usage
of names proposed by Kobayashi et al. [64], just to mention a few. More refined type systems
for the π-Calculus have been developed over the years. Examples include proposals where types
that characterize the behavior of systems are themselves full-fledged process models [37], oth-
ers that propose a general framework for π-Calculus type systems [58], yet others have more
specialized purposes such as to guarantee deadlock freedom [63], to address secure information
flow [56], and to analyze the usage of resources [20, 53, 66].

One prominent proposal for type systems that aim at structuring the interaction of com-
municating concurrent systems specified in the π-Calculus is that of session types, introduced
by Honda [54] and by Honda et al. [55]. Session types characterize the interaction between
two parties, typically a client and a server, that play a symmetric sequential interaction game
in a dedicated medium of communication. Session types have influenced the development of
several proposals targeting many topics in computer science, such as object oriented program-
ming [29, 41], functional programming [94] and security [39]. They have also influenced ap-
proaches at a more low-level of application, namely at the level of operating system design [43]
and of middleware communication protocols [90].

Session types provide a mechanism to specify and reason about protocols of interaction in
a client/server setting. It is thus natural that we find them at the basis of several proposals
for modeling and analyzing service-oriented systems (e.g., [12, 13, 68]). However, approaches
based on the classical dyadic session types are not able to capture interaction between multiple
participants, at least in a typeful way, leaving scenarios such as a service collaboration involving
several parties out of their scope. To solve this problem some works have extended session types
so as to provide support for multiparty interaction, namely the proposals of Honda et al. [57],
of Bettini et al. [9] and of Bonelli et al. [11]. However, such approaches rely on fixed system
configurations that do not seem fit to represent the dynamic nature of service collaborations.

In particular, the work of Honda et al. [57] addresses the problem of verifying that all
parties in a multiparty session follow a well-defined protocol of interaction, based on a global
specification (a global type) that describes the point to point interactions between parties.
Such a specification leaves little room for dynamic collaborations as all individual roles in the
interaction have to be a priori known. This approach is extended in the work of Bettini et
al. [9] but still not in the direction of capturing more dynamic systems. Instead, the focus is
on the difficult problem of guaranteeing deadlock freedom of systems where parties are involved
in several of such multiparty interactions, based on a notion of ordering of the communication
mediums. However, the technique presents limitations at the level of capturing systems where
parties dynamically gain access to the communication mediums. Such open problems form the
basis of the research questions to which the work presented in this dissertation contributes to
answer, namely:

• How do we statically ensure that interactions between distributed participants follow well-
defined protocols (protocol safety), without central control?

• How do we ensure that protocol safety is guaranteed, even in challenging scenarios where
unanticipated participants join the collaborations dynamically?

• How can we statically verify, just by analyzing the source code (avoiding runtime moni-
toring) that protocol safety is ensured in such complex scenarios?
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• How can we certify that systems where parties are simultaneously involved in several of
such complex interaction protocols are free from deadlock?

In the rest of the Introduction we describe the main ideas behind our development and how
exactly we contribute to solve the above listed problems.

1.2 Modeling and Analyzing Service-Oriented Systems

While most traditional service-oriented applications can be modeled using the client/server
paradigm, since services provided to a final user frequently fit in such description, this does not
seem to be the case for general service-oriented systems. As an example, consider a service that
implements a whole business process that has to simultaneously cope with electronic purchasing,
supply chain management, costumer service interfaces, and so on and so forth. In such a
complex application we are most likely to find collaborations between many service providers,
for instance at the level of the supply chain management that may rely on the collaboration
of external business partners to perform restocking operations or to carry out the shipping of
goods. Hence, although a single interaction between service partners is likely to be peer-to-peer,
a single protocol may involve several parties that collaborate on a particular task. Clearly, in
order for a particular service collaboration to take place, the several partners involved must
share a common understanding of the overall protocol of interaction.

The basic ingredients of a service-oriented “soup” are thus a number of software applications
that are distributed throughout the network and that are exchanging messages in order to
collaborate in a particular task. A key concept for the organization of service-oriented computing
systems is this notion of a set of interactions which are related by a common task: a conversation.
A conversation is a structured, not centrally coordinated, possibly concurrent, set of interactions
between several parties. This abstract notion of conversation is at the basis of our development:
a single conversation encapsulates the interactions between several service partners that are
relative to the same task, in such way allowing to reason and analyze the protocols of a particular
task in a dedicated way. Our notion of conversation can be viewed as a generalization of sessions.
We elaborate on this point next, by means of a more detailed comparison.

1.2.1 From Binary to Multiparty Interaction

Dyadic sessions capture the interaction between two participants, typically a client and a server,
that exchange messages between them in a sequential and symmetric way: if one is about to
send a message then the other is ready to receive it and vice-versa. Sessions provide with a
means to encapsulate a set of related interactions, and thus serve as a simple mechanism for the
specification and analysis of process interaction.

Consider, for example, the message sequence chart shown in Figure 1.1 which illustrates a
simple service interaction. A Buyer wants to buy an item from a Seller using service BuyService
to that end. For starters, Buyer invokes the BuyService. After that, Buyer sends to Seller
message buy which specifies the item he wants to buy, and Seller replies back to Buyer on
message price informing on the price of the item. Messages buy and price are related by the
same service interaction, instantiated at the moment of service invocation. This scenario can
be captured by a session: the interaction starts by the creation of a medium of communication
which is shared by the two parties, after which messages can be exchanged in that medium.
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Figure 1.1: Buyer Seller Interaction.

The notion of session is thus particularly adequate to capture the client/server paradigm,
however it falls short when it comes to modeling interaction between several participants, a
scenario commonly found in real service-oriented applications. The only way to involve several
participants in a session is by delegating participation: parties interacting in a session can ask
another party to replace them, so while the other party gains access to the session, the delegating
party completely loses access to it. Thus, this delegation mechanism does not support multiparty
interaction. However, we may ask if a more refined notion of delegation can give support to
multiparty interaction: what if delegating parties do not lose access to the interaction medium
and may continue interacting in it?

Consider a variation of the previous example shown in Figure 1.2, illustrating a typical
service collaboration (adapted from [30]). As in the previous example, Buyer and Seller start
a service collaboration through the BuyService and exchange messages buy and price. After
that Seller asks Shipper to join in on the ongoing collaboration, by invoking ShippingService.
Seller then informs Shipper on the product to be delivered by sending message product. So,
although Seller asked Shipper to join in on the ongoing collaboration, he did not lose access to
it. Finally, Shipper directly informs Buyer on the delivery details by sending message details.
The service conversation as a whole consists in the exchange of messages buy, price, product
and details, between the three partners Buyer, Seller and Shipper.

This scenario can be modeled by our notion of conversations: for starters, a communication
medium is created and shared between Buyer and Seller, supporting message exchanges between
the two parties, just like in a session. Then, Shipper is asked to join the ongoing service
collaboration and is given access to the shared communication medium, after which messages
can be exchanged between the three parties. Thus, access to the conversation medium can be
dynamically given to other parties, while delegating parties can keep interacting in it: this can
be viewed as a form of partial delegation. This feature is not supported by sessions, and thus
distinguishes our conversations from sessions, and allows us to address such challenging scenarios
of service collaborations that involve a dynamically determined set of multiple participants,
scenarios that fall out of scope of previous session-based approaches.

We describe the relation between conversations and sessions as follows: conversations are
a simple extension of the notion of session so as to support multiparty interaction in a single
medium of communication. Conversations, like sessions, provide with a means to encapsulate a
set of related interactions. However, unlike sessions, the set of interactions in a conversation may
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Figure 1.2: Buyer Seller Shipper Interaction.

take place between several different parties. As in sessions, a single interaction in a conversation
is binary in the sense that for a single message at a given moment there is at most one party
ready to send it and one party waiting to receive it. However, unlike sessions, several parties may
be willing to concurrently interact (in distinct messages) in a conversation. Conversations, like
sessions, are initially established between two parties. However, unlike sessions, conversations
support the dynamic join (and leave) of participants, allowing for the set of participants in a
conversation to dynamically increase (or decrease) in number.

This basic understanding of our notion of conversation already allows us to see how they
can be useful to model multiparty service collaborations. Before going into how we instantiate
these ideas in a concrete model, we take a step back and describe, from an abstract point of
view, the key features of service-oriented computing that are addressed in our development.
We identify the following key aspects of the service-oriented computational model: distribution,
process delegation, communication contexts and loose coupling.

1.2.2 Key Aspects of Service-Oriented Computing

Distribution

From the point of view of a service client, the main motivation behind the invocation of a service
is the will to have someone else to perform a task in his stead. This leaves the service client
free to carry out some other task, allowing to share work load or more importantly to support
a notion of specialization in a service collaboration: one partner can concentrate on tasks it
can autonomously provide solutions for, and delegate other tasks to partner services. So the
purpose of a service call is the delegation of a task to some other partner that will use its own
remote resources to carry out the desired functionality. This means the relationship between
service provider and service client makes particular sense when these are two separate entities,
with access to different resources and capabilities — typically running on distinct sites — which
implies there is an underlying distributed model.

An essential aspect which we have already identified above is the notion of “remote pro-
cess delegation”. Remote process delegation differs from the more restricted notion of “remote
operation invocation”, as known, e.g., from distributed object systems, or even from earlier
client-server or remote procedure call based systems.
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Process Delegation versus Operation Invocation

In a distributed computing setting the only communication mechanism actually implementable
is message passing, which yields an asynchronous model of interaction. On top of this basic
mechanism more sophisticated abstractions may be represented, namely remote procedure call
(passing first order data) and remote method invocation (also passing remote object references),
which are used in a call/return way. Instead, a service invocation entails the remote execution of
a complex task which may require a richer interaction pattern, and may actually be executed by
a number of parties. In general, a service client delegates a whole interactive activity (technically,
a process) to the service provider. Therefore, we view service invocation at a still higher level
of abstraction with respect to remote procedure call and remote method invocation.

As typical examples of sub-activities that may be delegated to external parties we may think
of a service to book flights (cf., a travel agency), a service to order goods (cf., a purchasing
department), a service to process banking operations (cf., an ATM), a service to store and
retrieve documents (cf., an archive), a service to receive and send mail (cf. an expedition
service), and so on. The distinguishing feature of service-oriented computing, in our view, is an
emphasis on the remote delegation of interactive processes, rather than on the remote delegation
of individual operations.

The remote process delegation paradigm seems more general than the remote operation
invocation paradigm, at least at our current level of description, since one can always see an
individual operation as a special case of an interactive process. Conversely, one may argue that
the delegation of a given interactive process may always be implemented, at a lower level, by
the invocation of individual remote operations. However, such individual remote operations are
nevertheless contextually connected by belonging to the same activity, and most likely have to
carry around information that explicitly or implicitly relates them. It thus seems that a natural
communication abstraction for service-oriented computing is one that is able to accommodate a
set of contextually related interactions.

Communication Contexts

A context is a space where computation and communication happens. A context may have a
spatial meaning, e.g., as a site in a distributed system, but also a behavioral meaning, e.g., as
a context of conversation, or a session, between two or more partners. For example, the same
message may appear in two different contexts, with different meanings. In practice, one finds
that such messages usually contain information that uniquely relates them to some contextual
information — e.g., web-service technology tags messages with correlation tokens that serve as
a means to uniquely identify the service conversation to which the messages belong to. Having
a means to explicitly represent these contexts seems a convenient mechanism to structure and
encapsulate service conversations.

A context is also a natural abstraction to group and publish together closely related services.
Typically, services published by the same entity are expected to share common resources, and
such sharing may be observed at several scales of granularity. Extreme examples are an object,
where the service definitions are the methods and the shared context the object internal state,
and an entity such as, e.g., Amazon, that publishes several services for many different purposes
which share many of Amazon’s internal resources, such as databases, payment gateways, etc..
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On the one hand, contexts serve as a means to group related interactions and to group
the resources which are shared by some subsystem. On the other hand, contexts introduce
boundaries between not so closely related computation and communication. Such boundaries
are essential to support the loosely-coupled design of systems.

Loose Coupling

A service-based computation usually consists in an collection of remote partner service instances,
in which functionality is to be delegated, some locally implemented processes, and one or more
control (or orchestration) processes. The flexibility and openness of a service based design, or
at least an aimed feature, results from the loose coupling between these various ingredients.
For instance, an orchestration describing a “business process”, should be specified in a quite
independent way of the particular subsidiary service instances used, paving the way for dynamic
binding and dynamic discovery of partner service providers. In the web services description
language WSDL [38], loose coupling to external services is enforced, to some extent, by the
separate declaration of an abstract level, that describes a service by the messages it sends and
receives (a behavioral interface), and of a concrete level which specifies what is the transport and
wire format information associated to each service. In such way, services that share an abstract
interface can be referred to generically, regardless of lower-level communication details. In the
modeling language SRML [45], the binding between service providers and clients is mediated by
“wires”, which describe plugging constraints between otherwise hard to match interfaces.

To avoid tight coupling of services, the interface between a service instance and the context of
instantiation should in general be connected through appropriate mediating processes, in order
to hide and/or adapt the service communication protocols (which are in some sense dependent
of the particular implementation or service provider chosen) to the abstract behavioral interface
expected by the context of instantiation. All computational entities cooperating in a service task
should then be encapsulated (delimited inside a conversation context), and able to communicate
between themselves and the outer context only via some general message passing mechanism.

We focus on this minimal set of key features of service-oriented computing, leaving out
of the scope of our approach other aspects that must be addressed in a full-fledged model of
service-oriented computation. The most obvious ones include failure handling and resource
disposal, security (in particular access control, authentication and secrecy), time awareness, and
a clean mechanism of interoperation. This last aspect seems particularly relevant, and certainly
suggests an important evaluation criteria for any service-oriented computation model. Given
this basic characterization of the service-oriented setting we are aiming at, we may now present
our proposed model for service-oriented computing.

1.2.3 The Conversation Calculus

In this section we present our proposal of a model for service-oriented computing, the Conver-
sation Calculus (CC) [23, 95]. We start by describing the primitives individually, and how they
instantiate the previously mentioned aspects of service-oriented computing.

The Conversation Calculus can be seen as a specialization of the π-Calculus for service-
oriented computing. For starters, we consider the basic structural operators (borrowed from the
π-Calculus and found in most process algebra for concurrent systems): we consider the parallel
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composition of processes P | Q which denotes processes P and Q are running simultaneously,
the choice operator P +Q which expresses a process that either performs as P or performs as Q,
the inactive process 0 and the name restriction operator (νa)P which denotes name a is local to
process P . Then, we introduce primitives specific to the service-oriented computational model.

Conversation Context Access

A conversation context is a medium where related interactions can take place. Each context is
identified by a unique name (cf., a URI). Thus, to interact in a conversation a process needs
only to know the conversation name in order to access the respective conversation context. This
allows for processes to access conversations from anywhere in the system. We denote by:

c J [ P ]

a process that is accessing conversation with name c and interacting in it according to what
P specifies. A conversation context may actually be distributed in several access points, and
processes interact seamlessly between distinct access points of the same conversation context.
Intuitively, a conversation context may be seen as a virtual chat room where remote participants
exchange messages, while being simultaneously engaged in other conversations.

Potentially, each access point will be placed at a different enclosing context. On the other
hand, any such endpoint access will necessarily be placed at a single enclosing context. The
relationship between the enclosing context and such an access point may be seen as a call/callee
relationship, but where both entities may interact continuously.

Context Awareness

A process interacting in a given conversation context should be able to dynamically access its
identity. This capability may be realized by the construct:

this(x).P

The variable x will be replaced inside the process P by the name of the current context. For
instance the process c J [ this(x).P ] evolves to c J [ P{x/c} ]. This primitive bears some
similarity with the self (or this) of object-oriented languages, even if it has a different semantics.

Communication

Communication between subsystems is realized by means of message passing. Since several
messages may be concurrently exchanged in a single conversation we distinguish messages with
labels. We denote the input/output of messages from/to the current conversation context by:

MessageLabel�?(x1, . . . , xn).P MessageLabel�!(v1, . . . , vn).P

In the output case, the terms vi represent message arguments, values to be sent, as expected. In
the input case, the variables xi represent message parameters and are bound in P , as expected.
The target symbol � (read “here”) says that the corresponding communication actions must
interact in the current conversation context. Second, we denote the input and the output of
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messages from/to the outer context by the constructs:

MessageLabel�?(x1, . . . , xn).P MessageLabel�!(v1, . . . , vn).P

The target symbol � (read “up”) says that the corresponding communication actions must
interact in the (uniquely determined) outer context, where “outer” is understood relatively to
the context where the output/input process is running.

Service-Oriented Idioms

While we do not consider them as primitives of the model (since they can be expressed using
the basic communication mechanisms), it is useful to introduce some idioms dedicated to the
publication and instantiation of services, as well as an idiom that allows parties to join in on
ongoing conversations. A context (which may idiomatically represent a site in our model) may
publish one or more service definitions. Service definitions are stateless entities, pretty much as
function definitions in a functional programming language. A service definition is expressed by:

def ServiceName⇒ ServiceBody

where ServiceName is the service name, and ServiceBody is the process that should be executed
on the provider side upon service instantiation, or, in other words, the service body. In order to
be published, such a definition must be inserted into a context, for instance:

ServiceProvider J [ def ServiceName⇒ ServiceBody · · · ]

Such a published service may be instantiated by means of an instantiation idiom:

new ServiceProvider · ServiceName⇐ ClientProtocol

where ServiceProvider is the name of the context where the service ServiceName is published,
and the ClientProtocol describes the process that will run on the client side. The outcome of
a service instantiation is the creation of a new globally fresh conversation identity (a hidden
name), and the creation of two access points to the conversation named by this fresh identity.
One will contain the ServiceBody process and will be located inside the ServiceProvider con-
text. The other will contain the ClientProtocol process and will be located in the same context
as the new expression that requested the service instantiation. These newly created conversa-
tion access points appear to their caller contexts as any other local processes, as ServiceBody
and ClientProtocol are able to continuously interact in the calling context by means of � di-
rected messages. As expected, interactions between ServiceBody and ClientProtocol in the new
conversation are realized by means of � directed messages.

Primitives like service publication and instantiation are commonly found in session-based
languages, however we do not consider them as native to the underlying model, rather just useful
programming idioms that can be programmed using the canonical communication primitives.
The join idiom we introduce next is new to our approach. In fact, we believe it is not feasible
to represent (at least not in a typeful way) in previous session based approaches.

In our model conversation identifiers may be manipulated by processes if needed (accessed
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via the this(x).P ), passed around in messages and subject to scope extrusion: this allows us to
model multiparty conversations by the progressive access of multiple, dynamically determined
partners, to an ongoing conversation. Joining of another partner to an ongoing conversation is
a frequent programming idiom, that may be conveniently abstracted by the:

join ServiceProvider · ServiceName⇐ ContinuationProcess

construct. The join and the new expression are implemented in a similar way, both rely-
ing on name passing. The key difference is that while new creates a fresh new conversation,
join allows a service ServiceName defined at ServiceProvider to join in the current conversa-
tion, while the calling party continues interacting in the current conversation as specified by
ContinuationProcess. So, even if the new and join are represented in a similar way, the abstract
notion they realize is actually very different: new is used to start a fresh conversation between
two parties (e.g., used by a client that instantiates a service) while the join is used to allow
another service provider to join an ongoing conversation (e.g., used by a participant in a service
collaboration to dynamically delegate a task to some remote partner). At a very high level of
description the two primitives can be unified as primitives that support the dynamic delegation
of tasks (either in a unary conversation or in a n-ary conversation).

1.2.4 Programming in the Conversation Calculus

In this section we provide some more intuition on the meaning of the language primitives by
programming some examples. We start by coding the example described in Section 1.2.1, which
is simple enough to allow us to describe how the system evolves, so as to illustrate the mechanics
of the language, then we present a more complex example which illustrates a collaboration where
the number of partners simultaneously involved in the collaboration actually depends on some
condition established at runtime. In the examples we assume an extension of the language so
as to consider basic values, and a standard if—then—else— statement.

The Purchase Scenario

For a first example of a program in our language let us go back to the interaction described
in the message sequence chart of Figure 1.2. For starters we have three parties Buyer, Seller
and Shipper, which we model (idiomatically) by considering three distinct conversation contexts
named accordingly, so the whole system is specified by the parallel composition of three contexts:

Buyer J [ (· · · ) ] | Seller J [ (· · · ) ] | Shipper J [ (· · · ) ]

The Buyer party first invokes the service BuyService published by Seller, using the new Seller ·
BuyService ⇐ (· · · ) idiom, which specifies the name of the service (BuyService) and the
context where the service is available at (Seller). The service invocation specifies the Buyer’s
interaction protocol in the service instance: first it sends message buy, then it receives message
price and finally it receives message details. The CC code for the Buyer party is:

new Seller · BuyService⇐ buy�!(prod).price�?(p).details�?(d)
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where prod is a value that identifies the product (e.g., a string), p is the variable that will be
instantiated with the price of the product (e.g., a floating point value) and d is the variable that
will be instantiated with the delivery information (e.g., a string). The messages, defined with
the � direction, will be exchanged with the other parties collaborating in the service task.

The Seller party publishes the BuyService by means of the def BuyService⇒ (· · · ) idiom.
The interaction protocol of the Seller in the service collaboration is such that it first receives
message buy and then it sends message price. In between, we consider that to determine the
price there is a consult to a database local to Seller, which is accessed via a mediating process
that interacts in the Seller conversation. For starters, the Seller’s CC code for the BuyService

specifies:
buy�?(prod).askPrice�!(prod).priceVal�?(p).price�!(p). (· · · )

To interact with the database, the service code must access the caller context (the Seller context)
through � directed messages, so while messages buy and price are directed to the service
conversation (�) and will be exchanged with the Buyer party, messages askPrice and priceVal

are directed to the enclosing conversation (�) and will be exchanged with the database interface.
We abstract from the specification of the database and consider a process PriceDB which is
waiting to receive an askPrice message, carrying the product identification, and then replies
back with a priceVal message carrying the price information.

After sending message price the Seller invites Shipper to join in on the ongoing conversation.
This is supported by the join Shipper ·DeliveryService⇐ (· · · ) idiom. After inviting Shipper
in, Seller actually gets to interact with Shipper, in the ongoing conversation Shipper has just
joined, by sending a product message containing the product identification. We may now write
the whole specification of the BuyService definition.

def BuyService⇒ buy�?(prod).askPrice�!(prod).
priceVal�?(p).price�!(p).
join Shipper · DeliveryService⇐ product�!(prod)

Finally we write the code for the Shipper, which publishes DeliveryService that specifies in
the service code that a product message is received and a details message is sent:

def DeliveryService⇒ product�?(p).details�!(data)

We place the code for the three parties in their respective contexts, along with the PriceDB
process in the Seller context, and obtain the specification of the whole system:

Buyer J [ new Seller · BuyService⇐ buy�!(prod).price�?(p).details�?(d) ]

|
Seller J [ PriceDB |

def BuyService⇒ buy�?(prod).askPrice�!(prod).
priceVal�?(p).price�!(p).
join Shipper · DeliveryService⇐ product�!(prod) ]

|
Shipper J [ def DeliveryService⇒ product�?(p).details�!(data) ]
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We now illustrate how the system evolves so as to provide some more intuition on the semantics
of the primitives of the language. For starters, the BuyService is instantiated which results in
the creation of a fresh conversation, say buyChat , and of two access points to this conversation,
one held by Buyer and the other held by Seller. The system thus evolves to:

(νbuyChat)

(Buyer J [ buyChat J [ buy�!(prod).price�?(p).details�?(d) ] ]

|
Seller J [ PriceDB |

buyChat J [ buy�?(prod).askPrice�!(prod).
priceVal�?(p).price�!(p).
join Shipper · DeliveryService⇐ product�!(prod) ] ] )

|
Shipper J [ def DeliveryService⇒ product�?(p).details�!(data) ]

At this point message buy can be exchanged between Buyer and Seller in conversation buyChat ,
after which the system evolves to:

(νbuyChat)

(Buyer J [ buyChat J [ price�?(p).details�?(d) ] ]

|
Seller J [ PriceDB |

buyChat J [ askPrice�!(prod).
priceVal�?(p).price�!(p).
join Shipper · DeliveryService⇐ product�!(prod) ] ] )

|
Shipper J [ def DeliveryService⇒ product�?(p).details�!(data) ]

After that, messages askPrice and priceVal can be exchanged between the service code and the
PriceDB process in conversation Seller . Then, Seller sends to Buyer the price data in message
price in conversation buyChat . At this point the system has evolved to:

(νbuyChat)

(Buyer J [ buyChat J [ details�?(d) ] ]

|
Seller J [ PriceDB ′ |

buyChat J [ join Shipper · DeliveryService⇐ product�!(prod) ] ] )

|
Shipper J [ def DeliveryService⇒ product�?(p).details�!(data) ]

Now, the Seller participant is willing to invite Shipper to join in on the ongoing conversation
buyChat . The DeliveryService is invoked through the join idiom, which gives access to the
conversation name to the Shipper, allowing for it to collaborate on the ongoing service task, and
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results in the establishment of a third access point to conversation buyChat , held by Shipper:

(νbuyChat)

(Buyer J [ buyChat J [ details�?(d) ] ]

|
Seller J [ PriceDB ′ |

buyChat J [ product�!(prod) ] ]

|
Shipper J [ buyChat J [ product�?(p).details�!(data) ] ] )

At this point messages product and details can be exchanged between Seller and Shipper, and
between Shipper and Buyer, respectively, completing the purchase collaboration.

The Finance Portal Scenario

This second example shows a more complex interaction protocol inspired by the Finance Case
Study from the Sensoria Project [59]. To simplify presentation of the example we abstract
away from some details, and focus on the aspects that are most important so as to provide a
general idea on the programming flavor supported by the language. We consider a bank portal
which is used by clients to mediate operations between them and a bank. Some operations
require consult and authorization by bank clerks and bank managers, as is the case of a scenario
where the client requests a credit.

We model such a credit request scenario, described as follows: the client invokes a service
available in a bank portal and places the request, providing his identification and the desired
amount. His request is processed by the portal, which asks a bank clerk to assess the risk of the
request. If the risk is high then the request is refused, otherwise the bank manager is consulted to
approve the credit. If consulted, the bank manager decides and the client is notified accordingly.
Also, if the manager’s decision is to approve the credit then an automated service is notified to
schedule the money transfer. Then, the automated service is informed by the client on the date
of the transfer. The message sequence chart for the service interaction is shown in Figure 1.3.

We start by programming the client, assuming there is an ClientTerminal process responsible
for interacting with the human client, e.g., by displaying information on a screen.

Client J [
ClientTerminal
|
new BankPortal · CreditRequest⇐

request�!(myId , amount).
(requestApproved�?().transferDate�!(date).approved�!()
+
requestDenied�?().denied�!()) ]

The protocol of the client role in the service is such that he first sends message request con-
taining the relevant information, then waits for either one of two messages that inform on the
bank’s decision: either the request has been approved (signaled by message requestApproved)
or it has been denied (signaled by message requestDenied). In either case the ClientTerminal
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Figure 1.3: Credit Request Interaction.

is informed accordingly, through � directed messages approved and denied. In the case the
request is approved, and before notifying the ClientTerminal , message transferDate is sent
informing on the date when the funds are to be made available.

Next we show the code of the CreditRequest service definition available at the BankPortal
context. To indicate that the service is persistently available we use the notation ? def.

BankPortal J [
? def CreditRequest⇒

request�?(userId , amount).
join Clerk · RiskAssessment⇐

assessRisk�!(userId , amount).
riskVal�?(risk).
if risk = HIGH then requestDenied�!()
else this(clientChat).

new Manager · CreditApproval⇐
requestApproval�!(clientChat , userId , amount , risk) ]

The service code starts by receiving the request, then proceeds by asking service RiskAssessment
provided by Clerk to join the conversation, sending to the clerk the relevant information in
message assessRisk. The clerk then replies in message riskVal informing on his conclusion
(we abstract away from the specification of the RiskAssessment service, assuming its interface
is completely defined by messages assessRisk and riskVal). Given the risk information the
CreditRequest service code then acts accordingly to the risk factor: if it is high then the
request is declined and the client is notified (message requestDenied); otherwise the manager
is asked to approve the credit, and to that end service CreditApproval provided by Manager is
instantiated, and a request for approval is placed. Notice that although service CreditApproval
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is not asked to join in (instead, a new service instance is created), the manager will further along
continue the interaction with the client. To that end the identity of the conversation with the
client (clientChat) is passed along to the manager (accessed via the this primitive).

We now turn to the specification of the CreditApproval service, assuming there is a process
(ManagerTerminal) able to interact with the manager, similarly to the ClientTerminal process.

Manager J [
ManagerTerminal
|
? def CreditApproval⇒

requestApproval�?(clientChat , userId , amount , risk).
this(managerChat).
showRequest�!(managerChat , userId , amount , risk).

(reject�?().clientChat J [ requestDenied�!() ]
+
accept�?().clientChat J [

requestApproved�!().
join BankATM · CreditTransfer⇐

orderTransfer�!(userId , amount) ] ]

After receiving the request for approval, the CreditApproval service definition proceeds by
sending to the ManagerTerminal process all the pertinent information of the client and of the
credit request (by means of � directed showRequest message). The message also carries the
identifier for the current conversation so as to allow for the ManagerTerminal process to reply
back directly to the service conversation. This is similar to a join, where an external process
is called in to collaborate in the current conversation: in fact, the join idiom is implemented
by a message exchange which carries a reference to the current conversation. This design is
crucial in this case since the service is replicated and thus there might be several instances of
the service simultaneously interacting with the ManagerTerminal process, making it necessary
for the replies to be given directly in their respective contexts.

The reply of the manager consists in one of two possible messages: either an accept message
denoting the request has been accepted, or a reject message otherwise. In the latter case
the client is notified accordingly by means of a requestDenied message placed directly in the
clientChat conversation. In the former case not only is the client notified of the decision (also
by means of a message placed in the clientChat conversation), but also the BankATM party is
asked to join in on the current conversation — the clientChat conversation — through service
CreditTransfer. The manager completes his task by authorizing the money transfer.

We now specify the code for the BankATM party.

BankATM J [
BankATMProcess
| ? def CreditTransfer⇒

orderTransfer�?(userId , amount).
transferDate�?(date).
scheduleTransfer�!(userId , amount , date) ]
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The CreditTransfer service code specifies the reception of the transfer order and of the desired
date of the transfer, after which forwards the information to a local BankATMProcess, which
will then schedule the necessary procedure.

This example shows an interesting scenario were not only multiple parties interact in a con-
versation, but also the number of parties that get to simultaneously interact in the conversation
depends on some runtime condition — e.g., only when the manager approves the request is the
BankATM party asked to join in, otherwise it does not participate in the collaboration.

Such a scenario, where parties dynamically join ongoing conversations and interleave their
participation in several conversations, poses difficult problems to verification techniques that
address the problem of statically guaranteeing that all participants will follow, at runtime, well-
defined protocols and that such protocols never get stuck. In the next section we present the
techniques we introduced that cope with such verification problems in such challenging scenarios.

1.2.5 Analyzing Conversations

In this section we present the main ideas behind the analysis techniques we introduced in [27, 28]
so as to support the verification of key properties of service-oriented collaborations, namely to
provide answers to “do all participants in a multiparty conversation follow a well-defined protocol
of interaction?” and “is this system where parties interact in several of such conversations
free from deadlock?”. Our approach copes with scenarios where multiple parties interact in a
conversation, even when some of them are dynamically called in to participate, and where parties
interleave their participation in several of such collaborations, even when such interleaving is
performed on conversations to which the parties have dynamically joined. Such challenging
scenarios are of interest as they can be found in real service-oriented applications, and fall out of
scope of previous approaches. Although our technical development focuses on systems specified
in the Conversation Calculus, the approach is not specific to this choice of underlying model, as
we will later demonstrate.

We introduce two separate but complementary techniques: to discipline multiparty con-
versations we introduce conversation types, a novel and flexible type structure, able to uni-
formly describe both the internal and the interface behavior of systems, referred respectively as
choreographies and contracts in web-services terminology. To guarantee deadlock freedom we
introduce a progress proof system that relies on a notion of ordering of events and, crucially,
propagation of orderings in communications. We describe these formalisms next.

Type-Based Analysis of Conversation Fidelity

The starting point for the analysis of the interactions between parties in a distributed system
is to have a means to describe the intended protocols of interaction. Usually — for instance in
analysis techniques that address security properties — such protocol descriptions take the form
of a list of message exchanges, indicating, for each message, who is the sender and who is the
receiver, and what sort of information is carried in the message. Works on multiparty session
types, namely the approaches of Honda et al. [57] and of Bettini et al. [9], also specify the overall
(global) session protocols in such way. For example, consider the following specification of the
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protocol of interaction between the Buyer, Seller and Shipper of the purchase example:

1. buy(Tp) : Buyer → Seller
2. price(Tm) : Seller → Buyer
3. product(Tp) : Seller → Shipper
4. details(Td) : Shipper → Buyer

which describes the purchase interaction as a sequence of messages exchanges that follow a
determined order, where the communicating parties involved in each message exchange are
identified (e.g., Buyer → Seller indicates that the message is sent from Buyer to Seller), and
also the contents of the message are described (e.g., Tp represents the type of the content of
messages buy and product).

Using such protocol specifications, we may then look at the implementation and check if the
code actually implements the intended protocols. The approach followed by Honda et al. [57]
and of Bettini et al. [9] exploits the idea of projecting the global protocol specifications in the
individual roles for each participant in the collaboration, allowing for the code for each partic-
ipant to be checked against its individual role in the collaboration. However, such approaches
do not seem fit to capture collaborations that are dynamically established, since the individual
roles must be a priori determined. At this point we may pose the following question: if we
abstract away from the identities of the communicating parties in the protocol specifications,
can we still ensure that protocols will be followed at runtime?

Protocol specifications that do not mention the identifies of the communicating parties seem
to be more fit to capture dynamically established collaborations, since we are not confined to an
a priori rigid communication structure. On the one hand we are no longer able to certify that
the message exchanges take place between some specific parties, on the other hand, however, we
are still able to certify that such message exchanges will take place between some parties. This
extra flexibility is a first step in the direction to support the dynamic configurations we intend
to capture. The conversation type for the purchase interaction is then:

τ buy(Tp).τ price(Tm).τ product(Tp).τ details(Td)

which specifies the sequence of message exchanges as before. Given such a protocol specification,
we are then faced with the problem of determining how do we match such protocol with the code
that implements it. To that end, we may exploit the notion of projection that splits message
exchanges in the dual capabilities that realize the message exchange — output and input —
which are the capabilities actually held by the individual parties that form the collaboration.
However, if we are to project the overall protocol specification directly to the individual roles of
the parties, we also end up confined to a static communication structure.

This leads to a second and crucial step in our development so as to support dynamic con-
figurations: the introduction of a notion of projection that is able to describe the arbitrary
decompositions of the protocol in the roles of one or more parties. To that end, conversation
types mix, at the same level in the type language, internal/“global” specifications (internal τ

message exchanges) with interface/local specifications (output ! and input ? types). Building
on this capability to mix local and global specifications, we then introduce a (ternary) merge
relation between types, noted B = B1 ./ B2, which explains how a behavior B may be projected
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in two matching behaviors B1 and B2. For example, we have (among others) the following
projection for the purchase protocol:

τ buy(Tp).τ price(Tm).τ product(Tp).τ details(Td)

=

! buy(Tp).? price(Tm).? details(Td)

./

? buy(Tp).! price(Tm).τ product(Tp).! details(Td)

which decomposes the overall purchase protocol in types ! buy(Tp).? price(Tm).? details(Td)
and ? buy(Tp).! price(Tm).τ product(Tp).! details(Td). Notice that the first type actually
captures the role of the Buyer party in the purchase collaboration: first it sends message buy,
then it receives messages price and details. The second type, which mixes internal and
interface types, characterizes the combined roles of the Shipper and the Seller, specifying the
dual communication capabilities in the messages that are to be exchanged with the Buyer, and a
message exchange internal to the Seller-Shipper subsystem (notice the τ annotation in message
product). The Seller-Shipper subsystem type may be further decomposed as follows:

? buy(Tp).! price(Tm).τ product(Tp).! details(Td)

=

? buy(Tp).! price(Tm).! product(Tp) ./ ? product(Tp).! details(Td)

where the decomposition yields the types that characterize the individual roles of the Seller and
the Shipper in the purchase collaboration. Notice that, by construction, if we are to merge all
such projections back together, then we obtain the initial overall protocol, hence:

τ buy(Tp).τ price(Tm).τ product(Tp).τ details(Td)

=

! buy(Tp).? price(Tm).? details(Td)

./

? buy(Tp).! price(Tm).! product(Tp)

./

? product(Tp).! details(Td)

These various “local” types are merged by our type system in a compositional way, allowing
for the progressive behavioral combination of the individual contributions of each partner, so as
to form the overall conversation protocol. Also, and crucially so as to support dynamic join of
parties to a conversation, we allow for parties to be initially typed with an arbitrary part of the
protocol which may be dynamically (partially) delegated away. For example, this allows us to
type the service which implements the Seller role (startBuy) in the purchase conversation with
the type of the Seller-Shipper subsystem, in such way allowing for the Seller party to dynamically
delegate the respective conversation fragment to Shipper upon conversation join.

The types that characterize the conversation fragments that are to be delegated away are
obtained from further decompositions (via the merge relation) of the type held by the delegating
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party. For instance, when analyzing the startBuy service code, at the point where the join

operation — that calls Shipper in the conversation — gets typed, the (residual) conversation
type corresponding to the participation of Seller is τ product(Tp).! details(Td). At this stage,
extrusion of the conversation name to service Seller · newDelivery will occur, to enable Shipper
to join in. Notice that the global conversation discipline will nevertheless be respected, since
the conversation fragment delegated to Shipper is typed ? product(Tp).! details(Td) while
the conversation fragment retained by Seller is typed ! product(Tp).

The conversation type system verifies, even in the presence of such decompositions of the
overall protocol into fragments — which themselves can be projected in sub-fragments — that
may be dynamically delegated away by some parties to others, that the overall protocol is never-
theless met. Notice that since conversation types abstract away from participant identities, the
overall conversation type can be projected into the types of the individual roles in several ways,
allowing for different implementations of the roles of a given conversation (cf. loose-coupling). It
is even possible to type systems with an unbounded number of different participants, as needed
to type, e.g., a service broker.

Our type system combines techniques from linear, behavioral, session and spatial types
(see [20, 55, 58, 64]): the type structure features prefix M.B, parallel composition B1 | B2, and
other operators. Messages M describe external (receive ? / send !) exchanges in two views:
with the caller/parent conversation (�), and in the current conversation (�). They also describe
internal message exchanges (τ). Key technical ingredients in our approach to conversation types
are the amalgamation of global types and of local types (in the general sense of [57]) in the same
type language, and the definition of a merge relation ensuring, by construction, that participants
typed by the projected views of a type will behave well under composition. Merge subsumes
duality, in the sense that for each τ-free B there are types B,B′ such that B ./ B = τ(B′),
so sessions, that build on the notion of duality, are special cases of conversations. But merge
of types allows for extra flexibility on the manipulation of projections of conversation types,
in an open-ended way, as illustrated above. In particular, our approach allows fragments of
a conversation type (e.g., a choreography) to be dynamically distributed among participants,
while statically ensuring that interactions follow the prescribed discipline.

Analysis of Conversation Progress

We motivate our development with an example. Consider the following specification:

Amazon J [ buy�?(product).price�!(price).eBay J [ buy�!(product).price�?(p) ] ]

representing an application that is trying to sell some product at Amazon and then uses eBay
to restock the bought item. The code specifies that in conversation Amazon a message buy is
received specifying the product that is to be sold, and then a message price is sent indicating
the price value. After that, conversation eBay is accessed and message buy is sent to some seller
specifying the item which is to be restocked, and a price message is received carrying the price
value. Let us consider this application is running in a context where there is another application
trying to perform a similar task, specified as follows:

eBay J [ buy�?(product).price�!(price).Amazon J [ buy�!(product).price�?(p) ] ]
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In fact, the functionality is exactly the same and the only difference is that it is working the
other way around: selling at eBay and restocking at Amazon. When considering the system
obtained by composing these two processes in parallel:

Amazon J [ buy�?(product).price�!(price).eBay J [ buy�!(product).price�?(p) ] ]
|
eBay J [ buy�?(product).price�!(price).Amazon J [ buy�!(product).price�?(p) ] ]

we can observe that the system is deadlocked since both processes are waiting to receive a
message. However, well-defined conversation protocols are followed, which can be captured by
the fact they respect the type τ buy�(Tp).τ price�(Tm) in each conversation (in this case the
conversation type is the same for both Amazon and eBay), but the processes interact in the
conversations in inverse order. In this example the problem can be detected by a human eye,
but if there were several lines of code in between the message exchanges perhaps even a simple
dependency such as this one can be overlooked by a human analysis. Formal analysis techniques
can help to provide answers to such verification problems.

Traditionally, approaches that address this problem determine if the events of the system
can be ordered in a well-founded way. Lynch [73] introduces one of the first of such approaches,
formalizing a notion of ordering to prevent deadlocks of systems that access shared resources
in an exclusive way (inspired by Dijkstra’s dining philosophers scenario [42]). Approaches that
address systems specified in the π-Calculus have been introduced more recently, namely the
work of Kobayashi [63] and, for session types in particular, the works of Dezani-Ciancaglini et
al. [40] and Bettini et al. [9].

Let us go back to the deadlock example so as to see how an event ordering analysis can
identify the problem. Events in our setting are message exchanges in conversations, and thus,
events are identified by the conversation name and the message label. For the code:

Amazon J [ buy�?(product).price�!(price).eBay J [ buy�!(product).price�?(p) ] ]

we have that the underlying event ordering is such that event Amazon.buy is smaller than
Amazon.price, and so forth, which we denote by:

Amazon.buy ≺ Amazon.price ≺ eBay .buy ≺ eBay .price

Instead for the code:

eBay J [ buy�?(product).price�!(price).Amazon J [ buy�!(product).price�?(p) ] ]

the event ordering is such that eBay .buy ≺ eBay .price ≺ Amazon.buy ≺ Amazon.price.
Thus, to satisfy the requirements of both processes, an ordering would have to be such that:

Amazon.buy ≺ . . . ≺ eBay .buy ≺ . . . ≺ Amazon.buy ≺ . . .

which is not well-founded. In fact there is no well-founded ordering for the parallel composition
of the two processes given above. Similar reasoning could be produced for the approaches
of [9, 40]. However, these works suffer some limitations that do not allow them to address
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scenarios where references to the (ordered) communication mediums are dynamically passed
along in communications. We now present how we address this issue. Consider a variation of
the code above:

eBayReseller J [
sellAt�?(x).

x J [ buy�?(product).price�!(price).eBay J [ buy�!(product).price�?(p) ] ] ]

that specifies a purchase broker eBayReseller that performs the previously described function-
ality: sell in a conversation, restock in another. However, the conversation in which the broker
is to sell at is now instructed by a user of the broker, by means of message sellAt, while the
restocking is performed at eBay . The code for a similar broker that restocks at Amazon is:

AmazonReseller J [
sellAt�?(x).

x J [ buy�?(product).price�!(price).Amazon J [ buy�!(product).price�?(p) ] ] ]

Just by looking at the source code the deadlock is not evident, since it depends on the conver-
sations where the brokers will sell at, namely if placed in the parallel with the process:

eBayReseller J [ sellAt�!(Amazon) ] | AmazonReseller J [ sellAt�!(eBay) ]

then the system will end up in a deadlocked configuration similar to the one shown before.
The problem in this example can only be detected if we analyze how the conversation ref-

erences being passed along must be ordered. The event ordering for the eBayReseller must be
such that x .buy ≺ x .price ≺ eBay .buy ≺ eBay .price so any name instantiation of x must
respect this ordering. Likewise for AmazonReseller we have the following prescribed ordering:
x .buy ≺ x .price ≺ Amazon.buy ≺ Amazon.price. Technically, we proceed by attaching
such orderings to the events where the conversation references are passed, which is to say:

eBayReseller .sellAt.(x)(x .buy ≺ x .price ≺ eBay .buy ≺ eBay .price)

and:

AmazonReseller .sellAt.(x)(x .buy ≺ x .price ≺ Amazon.buy ≺ Amazon.price)

which then allows us to check if the name that is actually sent in such a message respects (or
not) the ordering expected by the process that receives the name. We may thus exclude such
system with our technique, since there is no such well-founded ordering for the events in the
system: name Amazon is sent in event eBayReseller .sellAt where a conversation x is expected
such that x.buy ≺ . . . ≺ eBay .buy, and name eBay is sent in event AmazonReseller .sellAt

where a conversation x is expected such that x.buy ≺ . . . ≺ Amazon.buy.

Our analysis techniques thus allow us to address challenging scenarios where conversation
references are passed around, allowing for parties to dynamically join conversations in a typesafe
way, and where access to conversations can be interleaved in an orderly fashion, even when such
interleaving is performed over conversations to which parties have dynamically gained access to.

24



Such scenarios fall out of scope of previous techniques, and seem to be crucial, for instance, to
allow for services discovered dynamically to participate on an ongoing service task, and to allow
for parties to interleave dynamically received conversations so as to access local resources or call
on external services to join ongoing conversations. We establish decidability of our techniques
(if bound names are type/ordering annotated) as we rely on proof trees (as usual) to witness
well-typedness and well-ordering of systems, and the auxiliary operations involved are finitary.

1.3 Contributions and Structure of the Dissertation

1.3.1 Contributions

The contribution of this work is the detailed study of a core semantic model for expressing con-
current interacting systems, particularly suited for modeling service based systems (introduced
in [95]). Using such model we present analysis techniques that provide answers to crucial proper-
ties of systems, namely conversation fidelity — all conversation participants follow the prescribed
protocols — and progress — systems never incur in a deadlocked state — even when conver-
sations are dynamically established and parties interleave their participation in several of such
conversations (introduced in [27, 28]), scenarios that fall out of scope of previous approaches.
We list our contributions in more detail:

• We introduce the Conversation Calculus [23, 95] (CC), which is essentially a specialized
π-Calculus with a communication mechanism based on labeled message passing within
conversation contexts, and develop its basic behavioral theory [69, 95]. We prove that the
behavioral semantics, defined over a standard notion of strong bisimulation, is a congruence
for all operators of the language and show interesting behavioral identities which help
envision the abstract semantic model of the language. In fact, such identities led us to the
establishment of a normal form result which clarifies the abstract communication model
of Conversation Calculus systems (such results were originally presented in [95]).

• We show that the (core) Conversation Calculus language may easily encode higher level
abstractions for describing service instantiation, service definition, and dynamical joining
of participants to ongoing conversations — while the service definition and the service
instantiation were already presented in [95] we introduced them as idioms in [27, 28]
together with the conversation join which is unique to our approach; such encodings turn
out to smoothly admit the typings intended for the higher level constructs.

• We define and formalize the notion of conversation type [2, 27, 28]. Conversation types
are a powerful generalization of session types to loosely coupled, possibly concurrent, mul-
tiparty conversations, allowing mixed global/local behavioral descriptions to be expressed
at the same level in a friendly and readable way, while allowing systems with dynamic
delegation of fragments of ongoing conversations to be analyzed.

• We propose a type system for assigning conversation types to core CC systems [27, 28].
We prove subject reduction and error freedom results which ensure that processes that get
past our typing rules are free from communication errors, and races on plain messages,
which implies that well-typed systems enjoy a conversation fidelity property.
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• We present techniques to establish progress of systems with several interleaved conversa-
tions based on a notion of event ordering [27, 28], exploiting the combination of conversa-
tion names with message labels and, crucially, propagation of orderings in communications
which, in particular, allows us to solve a previously open problem.

• We propose a proof system that singles out well-ordered core CC systems [27, 28] and prove
results that ensure that the well-ordered condition is preserved under process reduction
and that well-ordered systems are lock-free, which implies well-ordered systems enjoy a
progress property.

• We show that our analysis techniques are not particular to Conversation Calculus sys-
tems and can be applied over more canonical models, while essentially retaining their
expressiveness — originally presented in [28].

• Finally, we present an extension of the Conversation Calculus with exception handling
primitives [95] and show how the basic behavioral theory for the core CC smoothly crosses
over to this setting. Also, we show how we can use such language extension so as to give
support for long-running transactions, namely by encoding compensations [24, 44].

The core of the aforementioned contributions was published in the following articles:

[95] H. Vieira, L. Caires, and J. Seco. The Conversation Calculus: A Model of Service-Oriented
Computation. In S. Drossopoulou, editor, ESOP 2008, 17th European Symposium on
Programming, Proceedings, volume 4960 of Lecture Notes in Computer Science, pages
269–283. Springer-Verlag, 2008.

[24] L. Caires, C. Ferreira, and H. Vieira. A Process Calculus Analysis of Compensations. In
C. Kaklamanis and F. Nielson, editors, TGC 2008, Fourth International Symposium on
Trustworthy Global Computing, Revised Selected Papers, volume 5474 of Lecture Notes in
Computer Science, pages 87–103. Springer-Verlag, 2009.

[27] L. Caires and H. Vieira. Conversation Types. In G. Castagna, editor, ESOP 2009,
18th European Symposium on Programming, Proceedings, volume 5502 of Lecture Notes in
Computer Science, pages 285–300. Springer-Verlag, 2009.

[28] L. Caires and H. Vieira. Conversation Types. Theoretical Computer Science. To appear.

1.3.2 Structure of the Dissertation

This dissertation is structured so as to gradually introduce the concepts to the reader. To that
end, a first part of the thesis makes use of a simplified setting: we present a basic model and
introduce the main artifacts of the conversation type system over such basic model. In such
way, not only do we gradually introduce the concepts involved, but also we demonstrate that
the conversation type system is not particular to our proposed model and can be used in a
more canonical setting. Then, in the second part of the thesis, we introduce the Conversation
Calculus and present the analysis techniques developed over it: the conversation type system
and the progress proof system — we also show how the progress proof system can be directly
applied in the canonical setting. A final part is dedicated to an extension of the model and its
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applications. At the end of each chapter we present detailed comparison with related work and
make some general remarks on our development.

• Chapter 2 introduces the simple labeled π-Calculus and the basic mathematics used to
characterize the mechanics of the calculus. Readers familiar with the π-Calculus may skim
through this chapter, as no new concepts are introduced here, just a simple extension.

• Chapter 3 introduces the main ideas and artifacts behind conversation types and compan-
ion type system, addressing systems specified in the labeled π-Calculus, which allow us to
single out systems that enjoy the conversation fidelity property.

• Chapter 4 introduces the (core) Conversation Calculus and presents a study of the basic
behavioral theory of the model. We show how the model easily accommodates higher-level
service-oriented primitives as mere idioms of the language, and program some examples.

• Chapter 5 revisits and extends the conversation type language and type system presented
in Chapter 3, aiming at the analysis of systems specified in the Conversation Calculus.

• Chapter 6 presents the technical artifacts and the proof system that allow us to single out
systems specified in the Conversation Calculus that enjoy the progress property. Also, we
show how the system can be directly applied to systems specified to the labeled π-Calculus.

• Chapter 7 presents an extension of the model considering exception handling primitives,
and presents some applications of this extension, namely we show how to implement com-
pensations and thus give support for long-running transactions in our model.

• Chapter 8 presents some final remarks.
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Chapter 2

Preliminaries

In this chapter, we present the labeled π-Calculus (πlab-Calculus), a basic extension of the π-
Calculus, so as to introduce to the unfamiliar reader with π-Calculus like specifications and some
mathematics used in their characterization. This calculus will then be used as the underlying
model in a successive chapter to introduce conversation types, before turning to the analysis over
Conversation Calculus specifications, in such way allowing for a more incremental introduction
of the concepts involved. Furthermore, using the πlab-Calculus as an underlying model for our
techniques also serves as a proof of concept that the main ideas of our approach are not specific
to the Conversation Calculus and may be directed to more canonical models.

We first introduce the syntax of the language, along with auxiliary notions and conventions
which help to simplify presentation, then we define the operational semantics of the language by
means of a labelled transition system, and show how behaviors can be formally derived through
an example. Finally we program the purchase scenario in the πlab-Calculus. Before ending the
chapter we make some general remarks and point to some reference literature.

2.1 πlab-Calculus: π-Calculus with Label Indexed Channels

We start by defining the syntax of the πlab-Calculus, an extension of a core π-Calculus [79] where
channel communication is indexed with labels. We assume given an infinite set of names Λ, an
infinite set of variables V, an infinite set of labels L, and an infinite set of recursion variables χ.

Definition 2.1.1 (πlab-Calculus Syntax)

The syntax of πlab-Calculus processes is given in Figure 2.1.

The static fragment is defined by the inaction 0, which represents the inactive process, parallel
composition P | Q, which represents that processes P and Q are running simultaneously, name
restriction (νa)P , which represents that name a is local to process P , and recursion recX .P ,
which represents a process that repeatedly executes P . Communication is expressed by the
output and input primitives n · l!(m1, . . . ,mk).P and n · l?(x1, . . . , xk).P , respectively, where
m1, . . . ,mk are the names to be sent, and variables x1, . . . , xk are the variables to be instantiated
with the received names (we consider x1, . . . , xk must be pairwise distinct). Communication is
thus defined by both the channel name n and the label l, being the labeling the only difference
between the πlab-Calculus language and the π-Calculus. Notice that labels (from l ∈ L) are not
names but free identifiers (cf. record labels or XML tags), and therefore are not subject to fresh
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a, b, c, . . . ∈ Λ (Names)
x, y, z, . . . ∈ V (Variables)
n, m, o, u, v . . . ∈ Λ ∪ V (Identifiers)
l, s . . . ∈ L (Labels)
X ,Y, . . . ∈ χ (Recursion Variables)

P,Q,R ::= 0 (Inaction)
| P | Q (Parallel Composition)
| (νa)P (Name Restriction)
| recX .P (Recursion)
| X (Variable)
| n · l!(m1, . . . ,mk).P (Output)
| n · l?(x1, . . . , xk).P (Input)

Figure 2.1: The πlab-Calculus Syntax.

generation, restriction or binding. Also, labels are not communicated in messages. Only channel
names may be subject to binding, freshly generated via (νa)P , and be sent in messages.

We introduce some syntactic conventions, which define operator precedence, and commonly
used abbreviations, useful to lighten notation and simplify presentation of the examples.

Syntactic conventions:

recX .P | Q is to be read as (recX .P ) | Q.

(νa)P | Q is to be read as ((νa)P ) | Q.

n · l!(m̃).P | Q is to be read as (n · l!(m̃).P ) | Q.

n · l?(x̃).P | Q is to be read as (n · l?(x̃).P ) | Q.

Abbreviations:

(νã)P and (νa1, . . . , ak)P stand for (νa1) . . . (νak)P .

n · l!(m̃).P stands for n · l!(m1, . . . ,mk).P .

n · l?(x̃).P stands for n · l?(x1, . . . , xk).P .

n · l!(m̃) stands for n · l!(m̃).0.

n · l?(x̃) stands for n · l?(x̃).0.

Before introducing a mathematical interpretation of the constructs of the πlab-Calculus we first
define some auxiliary syntactical notions, namely: the set of free names, of free labels and of
bound names of a process, and the notion of application of a name substitution to a process,
that are necessary to manipulate the syntax of processes. The distinguished occurrences of a, x̃

and X are binding occurrences in (νa)P , ld?(x̃).P and recX .P , respectively. We define the sets
of free (fn(P )) and bound (bn(P )) names and the set of free labels (fl(P )) of a process (P ). For
the set of free names, since we consider a separate set of variables V for input prefix parameters,
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we need only to collect the names from Λ which are not under the scope of a name restriction,
being such set of restricted names the object collected by the set of bound names.

Definition 2.1.2 (Free Names)

The set of free names of a process P , noted fn(P ), is inductively defined on the structure of
processes as follows:

fn(0) , ∅ fn((νa)P ) , fn(P ) \ {a}
fn(P | Q) , fn(P ) ∪ fn(Q) fn(n · l!(m̃).P ) , (({n} ∪ m̃) ∩ Λ) ∪ fn(P )

fn(X ) , ∅ fn(n · l?(x̃).P ) , ({n} ∩ Λ) ∪ fn(P )

fn(rec X .P ) , fn(P )

Definition 2.1.3 (Free Labels)

The set of free labels of a process P , noted fl(P ), is inductively defined on the structure of
processes as follows:

fl(0) , ∅ fl((νa)P ) , fl(P )

fl(P | Q) , fl(P ) ∪ fl(Q) fl(n · l!(m̃).P ) , {l} ∪ fl(P )

fl(X ) , ∅ fl(n · l?(x̃).P ) , {l} ∪ fl(P )

fl(rec X .P ) , fl(P )

Definition 2.1.4 (Bound Names)

The set of bound names of a process P , noted bn(P ), is inductively defined on the structure of
processes as follows:

bn(0) , ∅ bn((νa)P ) , bn(P ) ∪ {a}
bn(P | Q) , bn(P ) ∪ bn(Q) bn(n · l!(m̃).P ) , bn(P )

bn(X ) , ∅ bn(n · l?(x̃).P ) , bn(P )

bn(rec X .P ) , bn(P )

Next we define the set of free variables (fv(P )) of a process (P ), hence the set of variable
identifiers occurring not within the scope of an input prefix. Also we define the set of free
recursion variables (frv(P )) of a process (P ), hence the set of recursion variables which do not
occur in the scope of a binding recursive process construct.

Definition 2.1.5 (Free Variables)

The set of free variables of a process P , noted fv(P ), is inductively defined on the structure of
processes as follows:

fv(0) , ∅ fv((νa)P ) , fv(P )

fv(P | Q) , fv(P ) ∪ fv(Q) fv(n · l!(m̃).P ) , (({n} ∪ m̃) ∩ V) ∪ fv(P )

fv(X ) , ∅ fv(n · l?(x̃).P ) , ({n} ∩ V) ∪ (fv(P ) \ x̃)

fv(rec X .P ) , fv(P )
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Definition 2.1.6 (Free Recursion Variables)

The set of free recursion variables of a process P , noted frv(P ), is inductively defined on the
structure of processes as follows:

frv(0) , ∅ frv((νa)P ) , frv(P )

frv(P | Q) , frv(P ) ∪ frv(Q) frv(n · l!(m̃).P ) , frv(P )

frv(X ) , {X} frv(n · l?(x̃).P ) , frv(P )

frv(rec X .P ) , frv(P ) \ {X}

We say P is a closed process if it has no free variables. We often use the term process to refer
to closed processes.

Definition 2.1.7 (Closed Processes)

We say P is a closed process if fv(P ) = ∅ and frv(P ) = ∅.

Convention 2.1.8 We use the term process to refer to closed processes, where appropriate.

We define the application of a substitution to a process, noted P{ñ/m̃}, which replaces all free
occurrences of the ni identifiers by the respective mi identifiers. First, we introduce an auxiliary
predicate used to indicate two sets are disjoint.

Definition 2.1.9 (Set Disjointness)

We denote by A # B that A and B are disjoint sets, hence A ∩B = ∅.

Definition 2.1.10 (Substitution)

Given identifiers n1, . . . , nk and m1, . . . ,mk the application of a substitution to a process, noted
P{n1, . . . , nk/m1, . . . ,mk} or P{ñ/m̃}, is inductively defined on the structure of processes as:

0{ñ/m̃} , 0

(P | Q){ñ/m̃} , P{ñ/m̃} | Q{ñ/m̃}
X{ñ/m̃} , X
rec X .P{ñ/m̃} , rec X .(P{ñ/m̃})
((νa)P ){ñ/m̃} , (νa)(P{ñ/m̃}) (if a 6∈ ñ, m̃)

(ni · l?(x̃).P ){ñ/m̃} , mi · l?(x̃).(P{ñ/m̃}) (if x̃# ñ, m̃)

(u · l?(x̃).P ){ñ/m̃} , u · l?(x̃).(P{ñ/m̃}) (if x̃# ñ, m̃ and u 6∈ ñ)

(ni · l!(õ).P ){ñ/m̃} , mi · l!(ṽ).(P{ñ/m̃}) (if oj = ni then vj = mi else vj = oj)

(u · l!(õ).P ){ñ/m̃} , u · l!(ṽ).(P{ñ/m̃})
(if u 6∈ ñ and if oj = ni then vj = mi else vj = oj)

N.B. By ñ, m̃ we denote the union of ñ and m̃, and by i we denote an index such that i ∈ 1, . . . , k.

We introduce α-equivalence which identifies processes which are equivalent up to a (safe) re-
naming of bound names and variables.
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Definition 2.1.11 (α-Equivalence)

α-equivalence, noted ≡α, is the least congruence on processes that satisfies the following rules:

(νa)P ≡α (νb)(P{a/b}) (b 6∈ fn(P )) (Restriction)

n · l?(x̃).P ≡α n · l?(ỹ).(P{x̃/ỹ}) (ỹ # fv(P )) (Input)

Processes which are α-equivalent represent the same specification, since they only differ in some
irrelevant bound name identities, so we implicitly identify them to simplify presentation.

Convention 2.1.12 We implicitly identify α-equivalent processes.

Recursive processes repeat their behavior at the point where the recursion variable occurs. To
capture this notion syntactically we define substitution of recursive variables by a process.

Definition 2.1.13 (Recursion Variable Substitution)

Given recursion variable X and process P the application of a recursion variable substitution to
a process in Q, noted Q{X/P}, is inductively defined on the structure of processes as follows:

(Q | R){X/P} , Q{X/P} | R{X/P} 0{X/P} , 0

Y{X/P} , Y X{X/P} , P

(rec Y.Q){X/P} , rec Y.(Q{X/P}) (rec X .Q){X/P} , rec X .Q

(n · l?(x̃).Q){X/P} , n · l?(x̃).(Q{X/P}) ((νa)Q){X/P} , (νa)(Q{X/P})
(n · l!(m̃).Q){X/P} , n · l!(m̃).(Q{X/P})

In the next section we define the operational semantics of the πlab-Calculus, so as to provide a
formal definition of how πlab-Calculus processes evolve through communications.

2.2 πlab-Calculus Operational Semantics

The operational semantics of the πlab-Calculus is defined by a labeled transition system. A
transition P

λ−→ Q states that process P may evolve to process Q by performing the action
represented by the transition label λ. We may describe a transition as an observation performed
over the process by an external environment. In fact, P can either evolve autonomously to
Q, by means of an internal action, or P can communicate with the external environment by a
communication action specified in λ. Before presenting the definition of the transition relation,
that captures this notion of process evolution, we first introduce some auxiliary notions. We
define transition labels which specify such internal and external communication capabilities.

Definition 2.2.1 (Transition Labels)

Transition labels are defined as follows:

λ ::= τ | c · l!(ã) | c · l?(ã) | (νa)λ (Transition Labels)

We denote by T the set of all transition labels.

Internal actions are denoted by label τ which represents autonomous evolutions of processes,
while communication actions with the environment are denoted by output label c·l!(ã) and input
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label c · l?(ã), where ã specifies the names sent and the names received in the communication,
respectively. In (νa)λ the distinguished occurrence of a is bound with scope λ. We define
operators that collect the free and bound name sets of a transition label, denoted by fn(λ) and
bn(λ), respectively, and na(λ) to denote both free and bound names of a transition label.

Definition 2.2.2 (Transition Free Names)

We denote by fn(λ) the set of free names of transition label λ, defined inductively as follows:

fn(τ) , ∅ fn(c · l!(ã)) , {c} ∪ ã fn(c · l?(ã)) , {c} ∪ ã fn((νa)λ) , fn(λ) \ {a}

Definition 2.2.3 (Transition Bound Names)

We denote by bn(λ) the set of bound names of transition label λ, defined inductively as follows:

bn(τ) , ∅ bn(c · l!(ã)) , ∅ bn(c · l?(ã)) , ∅ bn((νa)λ) , bn(λ) ∪ {a}

Definition 2.2.4 (Transition Names)

We denote by na(λ) the set of names of transition label λ, defined as na(λ) , fn(λ) ∪ bn(λ).

An output label that specifies such a bound name (νa)λ (or, in general, a set of bound names
(νa1) . . . (νak)λ, abbreviated by (νã)λ) denotes a communication carrying a restricted name
(set) which was previously local to a part of the system, but is at that moment being extruded
to the external environment. To determine the names that are sent in a communication, so as to
capture scope extrusion, we introduce an operator that collects the names that occur exclusively
in the object of an output.

Definition 2.2.5 (Emitted Names)

We denote by out(λ) the set of names object to an output label, defined inductively as follows:

out(τ) , ∅ out(c · l!(ã)) , ã \ {c} out(c · l?(ã)) , ∅ out((νa)λ) , out(λ) \ {a}

For a communication label λ we denote by λ the dual matching label obtained by swapping
inputs with outputs, defined next.

Definition 2.2.6 (Transition Label Duality)

We denote by λ the dual of transition label λ, defined as follows:

c · l!(ã) , c · l?(ã) c · l?(ã) , c · l!(ã)

Duality in transition labels captures the notion of actions that may be used by parallel processes
to synchronize (in this case, passing names along the communication). Notice τ has no dual
transition label, and thus it does not synchronize with any other action, since it represents
an internal action to a process, e.g., an already succeeded synchronization. Also, we abstract
away from transitions which specify bound names, hence duality is defined exclusively for basic
communication actions.

We may now present the definition of the transition relation which formally characterizes
how processes evolve, either by internal actions or by communications with the environment.
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c · l!(ã).P
c·l!(ã)−→ P (Out) c · l?(x̃).P

c·l?(ã)−→ P{x̃/ã} (In)

P
λ−→ Q a ∈ out(λ)

(νa)P
(νa)λ−→ Q

(Open)
P

λ−→ Q a 6∈ na(λ)

(νa)P λ−→ (νa)Q
(Res)

P
λ−→ Q bn(λ) # fn(R)

P | R
λ−→ Q | R

(Par -l)
P

λ−→ Q bn(λ) # fn(R)

R | P
λ−→ R | Q

(Par -r)

P
(νã)λ−→ P ′ Q

λ−→ Q′ ã# fn(Q)

P | Q
τ−→ (νã)(P ′ | Q′)

(Close-l)
P

λ−→ P ′ Q
(νã)λ−→ Q′ ã# fn(P )

P | Q
τ−→ (νã)(P ′ | Q′)

(Close-r)

P
λ−→ P ′ Q

λ−→ Q′

P | Q
τ−→ P ′ | Q′

(Comm)
P{X/recX .P} λ−→ Q

recX .P
λ−→ Q

(Rec)

Figure 2.2: Transition Rules.

The relation as a whole is characterized by a set of inference rules which generically describe
process evolutions, each rule specifying an observation that can be performed over a process
given an observation that can be performed over a subprocess. For instance, consider rule:

P
λ−→ Q bn(λ) # fn(R)

P | R
λ−→ Q | R

which specifies that if P exhibits transition λ to Q then the process consisting of the parallel
composition of P and some process R also exhibits transition λ, since P and R are both active,
arriving at a configuration which is the parallel composition of Q and R. Hence any behavior of
a branch of a parallel composition is exhibited at the level of the parallel composition (provided
the bound names being sent in λ, if any, are distinct of the free names of Q, i.e., bn(λ) # fn(R)).
Given this basic understanding, we now present the transition relations.

Definition 2.2.7 (Transition Relations)

The transition relations { λ−→ | λ ∈ T } are defined by the rules of Figure 2.2.

Transition rules presented in Figure 2.2 should be fairly clear to a reader familiar with mobile
process calculi. In rule (Out) an output is observed over the output-prefixed process, represent-
ing a message emission to the external environment, being the arrival state of the transition
the continuation of the output-prefixed process. The symmetric rule (In) specifies the input
observation over the input-prefixed process, representing a message reception from the external
environment. The arrival state of the transition is the continuation of the input prefixed-process
where the variables x̃ are replaced by the received names ã.

Rule (Open) corresponds to the bound output or extrusion rule, in which a bound name a is
extruded to the environment in an output message λ. Rule (Res) states that when the restricted
name is not mentioned in the transition label, then such transition transparently goes through
the name restriction. Rules (Par -l) and (Par -r) state that the parallel composition exhibits the
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transitions of either branch, avoiding unintended name collisions.
Rule (Comm) describes a synchronization taking place when the branches of the parallel

composition exhibit dual transitions, thus originating an internal action τ . Similarly in rules
(Close-l) and (Close-r) but where also a set of restricted names ã is transmitted, so the scope of
the bound names is enlarged to contain both emitter (who knows the bound names) and receiver
(who gains knowledge of the bound names), so the scope is closed at that level, provided the
bound name identifiers are fresh to Q so as to avoid unintended name capture. In rule (Rec) a
recursive process exhibits the transition of the unfolding of the recursion.

Sometimes it is useful to talk only about autonomous evolution of processes, captured by
τ transitions. Namely when the focus is on closed systems, not subject to interaction with the
environment, we are only interested on autonomous behavior. This notion is directly captured
by the reduction relation which we define on top of the labelled transition system.

Definition 2.2.8 (Reduction)

The reduction relation between processes, noted P → Q, is defined as P
τ−→ Q. Also, we denote

by ∗→ the reflexive transitive closure of the reduction relation.

The ∗→ relation is useful for reasoning about process evolution in a wider sense as it captures se-
quences of zero or more steps of evolution, while each reduction corresponds to a single evolution.
We may read P

∗→ Q as “P evolves in a number of steps to Q”.
For the sake of illustration, in the next section we show how to put the transition inference

rules to work by means of an example illustrating a formal proof of a process transition.

2.2.1 Proving a Transition

To provide some intuition we show how a transition can be proven using such a set of rules.
Consider the following process:

(νchat)c · talk!(chat).P | R | c · talk?(x).Q

which specifies the parallel composition of three processes, where the one on the left hand side
is willing to send a private name chat on a talk-labeled output on c, and the one on the right
hand side is waiting on such communication. Using rules (Out), (Open) and (Par -l) we derive:

c · talk!(chat).P c·talk!(chat)−→ P

(νchat)c · talk!(chat).P (νchat)c·talk!(chat)−→ P

(νchat)c · talk!(chat).P | R
(νchat)c·talk!(chat)−→ P | R

Through rule (In) we have: c · talk?(x).Q
c·talk?(chat)−→ Q{x/chat}. Then, using rule (Close-l)

we may derive:

(νchat)c · talk!(chat).P | R
(νchat)c·talk!(chat)−→ P | R c · talk?(x).Q

c·talk?(chat)−→ Q{x/chat}

(νchat)c · talk!(chat).P | R | c · talk?(x).Q τ−→ (νchat)(P | R | Q{x/chat})
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Notice that in the arrival configuration of the transition (νchat)(P | R | Q{x/chat}) the scope of
the restricted name chat is enlarged so as to contain the receiver process (collision with names in
R is avoided in the meanwhile, through the side conditions which we omit from the description).

2.2.2 Programming the Purchase Scenario in the πlab-Calculus

In this section we show how we can program the purchase scenario, presented in the Introduction
(Section 1.2.1), using the πlab-Calculus. We use standard name passing communication to repre-
sent the service instantiation primitives and conversation join. In fact, this is how we later define
such service-oriented primitives in the Conversation Calculus. However in the πlab-Calculus it
is not clear how to present such idioms in a generic way, so we hard code them in the example.
The service definition primitive is represented by a name input, as, for instance, the code:

Seller · BuyService?(x). P

which represents a BuyService is available at channel Seller. To create a new service instance
we use the output capability, so, for example, to instantiate the above service we use the code:

(νbuyChat)(Seller · BuyService!(buyChat). Q )

where a fresh name is passed to the service provider side (buyChat) so as to allow for the service
interaction to take place in a medium with a freshly created identity. So, P and Q will interact
between them by using this freshly created name. The other way to use the service definition is
to ask it to join an ongoing service interaction: the join idiom. To implement the join we also
consider the output capability, but now, instead of passing a freshly created name, the output
must carry the name of the medium where the current service interaction is taking place. So,
for instance, considering the current service interaction is taking place at x, we program by:

( · · · ).Shipper · DeliveryService!(x ).R

a call to service DeliveryService provided by Shipper , passing it name x, allowing it to join
the current service interaction.

We thus implement the purchase scenario with the following code:

(νbuyChat)

(Seller · BuyService!(buyChat).
buyChat · buy!(prod). buyChat · price?(p). buyChat · details?(d) )

|
PriceDB |
Seller · BuyService?(x).

x · buy?(prod).Seller · askPrice!(prod).
Seller · priceVal?(p). x · price!(p).
Shipper · DeliveryService!(x ). x · product!(prod)

|
Shipper · DeliveryService?(y).

y · product?(p). y · details!(data)
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which represents the three participants in the purchase service collaboration: the first is willing
to buy a product, wanting to know price and delivery details; the second offers a buy service,
which interacts with a price database to determine the price, and delegates the shipping part to
an external service; the third offers a delivery service that provides some details of the delivery,
given the product information. The code shown above, in one step, evolves to:

(νbuyChat) (

buyChat · buy!(prod). buyChat · price?(p). buyChat · details?(d)
|
PriceDB |

buyChat · buy?(prod).Seller · askPrice!(prod).
Seller · priceVal?(p). buyChat · price!(p).
Shipper · DeliveryService!(buyChat). buyChat · product!(prod) )

|
Shipper · DeliveryService?(y).

y · product?(p). y · details!(data)

where the name buyChat has been passed from the process instantiating the service to the process
publishing the service. Notice the scope of the corresponding name restriction has grown so as to
encompass the process that received the name. At that point, synchronizations on buyChat ·buy
and buyChat · price can take place between the two processes (interleaved by the interaction
with the PriceDB process on Seller · askPrice and on Seller · priceVal). At that point the
process has evolved to the following configuration:

(νbuyChat) (

buyChat · details?(d)
|
PriceDB ′ |

Shipper · DeliveryService!(buyChat). buyChat · product!(prod) )

|
Shipper · DeliveryService?(y).

y · product?(p). y · details!(data)

which then allows Shipper to join the ongoing interaction on buyChat , so the system evolves to:

(νbuyChat) (

buyChat · details?(d)
|
PriceDB ′ |

buyChat · product!(prod)

|
buyChat · product?(p). buyChat · details!(data) )

where, once again, the name buyChat has been passed (and its scope has grown accordingly),
and now three distinct processes are willing to interact on buyChat . The remaining interactions
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of the purchase service collaboration can then take place, first on buyChat · product and then
on buyChat · details between the three processes.

2.3 Remarks

Introducing the π-Calculus in further detail is out of reach for this text, and therefore we refer
the interested reader to the reference texts, books and tutorials by Milner, namely [76, 77, 78],
and to the current standard reference for the π-Calculus by Sangiorgi et al. [85].

Although we did not find a presentation of a variant of the π-Calculus that exactly suited
our purposes (however, we do not claim there is none), it is clear how the labeled π-Calculus we
described can be encoded in, for instance, a π-Calculus equipped with pattern matching, e.g.,
the applied π-Calculus [1], or with polyadic synchronization [32]. Considering pattern matching,
labels can be encoded by placing them at the first argument of both the output and the input:
an output in the labeled π-Calculus n · l!(m1, . . . ,mk).P is encoded in n!(l, m1, . . . ,mk) and an
input n · l?(x1, . . . , xk).P is encoded in n?(l, x1, . . . , xk), which will then behave in the same way
as synchronization will occur only when output and input agree in the first argument.

In conclusion, the labeled π-Calculus is a slight extension of a core π-Calculus that preserves
the fundamental and canonical aspects of the original model, which can be argued by verifying
that the operational semantics is defined in a facsimile set of rules, being the only difference the
extension of the transition labels. On the other hand, it is perhaps as far as our approach can
go in the direction of a π-Calculus like canonical model, since we make important use of the
combination of two identifiers — channel name and label index — as we will see next.
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Chapter 3

Introducing Conversation Types

In this chapter we introduce the (core) conversation type language that supports the static
verification of the conversation fidelity property: “do all participants in a collaboration follow
well-defined protocols of interaction?” (originally introduced in [27, 28]). We start by presenting
the main ideas behind our development, then we present the technical artifacts that instantiate
these ideas. We proceed by presenting the typing rules that associate πlab-Calculus processes to
conversation types and show the safety results we prove for well-typed processes. We also show
a typing derivation for a simple example (the purchase scenario), so as to demonstrate the sort
of systems we are able to address using our type system, while already allowing us to distinguish
our approach as such systems fall out of scope of previous works. Before ending the chapter we
present some notes on related work and on some overall assessment of our development.

3.1 Analysis of Dynamic Conversations

As motivated in the Introduction, it is crucial to develop mechanisms that guarantee the safe
interaction in service-oriented systems, namely to have a means to guarantee protocol safety in
a multiparty collaboration: all parties interacting in a service collaboration follow well-defined
protocols of interaction. A global protocol description (a choreography, in web-service terminol-
ogy) structures a set of related interactions — a multiparty conversation — that is to be carried
out by a number of parties. Consider, for instance, the following global protocol description for
the purchase scenario illustrated in the message sequence chart shown in Figure 1.2:

1. buy(Tp) : Buyer → Seller
2. price(Tm) : Seller → Buyer
3. product(Tp) : Seller → Shipper
4. details(Td) : Shipper → Buyer

where we specify, in order, the several interactions of the service conversation by identifying
the message and the sender and the receiver of the message. Similar kind of specifications are
considered in some approaches that verify protocol safety (e.g., the global types of [9, 57]), which
use them to determine the roles of the individual participants (cf., local types) by filtering out
the interactions relative to some party from the global specification, so as to check the individual
participants implement their local roles. Such approaches lack in flexibility as they only allow to
describe systems with fixed configurations, where the individual communication roles involved
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in the service collaboration are a priori set, leaving systems involving runtime delegation of tasks
to external services out of their reach.

To be able to address such challenging scenarios we introduce conversation types, a flexible
type structure that allows for loosely coupled specifications of service collaborations. Conversa-
tion types combine, at the same level in the type language, global and local protocol specifica-
tions, which allows us to characterize, in a compositional way, how protocols are implemented
by the several parts of the system. Consider for instance the conversation type which captures
the interaction scheme described in the global protocol specified above:

τ buy(Tp).τ price(Tm).τ product(Tp).τ details(Td)

which describes the overall service protocol consisting in a sequence of internal (τ) message ex-
changes, where there is no explicit indication of the particular identities for the communicating
parties (cf., loose coupling): as a result, we do not enforce who carries out the communication
capability in particular, instead we are interested in guaranteeing that someone exercises the
communication capability. In our theory, such overall specifications can be “projected” into
global/local mixed specifications, allowing for the characterization not only of the overall proto-
col and that of the individual participants but also of parts of the system, corresponding to the
combined roles of some (not necessarily all) of the participants in the interaction. For example,
we may obtain the projection of the above protocol in the individual type of the buyer:

! buy(Tp).? price(Tm).? details(Td)

which specifies the output (!) of message buy, followed by the input (?) of messages price and
details, but also we may obtain the projection of the global protocol in the rest of the system,
i.e., the roles of seller and shipper combined:

? buy(Tp).! price(Tm).τ product(Tp).! details(Td)

Notice that input and output (local) specifications are mixed with internal (choreographic)
descriptions in the same type term. Such message exchange specifications form the basis of
our behavioral types which we use to structure a set of related interactions: a conversation.
Behavioral types incorporate the basic constructs to specify such structured concurrent behavior:
message prefix M.B and parallel composition B1 | B2.

Since processes may interact, both simultaneously and throughout their execution, in several
of such conversations, in order to characterize the interaction potential of a process we must
collect all the interactions the process specifies in all such conversations. The typing judgement:

P :: n : [Bn] | m : [Bm] | o : [Bo] | . . .

that associates process P to type n : [Bn] | m : [Bm] | o : [Bo] | . . ., says that process P interacts
in conversation n according to behavioral type Bn, in conversation m according to behavioral
type Bm, and so forth, where each behavioral type (B) characterizes, in a structured way, the
set of interactions the process has in that specific conversation. The behavioral types are thus
an abstraction of the behavior of the process relative to each individual conversation.

To obtain such typed characterizations of process behavior we are technically faced with
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n, m, o, . . . ∈ Λ ∪ V (Identifiers)
l, s . . . ∈ L (Labels)
X ,Y, . . . ∈ χ (Recursion Variables)

B ::= M.B
∣∣ B1 | B2

∣∣ 0
∣∣ recX .B

∣∣ X (Behavioral)

M ::= p l(C) (Message)

p ::= !
∣∣ ?

∣∣ τ (Polarity)

C ::= [B] (Conversation)

L ::= n : C
∣∣ L1 | L2

∣∣ 0 (Located)

Figure 3.1: Basic Conversation Types Syntax.

questions such as: “given the behaviors of two processes running in parallel, how do we combine
them so as to obtain the behavior of the parallel composition?” and “how do we account for
behaviors that are delegated through message exchanges carrying conversation identifiers?”. In
the remaining of this chapter we introduce the type language and a set of operations over types
that allow us to capture the combination of behaviors, to know when can such behaviors be
safely combined, and also how we can characterize a relation between types so as to allow for
more general descriptions in the typing characterizations: the subtyping relation.

We may then characterize, using conversation types, systems specified in the πlab-Calculus,
so as to guarantee they follow well-defined protocols of interaction. The intended type safety
property will be formally stated in Corollary 3.3.10: it implies conversations agree to declared
protocols, and the absence of certain kind of runtime errors.

3.2 Type Language

In this section we formally present the conversation types language. The two main syntactical
categories of the type language are behavioral types B and located types L. Behavioral types
capture the behavior of structured conversations, while located types associate the conversation
names to the respective behaviors.

Definition 3.2.1 (Core Conversation Type Language)

The syntax of the core conversation type language is given in Figure 3.1.

Behavioral types feature parallel composition B1 | B2 to describe independent concurrent be-
havior, 0 to describe inactive behavior, and recursion. The prefix M.B specifies a process that
sends (!), receives (?), or internally (τ) exchanges a message M before proceeding with behavior
B. Message types M are thus defined by a polarity p (either output !, input ? or internal action
τ), a label l, and the type C of what is communicated in the message. Notice that a message
M may refer to an internal exchange between two partners, if it is of the form τ l(C).

Conversation types C are a delimited behavior [B], where B specifies the message interactions
that may take place in the conversation. Located types L collect (using composition) type
associations between conversation names and their types. In a typing judgment, a located type
will then specify the conversation type of each visible conversation.

We introduce some convenient syntactic abbreviations and conventions for behavioral types.
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Syntactic conventions:

M.B1 | B2 is to be read as (M.B1) | B2.

recX .B1 | B2 is to be read as (recX .B1) | B2.

Abbreviations:

M stands for M.0, where appropriate.

?M stands for recX .M.X .

We next present the technical artifacts used in the type system for πlab-Calculus processes, while
introducing some auxiliary notions along the way. We start by presenting a means by which
we distinguish the two common communication patterns in service-oriented computing: inter-
actions relative to the instantiation of services and interactions relative to an ongoing service
collaboration. Then we characterize when are two behaviors independent by means of an apart-
ness predicate, a notion essential to capture the safe composition of systems. Using such notion
of independent behavior we proceed to the characterization of the relation between types (the
subtyping relation), which serves as a mechanism that allows for more flexible typing charac-
terizations. Finally, we present a key operation in our type system that captures the behavioral
composition of types, and therefore explains the behavioral composition of processes.

3.2.1 Linear and Shared Types

For typing purposes, we split the set of labels L into shared L? and plain Lp labels.

Definition 3.2.2 (Plain and Shared Labels)

We denote by L? and Lp subsets of L such that L? ∩ Lp = ∅ and L? ∪ Lp = L.

Messages which are to be used linearly are defined with plain labels, and messages which are to
be used exponentially are defined with shared labels. In such way, we distinguish two common
interaction patterns in service-oriented computing: a service is expected to be available exponen-
tially in the sense that there can be multiple clients trying to use the same service simultaneously.
Also, there may be multiple peers providing the same service. On the other hand during an
ongoing service interaction messages that flow between collaborating partners are expected to
be used linearly, in the sense there should be a unique pair of parties that can communicate on
a specific action at a given moment — race absence. Such linear interactions are to be protected
from external interference and support the definition of deterministic protocols.

To characterize the external interface of (persistent) services it is useful to introduce a notion
of exponential output interface, which specifies the calls to external services. Such notion will
then characterize precisely the external interface of a persistent service that consist solely in the
list of external services it requires to function. We thus define exponential output types.

Definition 3.2.3 (Exponential Output Type)

Exponential output message types, noted ?M !, exponential output behavioral types, noted ?B!,

44



and exponential output located types, noted ?L!, are defined as follows:

?M ! ::= ?M (M = ! l(C) and l ∈ L?) (Exponential Output Message Type)

?B! ::= ?M !
∣∣ ? B!

1 | ? B!
2

∣∣ 0 (Exponential Output Behavioral Type)

?L! ::= n : [?B!]
∣∣ ? L!

1 | ? L!
2

∣∣ 0 (Exponential Output Located Type)

Exponential output types are thus collections of persistent message outputs. Since several copies
of persistently available services may be concurrently active, their interfaces must be defined
exclusively on shared messages (from L?). To determine, in general, when two types characterize
systems that may safely run concurrently, we introduce the notion of apartness, presented next.

3.2.2 Apartness

A key notion in our development is type apartness: intuitively, two types are apart when they
type subsystems that may be composed without undesirable interferences. To define the notion of
interference needed here we distinguish between the cases of linear and exponential types: types
that share plain (linear) messages are not apart, while types that share exponential (shared)
labels are apart, provided such shared messages are defined with the same argument types.

To define apartness we first introduce the set of message types MsgL(B) and the set of
message labels LabL(B) of a behavioral type B. Both sets are indexed by a label set L, which
can be refined to either L? and Lp so as to allow, e.g., the distinction of the message sets with
labels from shared labels (from L?) and those from plain labels (from Lp).

Definition 3.2.4 (Message Set)

We denote by MsgL(B) the set of message types defined with labels from L of a behavioral type
B, defined as follows:

MsgL(0) , ∅
MsgL(B1 | B2) , MsgL(B1) ∪MsgL(B2)

MsgL(X ) , ∅
MsgL(recX .B) , MsgL(B)

MsgL(p l(C).B) , {(p l(C)) | l ∈ L} ∪MsgL(B)

For example, given some behavioral type B, MsgLp
(B) is the set of all plain (in Lp) message types

(p l(C)) occurring in B, leaving out message types defined on shared labels (those belonging to
L?). Using the message set, we may define the set of labels of a behavioral type, noted LabL(T ).

Definition 3.2.5 (Label Set)

We denote by LabL(B) the set of labels from L of a behavioral type B, defined as follows:

LabL(T ) , {l | (p l(C)) ∈ MsgL(B)}

The set of labels gives us enough information to determine the apartness of types with respect
to messages defined on plain labels. To determine apartness with respect to messages defined
on shared labels we introduce conformance.
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Definition 3.2.6 (Conformance)

We say two behavioral types B1, B2 are conformant, noted B1 � B2, if for any two message
types p1 l(C1) and p2 l(C2) such that:

(p1 l(C1)) ∈ MsgL?
(B1) and (p2 l(C2)) ∈ MsgL?

(B2)

then C1 = C2 and if pi = ? then pj 6= ! for {i, j} = {1, 2}.

Two behavioral types are compatible on shared messages if they specify messages defined on
shared labels with identical argument types and also if they are defined on determined polarities.
For instance two message types defined on shared labels and polarity ! are conformant as they
represent compatible calls to the same service. We only exclude the case when messages are of
dual polarities (! and ?), which is used to force such messages to synchronize and is explained
by the behavioral merge (Definition 3.2.13). Using the label set and conformance, we may now
define type apartness between behavioral types.

Definition 3.2.7 (Apartness)

We say two behavioral types B1, B2 are apart, noted B1#B2, if their plain label sets are disjoint
(LabLp(B1) #LabLp(B2)) and they are conformant (B1 � B2).

Essentially, apartness ensures disjointness of plain (“linear”) types, and consistency of shared
(“exponential”) types (cf. [64]). Given this notion of type independence we may now present
the subtyping relation.

3.2.3 Subtyping

Types are related by the subtyping relation we now present. Intuitively, we say type L1 is a
subtype of type L2, noted L1 <: L2, when a process of type L1 can safely be used in a context
where a process of type L2 is expected. Subtyping provides a way to generalize the typing
characterization of processes, by its use in a subsumption rule of the form:

P :: L1 L1 <: L2

P :: L2

which then allows to characterize a process by a more general type (the supertype) given the
characterization of the process by a more specific type (the subtype), in such way introducing
more flexibility in the typing characterization.

We start by presenting the subtyping relation for behavioral types, then we proceed to the
subtyping relation for located types which is essentially the congruence closure of the first. Our
subtyping rules express expected structural relationships of types, namely:

B1 | B2 <: B2 | B1

which specifies a commutativity principle for parallel composition of behavioral types. In such
case, since we have B1 | B2 <: B2 | B1 and B2 | B1 <: B1 | B2 we abbreviate the symmetry by
saying the types are equivalent, noted by the ≡ symbol, hence:

B1 | B2 ≡ B2 | B1
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The subtyping relation also specifies associativity of parallel composition of behavioral types:

B1 | (B2 | B3) ≡ (B1 | B2) | B3

and that 0 is a neutral element for parallel composition:

B | 0 ≡ B

Thus (− | −,0) is a commutative monoid with respect to subtyping. We adopt an equi-recursive
approach to recursive types [83], based on simple unfoldings of recursive type terms:

recX .B ≡ B{X/recX .B}

We embed the subtyping relation with reflexivity — B <: B — and with transitivity:

B1 <: B3 B3 <: B2

B1 <: B2

The following rules specify congruence principles so as to allow subtyping underneath parallel
composition, recursive definitions and message prefix operators:

B1 <: B2

B3 | B1 <: B3 | B2

B1 <: B2

recX .B1 <: recX .B2

B1 <: B2

M.B1 <: M.B2

A key subtyping rule that allows us to introduce flexibility at the level of protocol specification
is the following:

M.(B1 | B2) <: M.B1 | B2 (M # B2, fv(B2) = ∅)

which allows for sequential protocols to export a more general concurrent interface, provided
the behaviors specified in parallel are apart M # B2. The intuition is that if a process performs
action M and after which exhibits behavior B2, then it can safely be used in a context that
expects a process that exhibits simultaneously action M and behavior B2.

The following rule expresses a contraction principle for exponential output message types:

?M ! | ?M ! <: ?M !

which describes that a process that sends twice (each infinitely often) a message (?M !) can
be safely used in a context where a process that sends such message once (infinitely often) is
expected. Also regarding exponential output types we introduce a weakening principle by rule:

M <: ?M ! (M = ! l(C), l ∈ L?)

which specifies that a process which outputs once a message defined on a shared label can be
used in a context where a process that outputs the message an unbounded number of times is
expected. Since processes waiting to receive such messages will be persistent, the composition
of either a request or a persistent request with a persistent offer will capture the fact that the
request(s) are satisfied. Given this basic understanding on the meaning of the rules, we may
now define subtyping for behavioral types.
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B1 | B2 ≡ B2 | B1 (SubParComm) B1 | (B2 | B3) ≡ (B1 | B2) | B3 (SubParAssoc)

B | 0 ≡ B (SubParZero) recX .B ≡ B{X/recX .B} (SubRecUnfold)

B <: B (SubReflex )
B1 <: B3 B3 <: B2

B1 <: B2
(SubTrans)

B1 <: B2

B3 | B1 <: B3 | B2
(SubPar)

B1 <: B2

recX .B1 <: recX .B2
(SubRec)

B1 <: B2

M.B1 <: M.B2
(SubPref ) ?M ! | ? M ! <: ?M ! (SubExpFold)

M.(B1 | B2) <: M.B1 | B2 (M # B2, fv(B2) = ∅) (SubParPref )

M <: ?M ! (M = ! l(C), l ∈ L?) (SubExpWeak)

Figure 3.2: Behavioral Types Subtyping Rules.

Definition 3.2.8 (Behavioral Types Subtyping and Equivalence)

We say behavioral type B1 is a subtype of behavioral type B2, noted B1 <: B2, if B1 <: B2

is derivable by the rules shown in Figure 3.2. Also, we say B1 and B2 are equivalent, noted
B1 ≡ B2, if B1 <: B2 and B2 <: B1.

The subtyping relation between located types essentially lifts the behavioral types relation to a
setting where such behavioral types are located. Subtyping for located types also specifies the
commutative monoid rules for (− | −,0) and congruence principles. We also have a split rule:

n : [B1 | B2] ≡ n : [B1] | n : [B2]

which captures the notion that the behavior in a single conversation can be described through
distinct pieces. Analogously to behavioral types subtyping, we use L1 ≡ L2 to denote L1 <: L2

and L2 <: L1. We define the subtyping relation for located types.

Definition 3.2.9 (Located Types Subtyping and Equivalence)

We say located type L1 is a subtype of located type L2, noted L1 <: L2, if L1 <: L2 is derivable
by the rules shown in Figure 3.3. Also, we say L1 and L2 are equivalent, noted L1 ≡ L2, if
L1 <: L2 and L2 <: L1.

In the next section we present an operation used to behaviorally compose types, that thus
explains the behavioral composition of processes.

3.2.4 Merge Relation

We introduce a key operation in which our typing rules rely: the ternary merge relation, noted
by B = B1 ./ B2. The merge relation is used to define the composition of two types, so that if
B = B1 ./ B2 then B is a particular (in general not unique) behavioral combination of the types
B1 and B2. Merge is defined not only in terms of spatial separation, but also, and crucially,
in terms of merging behavioral “traces”. Notice also that it is not always the case that there
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L1 | L2 ≡ L2 | L1 (SubLocParComm) L1 | (L2 | L3) ≡ (L1 | L2) | L3 (SubLocParAssoc)

L | 0 ≡ L (SubLocParZero) n : [B1 | B2] ≡ n : [B1] | n : [B2] (SubLocSplit)

L <: L (SubLocReflex )
L1 <: L3 L3 <: L2

L1 <: L2
(SubLocTrans)

L1 <: L2

L3 | L1 <: L3 | L2
(SubLocPar)

B1 <: B2

n : [B1] <: n : [B2]
(SubLoc)

Figure 3.3: Located Types Subtyping Rules.

is B such that B = B1 ./ B2. On the other hand, if some such B exists, we use B1 ./ B2 to
non-deterministically denote any such B (e.g., in conclusions of type rules).

Notation 3.2.10 We use B1 ./ B2 to represent B such that B = B1 ./ B2.

Intuitively, B = B1 ./ B2 holds if B1 and B2 may safely synchronize or interleave so as to
produce behavioral type B. Before presenting the definition of the merge relation we introduce
some auxiliary operations: the initial label set of a behavioral type B, noted I(B), which collects
the set of labels of the actions immediately active in B, and message type substitution, noted
B{M1/M2}, which replaces all occurrences of message M1 by M2 in B.

Definition 3.2.11 (Initial Label Set)

The initial label set of a behavioral type B, noted I(B), is defined as follows:

I(0) , ∅ I(B1 | B2) , I(B1) ∪ I(B2)

I(X ) , ∅ I(recX .B) , I(B)

I(p l(C).B) , {l}

Definition 3.2.12 (Message Type Substitution)

We denote by B{M1/M2} the type obtained by replacing all occurrences of message type M1

with message type M2 in type B, defined inductively in the structure of types as follows:

0{M1/M2} , 0

(B1 | B2){M1/M2} , (B1{M1/M2}) | (B2{M1/M2})
X{M1/M2} , X
(recX .B){M1/M2} , recX .(B{M1/M2})
(M1.B){M1/M2} , M2.(B{M1/M2})
(M.B){M1/M2} , M.(B{M1/M2}) (if M 6= M1)

Given these basic operations we may now present the merge relation. We start by describing
informally the key rules, then we present the definition. Rule:

B1 # B2

B1 | B2 = B1 ./ B2
(Apart)
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captures the composition of two independent behaviors B1 and B2, by specifying them in parallel
in the resulting merge. The behaviors are independent since they are apart #. The merge of
behaviors which are not independent must synchronize the actions that are not apart. So, to
compose two message types, it must be the case that either they are apart or they can be
synchronized, otherwise the composition is not possible. There are two rules that explain such
synchronizations, one for messages defined on plain labels, and the other for messages defined
on shared labels. For plain messages synchronization we have the following rule:

B = B1 ./ B2 l ∈ Lp

τ l(C).B = ? l(C).B1 ./ ! l(C).B2
(Plain)

that merges dual output and input actions in an internal action τ. The continuation of the
internal action is given by the merge of the continuations of the output and input. Rule (Plain)
thus allows for τ l plain message types to be separated into send ! and receive ? capabilities
which can then be distributed to different subprocesses.

Shared message synchronization is captured by rule:

B � ! l(C) l ∈ L?

B{! l(C)/τ l(C)} | ? ? l(C) = B ./ ?? l(C)
(Shared)

which synchronizes a persistently available input message type with all corresponding output
message types. The resulting merge is then the type obtained replacing all ! l message types with
τ l in B, in parallel with the persistent input message type: this allows for shared labeled inputs
to synchronize and leave open the possibility for further synchronizations, expecting further
outputs from the external environment. A τ shared message type thus represents that there is
(at least one) persistently available input that matches the output, while a τ plain message type
characterizes the uniquely determined synchronization on that plain label.

The following rule allows for the merge to interleave a message prefix:

M # B2 B′ | B′′ ≡ B1 ./ B2 M # B′′ I(B′) ⊆ I(B1) I(B′′) ⊆ I(B2)
M.B′ | B′′ = M.B1 ./ B2

(Shuffle)

Rule (Shuffle) explains the composition of behaviors M.B1 and B2 by first composing B1 and
B2 (since M is apart from B2 it does not interfere with B2) and second by placing the message
prefix M.B′ so as to maintain (some of) the sequentiality information originally specified in
M.B1. On the one hand, no extra sequentiality may be imposed by prefixing B′ with M in the
resulting merge, with respect to the one originally specified in M.B1, so as to guarantee that
processes do not implement sequential protocols in parallel. This is guaranteed by condition
I(B′) ⊆ I(B1), which says that the labels of the immediately active messages of B′ are a subset
of the labels of the immediately active messages of B1. On the other hand, no actions that were
originally only in B1 will be specified in parallel in B′′, as guaranteed by I(B′′) ⊆ I(B2). In
such way, we allow for type synchronizations to occur in the continuation of message prefixes,
without imposing any extra sequentiality information.

The following rule:

B1 �# B2 B′ = B1 ./ B2 B = B′ ./ B3

B = B1 ./ B2 | B3
(ShufflePar)
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explains the merge of the parallel composition B2 | B3 with type B1 by first merging B1 with
B2 then merging the resulting type with B3, provided B2 is not apart ( �# ) from B1. This allows
for several messages that are originally specified in parallel to merge with the same thread. We
may now define the behavioral types merge relation.

Definition 3.2.13 (Behavioral Types Merge Relation)

We say type behavioral type B is the merge of behavioral types B1 and B2, noted B = B1 ./ B2,
if B = B1 ./ B2 is derivable by the rules shown in Figure 3.4.

We state some properties of the behavioral types merge relation.

Proposition 3.2.14 (Behavioral Type Merge Relation Properties)

The behavioral types merge relation is commutative and associative:

(1 ). If B = B1 ./ B2 then B = B2 ./ B1.

(2 ). If B′ = B1 ./ B2 and B = B′ ./ B3 then there is B′′ such that B′′ = B2 ./ B3 and
B = B1 ./ B′′.

Proof. (1 ) follows immediately from the definition, while (2 ) follows by induction on the deriva-
tion of B′ = B1 ./ B2 and B = B′ ./ B3 (See Appendix A.3).

We now illustrate by means of a couple of examples how the merge relation is used so as to be-
haviorally combine types, as well as an example derivation that illustrates Proposition 3.2.14(2 ).

Example 3.2.15 Consider type:

? buy(Tp).! price(Tm).? accept().τ product(Tp).! details(Td)

which specifies a process that inputs message buy, then outputs message price, then inputs mes-
sage accept, then internally exchanges message product, and finally outputs message details.
When merged with the type:

? price(Tm).! accept()

specifying the dual polarities for price and accept, it yields type:

? buy(Tp).τ price(Tm).τ accept().τ product(Tp).! details(Td)

which specifies the composite behavior that inputs message buy, then has internal interactions
on messages price, accept and product, and finally outputs message details.

Example 3.2.16 Consider type:

! assessRate(Td) | ? rateVal(Tr)

that specifies two message types in parallel: an output on message assessRate and an input on
message rateVal. When composed with the type:

? assessRate(Td).! rateVal(Tr)
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B � ! l(C) l ∈ L?

B{! l(C)/τ l(C)} | ? ? l(C) = B ./ ?? l(C)
(Shared -r)

B � ! l(C) l ∈ L?

B{! l(C)/τ l(C)} | ? ? l(C) = ?? l(C) ./ B
(Shared -l)

B = B1 ./ B2 l ∈ Lp

τ l(C).B = ! l(C).B1 ./ ? l(C).B2
(Plain-r)

B = B1 ./ B2 l ∈ Lp

τ l(C).B = ? l(C).B1 ./ ! l(C).B2
(Plain-l)

M # B1 B′ | B′′ ≡ B1 ./ B2 M # B′ I(B′′) ⊆ I(B2) I(B′) ⊆ I(B1)
B′ | M.B′′ = B1 ./ M.B2

(Shuffle-r)

M # B2 B′ | B′′ ≡ B1 ./ B2 M # B′′ I(B′) ⊆ I(B1) I(B′′) ⊆ I(B2)
M.B′ | B′′ = M.B1 ./ B2

(Shuffle-l)

B1 �# B2 B′ = B1 ./ B2 B = B′ ./ B3

B = B1 ./ B2 | B3
(ShufflePar -r)

B1 �# B2 B′ = B1 ./ B2 B = B′ ./ B3

B = B1 ./ B3 | B2
(ShufflePar -rr)

B2 �# B3 B′ = B2 ./ B3 B = B1 ./ B′

B = B1 | B2 ./ B3
(ShufflePar -l)

B2 �# B3 B′ = B2 ./ B3 B = B1 ./ B′

B = B2 | B1 ./ B3
(ShufflePar -ll)

B = B1 ./ B2

recX .B = recX .B1 ./ recX .B2
(Rec)

X = X ./ X
(Var)

B1 # B2

B1 | B2 = B1 ./ B2
(Apart)

B′ = B1 ./ B2 B′′ = B3 ./ B4 B′ # B′′

B′ | B′′ = (B1 | B3) ./ (B2 | B4)
(Par -1 )

B′ = B1 ./ B4 B′′ = B3 ./ B2 B′ # B′′

B′ | B′′ = (B1 | B3) ./ (B2 | B4)
(Par -2 )

Figure 3.4: Behavioral Type Merge Relation Rules.
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which specifies the dual polarities of the same messages, but where the messages are now specified
sequentially, instead of in parallel, we obtain the type:

τ assessRate(Td).τ rateVal(Tr)

which specifies the internal message exchanges in a sequential way, where the sequentiality is
due to the particular implementation of the protocol by one of the parties.

Example 3.2.17 Consider type:

! buy(Tp).? price(Tm).? details(Td)

which characterizes a process that outputs message buy, then inputs messages price and details.
When merged with type:

? product(Tp).! details(Td)

which characterizes a process that inputs message product and then outputs message details,
we obtain type (among other possibilities):

! buy(Tp).? price(Tm) | ? product(Tp).τ details(Td)

where message details is internally exchanged after the reception of message product. In
such case, the original sequentiality information tells us that the reception of message details

happens after the reception of message price and also that the emission of message details

happens after the reception of message product. Since product and price are temporally un-
related, details will be specified after one or the other. Thus, the above merge may also yield:

! buy(Tp).? price(Tm).τ details(Td) | ? product(Tp)

Such derivations are made using rule (Shuffle) which allow us to shuffle messages on the left
and right hand sides, while making sure that no extra sequentiality is imposed. For instance:

? product(Tp).τ details(Td) = ? details(Td) ./ ? product(Tp).! details(Td)

? price(Tm) | ? product(Tp).τ details(Td)
=
? price(Tm).? details(Td) ./ ? product(Tp).! details(Td)

through (Shuffle-l), where the continuation of price is moved to the continuation of product.

Example 3.2.18 Consider types:

clientRole , ! buy(Tp).? price(Tm).? details(Td)

sellerRole , ? buy(Tp).! price(Tm).! product(Tp)

shipperRole , ? product(Tp).! details(Td)

which characterize the three parties involved in the purchase service collaboration (Section 2.2.2).
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We have that the merge of the clientRole and sellerRole yields type:

clientSellerRole
,

τ buy(Tp).τ price(Tm).(? details(Td) | ! product(Tp))
= ! buy(Tp).? price(Tm).? details(Td) ./ ? buy(Tp).! price(Tm).! product(Tp)

through rules (Plain-r), (Plain-l) and (Apart). Then we may merge clientSellerRole with
shipperRole as follows:

purchaseConversation
,

τ buy(Tp).τ price(Tm).τ details(Td).τ product(Tp)
= τ buy(Tp).τ price(Tm).(? details(Td) | ! product(Tp))

./

? product(Tp).! details(Td)

derived from rules (Shuffle-l) twice, leading to the following derivation — rule (ShufflePar -l):

! product(Tp) �# ? product(Tp).! details(Td)
τ product(Tp).! details(Td) = ! product(Tp) ./ ? product(Tp).! details(Td)
τ details(Td).τ product(Tp) = ? details(Td) ./ τ product(Tp).! details(Td)

τ details(Td).τ product(Tp)
=
? details(Td) | ! product(Tp) ./ ? product(Tp).! details(Td)

On the other hand if we are to merge first sellerRole with ShipperRole we obtain type:

sellerShipperRole
,

? buy(Tp).! price(Tm).τ product(Tp).! details(Td)
= ? buy(Tp).! price(Tm).! product(Tp) ./ ? product(Tp).! details(Td)

derived via rules (Shuffle) and (Plain). We then merge clientRole with sellerShipperRole:

purchaseConversation
,

τ buy(Tp).τ price(Tm).τ product(Tp).τ details(Td)
= ! buy(Tp).? price(Tm).? details(Td)

./

? buy(Tp).! price(Tm).τ product(Tp).! details(Td)

also through rules (Plain) and (Shuffle).

The type system relies on a merge relation between located types, which we define by lifting the
merge between behavioral types, realized through per-conversation behavioral type merges. We
first define the domain of a located type.
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B = B1 ./ B2

n : [B] = n : [B1] ./ n : [B2]
(MergeLoc) L = L ./ 0 (MergeZero-r) L = 0 ./ L (MergeZero-l)

∀i∈1,2 Li = L+
i ./ L−

i dom(L1) # dom(L2)
L1 | L2 = L+

1 | L+
2 ./ L−

1 | L−
2

(MergeLocPar)
dom(L1) # dom(L2)
L1 | L2 = L1 ./ L2

(MergeApart)

Figure 3.5: Located Type Merge Relation Rules.

Definition 3.2.19 (Domain of a Located Type)

The domain of a located type L, noted dom(L), is defined as follows:

dom(L) , {n | L ≡ L′ | n : C}

Definition 3.2.20 (Located Types Merge Relation)

We say located type L is the merge of located types L1 and L2, noted L = L1 ./ L2, if we may
derive L = L1 ./ L2 via the rules given in Figure 3.5.

The merge relation is then used to explain how the behaviors of process can be combined, in
a compositional way. Ultimately, such behavioral combinations result in a closed type, which
capture systems that have no open external dependencies.

Definition 3.2.21 (Closed Types)

We say a behavioral type B is closed, noted closed(B), if for any message type (p l(C)) such
that (p l(C)) ∈ MsgL(B) then either p = τ, or p = ? and l ∈ L?. We say a located type L is
closed, noted closed(L), if for any behavioral type B such that L ≡ L′ | n : [B] then closed(B).

Closed behavioral types characterize processes that have matching receives for all sends. Closed
types are thus defined exclusively on messages of polarity τ, except for shared input message
types that are still open to match with further outputs.

3.3 Type System

In this section we present the typing rules that associate conversation types to systems specified
in the πlab-Calculus presented in Chapter 2. Processes specified in πlab-Calculus interact via
channel-based communication, where each communication is indexed by a label. Labeled chan-
nels may thus implement our notion of conversations: a single medium of communication where
we may structure the several interactions (or message exchanges), using the label to uniquely
identify them. We associate conversation types to πlab-Calculus processes so as to discipline the
interaction in each channel, via protocols defined over the labels, in a set of typing rules. When
we succeed to associate to a process a conversation type, we say that the process is well typed,
being such well-typed processes the object of the results that express our safety properties.

We informally describe the typing rules. The following rule types the parallel composition
of two processes by merging the types of the two parallel branches:

P :: L1 Q :: L2

P | Q :: L1 ./ L2
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By merging the two types we are then able to describe all the possible behaviors of the concurrent
processes, including interactions with the external environment and internal synchronizations
between the parallel processes — represented by τ message types in the resulting merge. Rules:

0 :: ?L! X :: ?L!

type the inactive process and the recursion variable with an exponential output located type.
This means the inactive process/recursion variable can be used in a context where a process
requiring some specific exponential behavior is expected (cf. subtyping), paving the way for a
weakening property (Proposition 3.3.3). The rule for the recursive definition:

P :: ?L!

recX .P :: ?L!

types a recursive process if the body of the recursion is characterized by such an exponential
output type. The rule profits from the subtyping relation, as it allows for particular message
types (outputs on shared labels) to be lifted to the more general unbounded case (SubExpWeak),
thus allowing for systems that exhibit a single output in such messages to fit in the requirements
of the premise of the rule. Intuitively, this rule characterizes systems that have as an external
interface a number of calls to remote services, and that interact with such service instances using
freshly created names, which type is no longer visible in the derivation, as specified by the rule:

P :: L | a : [B] (closed(B), a 6∈ dom(L))
(νa)P :: L

which types a process that specifies a restricted name, by checking the behavior prescribed for
the restricted conversation is closed, so as to avoid hiding conversation names where unmatched
communications still persist (necessary to ensure deadlock absence). Rule:

P :: L ./ n : [B] (! l(C) # B)
n · l!(m).P :: (L ./ n : [! l(C).B]) ./ m : C

types the output prefixed process. The premise states that process P has some composite type
which is the result of a merge between located behavior L and behavior B at n. Then, in the
conclusion of the rule, the output prefixed process is characterized by the type that now specifies
the output message type with continuation B in conversation n. Such merges in premise and
conclusion are essential to support challenging specifications where, through aliasing, behaviors
that a process initially expects from the external environment end up actually being implemented
internally to the process (e.g., two roles of a conversation that dynamically end up being realized
by the same party).

Notice the type of the name m being sent is introduced as a separate ./ view of the context
(as well as declared in the argument type of the message), which means that the type being sent
may actually be some separate part of the type of some conversation, which will be (partially)
delegated away. This mechanism is crucial to allow external partners to join in on ongoing
conversations in a disciplined way.

The rule for the input prefixed process:

P :: (L ./ n : [B]) | x : C (? l(C) # B, x 6∈ dom(L) ∪ {n}, l ∈ Lp)
n · l?(x).P :: L ./ n : [? l(C).B]
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P :: L1 Q :: L2

P | Q :: L1 ./ L2
(Par)

0 :: ?L!
(Stop)

P :: ?L!

recX .P :: ?L!
(Rec)

X :: ?L!
(RecVar)

P :: L | a : [B] (closed(B), a 6∈ dom(L))
(νa)P :: L

(Res)

P :: L ./ n : [B] (! l(C) # B)
n · l!(m).P :: (L ./ n : [! l(C).B]) ./ m : C

(Output)

P :: (L ./ n : [B]) | x : C (? l(C) # B, x 6∈ dom(L) ∪ {n}, l ∈ Lp)
n · l?(x).P :: L ./ n : [? l(C).B]

(Input)

P :: ?L! | x : C (x 6∈ dom(L))
rec X .n · l?(x).(X | P ) :: ?L! ./ n : [?? l(C)]

(InputRec)

P :: L1 L1 <: L2

P :: L2
(Sub)

Figure 3.6: Typing Rules.

is similar to the output rule, being the only difference the specification of the type for the received
name in the premise, which then allows process P to specify some behavior in such received
name, accordingly to the argument type of the message. Notice this rule types exclusively
inputs defined on plain labels. The following rule types inputs defined on shared labels:

P :: ?L! | x : C (x 6∈ dom(L))
rec X .n · l?(x).(X | P ) :: ?L! ./ n : [?? l(C)]

which essentially extends the rule for the general recursive process allowing for an input message
to be at the head of the recursive behavior. Although shared labeled inputs can only be typed
via this last rule, the rule itself also accommodates plain labeled inputs. We may now present the
definition of our typing relation between πlab-Calculus processes and basic conversation types.

Definition 3.3.1 (Well-Typed πlab-Calculus Processes)

We say a πlab-Calculus process P is well typed if there is a located type L such that P :: L can
be derived by the rules given in Figure 3.6.

In the next section we show the results that assert some properties of such well-typed systems.

3.3.1 Type Safety

We next present our results that ensure a notion of safety for well-typed processes. In short,
we show that well-typed processes are free from particular errors, and that well-typed processes
always evolve to well-typed processes, hence well-typed processes are free from errors throughout
their evolution. The notion of preservation of typing under evolution is captured by subject
reduction (Theorem 3.3.5), and it is defined relying on a notion of reduction on types, since each
reduction step at the process level may require a modification in the typing, as expected from a
behavioral type system.
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n : [τ l(C).B] → n : [B]
(RedTau)

L1 → L2

L1 | L3 → L2 | L3
(RedCongPar)

L1 ≡ L′
1 → L′

2 ≡ L2

L1 → L2
(RedEquiv) L → L (RedReflex )

Figure 3.7: Located Types Reduction Rules.

Definition 3.3.2 (Located Types Reduction)

We say located type L1 reduces to located type L2, noted L1 → L2, if it L1 → L2 is derivable by
the rules given in Figure 3.7.

Essentially, each evolution of the process will be explained at the level of the type by the acti-
vation of the continuation of a τ message prefix (RedTau). The other rules specify a congruence
principle for parallel composition of types (RedCongPar), closure of reduction under type equiv-
alence (RedEquiv), and closure of the reduction relation under reflexivity (RedReflex ). The last
case is necessary to capture reduction under restricted conversations (which type is not visible).

We may now present our main soundness results. We start by stating a weakening property
that supports the introduction of exponential output located types in the typing derivation.

Proposition 3.3.3 (Weakening)

Let P be a well-typed process such that P :: L1. If exponential output located type ?L!
2 is such

that L1 and ?L!
2 are apart, hence L1 # ? L!

2, then P :: L1 | ? L!
2.

Proof. By induction on the length of the derivation of P :: L1. Type ?L!
2 is introduced at the

level of the axioms (Stop) and (RecVar), and pushed down in the derivation separately, being
the independence guaranteed by the apartness L1 # ? L!

2 (see Appendix A.3).

The following auxiliary result regards the typing of processes up to substitution.

Lemma 3.3.4 (Substitution Lemma)

Let P be a well-typed process such that P :: L | x : C and x 6∈ dom(L). If there is type L′ such
that L′ = L ./ a : C then P{x/a} :: L′.

Proof. By induction on the length of the derivation of P :: L | x : C (see Appendix A.1).

The substitution lemma plays a crucial role in proving the preservation of typing under evolution,
since synchronizations allow for names to be passed around, so the Lemma will be used to prove
that the body of an input is well-typed after the variable instantiation takes place. The condition
that the “new” type a : C can be merged back into the “old” overall type L is enough to ensure
this, and will be guaranteed at the level of the typing of the process emitting the name.

We may now state our subject reduction result.

Theorem 3.3.5 (Subject Reduction)

Let P be a well-typed process such that P :: L. If P → Q then there is L → L′ such that Q :: L′.

Proof. By induction on the length of the derivation of P → Q (see Appendix A.1).

Subject reduction thus provides the guarantee that well-typed processes always evolve to well-
typed processes. We now turn to characterizing the error processes that our type system avoids,
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so as to arrive at our safety result which guarantees that such error processes are unreachable
from well-typed processes. To define error processes we introduce static process contexts and
an auxiliary notion of communication prefixed processes.

Definition 3.3.6 (πlab-Calculus Static Context)

πlab-Calculus static process contexts, noted C[·], are defined as follows:

C[·] ::= (νa)C[·]
∣∣ P | C[·]

∣∣ · (πlab-Calculus Static Context)

Definition 3.3.7 (πlab-Calculus Prefix Process)

We denote by c · l−.P a prefix process that is ready to communicate on c · l, defined as follows:

c · l−.P ::= c · l!(ã).P
∣∣ c · l?(x̃).P (πlab-Calculus Prefix Process)

We define error processes as processes that exhibit a race in a communication defined with a plain
label, using static contexts to capture any subprocess where a race may happen, including under
name restriction, and using a prefix process to interact with such competing communications.

Definition 3.3.8 (Error Process)

We say P is an error process if there is a context C, processes Q,R with P = C[Q | R], and
name c and labels l, flag with l ∈ Lp and flag 6∈ fl(P ), such that:

C[Q | c · l−.c · flag!()] → C′[c · flag!()] and C[R | c · l−.c · flag!()] → C′[c · flag!()]

In such way, we “behaviorally” characterize an error as a process that has distinct subprocesses
able to synchronize with the same communication prefix, where such prefix is defined on a plain
label (from Lp). Thus, a process is not an error only if for each possible immediate interaction
in a plain message there is at most a single sender and a single receiver.

Proposition 3.3.9 (Error Freeness)

If P is a well-typed process then P is not an error process.

Proof. Follows by auxiliary results and by the definition of merge (see Appendix A.1).

Combining error freeness (Proposition 3.3.9) with subject reduction (Theorem 3.3.5), we con-
clude that any process reachable from a well-typed process is not an error.

Corollary 3.3.10 (Type Safety)

Let P be a well-typed process. If there is Q such that P
∗→ Q, then Q is not an error process.

Proof. Immediate from Theorem 3.3.5 and Proposition 3.3.9.

Our type safety result ensures that, in any reduction sequence arising from a well-typed pro-
cess, for each plain-labeled message ready to communicate there is always at most a unique
input/output outstanding synchronization. More: arbitrary interactions in shared labels do not
invalidate this invariant. Another consequence of subject reduction (Theorem 3.3.5) is that any
message exchange inside the process must be explained by a τM prefix in the related conversa-
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tion type (via type reduction), thus implying conversation fidelity, i.e., all conversations follow
the prescribed protocols.

3.3.2 Typing the Purchase Example

In this section we show the typing derivation for the purchase scenario running example presented
in the Introduction and implemented in πlab-Calculus in Section 2.2.2. Consider the code:

PurchaseSystem ,

(νbuyChat)
(Seller · BuyService!(buyChat).

buyChat · buy!(prod). buyChat · price?(p). buyChat · details?(d) )
| PriceDB |
Seller · BuyService?(x).

x · buy?(prod).Seller · askPrice!(prod).
Seller · priceVal?(p). x · price!(p).
Shipper · DeliveryService!(x ). x · product!(prod)

|
Shipper · DeliveryService?(y).

y · product?(p). y · details!(data)

which implements the three-party service collaboration. The overall (choreographic) description
that governs the interactions in this service collaboration is given by the type (considering some
basic types Tp, Tm and Td):

τ buy(Tp).τ price(Tm).τ product(Tp).τ details(Td)

which specifies a protocol that consists in the sequence of interactions buy, price, product and
details. Given the overall protocol, we now show how our types ensure that all three partici-
pants follow the prescribed protocol. For starters, by looking at the process that instantiates the
BuyService (the client), we may verify that its role in the collaboration is given by the code:

P , buyChat · buy!(prod). buyChat · price?(p). buyChat · details?(d)

for which we may derive the following typing:

P :: buyChat : [ ! buy(Tp).? price(Tm).? details(Td) ]

which characterizes the interactions the process has in conversation buyChat , specifying that it
first sends message buy, then receives message price and finally receives message details. As
for the process that publishes the BuyService (the seller) we can observe by looking at the code
that its (individual) role in the service collaboration is given by the code:

Q , x · buy?(prod). x · price!(p). x · product!(prod)

where we focus solely on the interactions relative to the service conversation, leaving out the
interactions with the price database and the call to service DeliveryService. So the role of the
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seller in the service collaboration is characterized by the typing:

Q :: x : [ ? buy(Tp).! price(Tm).! product(Tp) ]

Finally, by looking at the code of the process that publishes DeliveryService (the shipper) we
may observe that its role in the service collaboration is given by the code:

R , y · product?(p). y · details!(data)

for which we may derive the following typing:

R :: y : [ ? product(Tp).! details(Td) ]

We then have three distributed participants realizing different parts of the overall protocol. If
we are to take the behavioral types that characterize the three distinct roles in the conversation
and behaviorally combine — merge — them we obtain the intended prescribed protocol:

τ buy(Tp).τ price(Tm).τ product(Tp).τ details(Td)
=
! buy(Tp).? price(Tm).? details(Td)

./ ? buy(Tp).! price(Tm).! product(Tp)
./ ? product(Tp).! details(Td)

So, in fact the three participants will follow the prescribed protocol of interaction. To statically
guarantee this fact, we must observe how the several behaviors are to be delegated throughout
system evolution. For starters, we observe that the DeliveryService receives a name and
interacts in it according to ? product(Tp).? details(Td), and therefore we type the shipper
process as follows:

Shipper · DeliveryService?(y).R
::
Shipper : [ ? DeliveryService(? product(Tp).! details(Td)) ]

We thus have that the behavior delegated by the seller to the shipper at the moment seller asks
shipper to join the service interaction is defined in the DeliveryService message argument
type. We then have the following typing characterization (by rule (Output)):

x · product!(prod) :: x : [ ! product(Tp) ] ./ Shipper : [ 0 ]

Shipper · DeliveryService!(x). x · product!(prod)
::
Shipper : [ ! DeliveryService(? product(Tp).! details(Td)).0 ]
|
(x : [ ! product(Tp) ] ./ x : [ ? product(Tp).! details(Td) ])

which specifies a call to DeliveryService with the corresponding type, and where the type
of x is determined by the merge of the delegated behavior with the behavior specified for x in
the continuation process x · product!(prod). We may then consider the result of the merge and
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obtain the following typing:

Shipper · DeliveryService!(x). x · product!(prod)
::
Shipper : [ ! DeliveryService(? product(Tp).! details(Td)) ]
|
x : [ τ product(Tp).! details(Td) ]

Given this, we may now type the whole seller process as follows:

Seller · BuyService?(x).
x · buy?(prod).Seller · askPrice!(prod).
Seller · priceVal?(p). x · price!(p).
Shipper · DeliveryService!(x ). x · product!(prod)

::
Seller : [ ? BuyService(? buy(Tp).! price(Tm).τ product(Tp).! details(Td))

| ! askPrice(Tp).? priceVal(Tm) ]
|
Shipper : [ ! DeliveryService(? product(Tp).! details(Td)) ]

which specifies that the behavior delegated to the BuyService upon a service call is:

? buy(Tp).! price(Tm).τ product(Tp).! details(Td)

which characterizes the subsystem consisting on seller and shipper, resulting from the behavioral
combination of the types that represent the roles of seller and shipper in the service interaction
(where the role of the shipper will be dynamically delegated). The type also indicates the pro-
tocol between the service code and the price database ! askPrice(Tp).? priceVal(Tm) which
we choose to derive in parallel. Finally we may type the buyer process as follows:

P :: buyChat : [ ! buy(Tp).? price(Tm).? details(Td) ]

Seller · BuyService!(buyChat).P
::
Seller : [ ! BuyService(? buy(Tp).! price(Tm).τ product(Tp).! details(Td)) ]
|
buyChat : [ ! buy(Tp).? price(Tm).? details(Td) ]
./ buyChat : [ ? buy(Tp).! price(Tm).τ product(Tp).! details(Td) ]

where the result of the merge is the prescribed conversation protocol for buyChat , hence:

Seller · BuyService!(buyChat).P
::
Seller : [ ! BuyService(? buy(Tp).! price(Tm).τ product(Tp).! details(Td)) ]
|
buyChat : [ τ buy(Tp).τ price(Tm).τ product(Tp).τ details(Td) ]
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Given that the type of buyChat is a closed type, we may type the restriction via rule (Res),
which elides the buyChat type from the derivation:

(νbuyChat)( Seller · BuyService!(buyChat).P )
::
Seller : [ ? BuyService(? buy(Tp).! price(Tm).τ product(Tp).! details(Td)) ]

We thus have the following typing for the entire system:

PurchaseSystem
::
Seller : [ τ BuyService(? buy(Tp).! price(Tm).τ product(Tp).! details(Td))

| τ askPrice(Tp).τ priceVal(Tm) ]
|
Shipper : [ τ DeliveryService(? product(Tp).! details(Td)) ]

specifying the two internal (τ) service interactions defined at Seller and at Shipper and the inter-
nal interaction protocol with the price database (assuming the PriceDB is typed as expected).

We can then assert, in the light of the type safety results shown in Section 3.3.1, that all
conversations in the purchase system follow the prescribed protocols.

3.4 Remarks

In this section we present some notes on closely related work and assess our development along
the way. We present a summary comparison between conversation types and classical dyadic
session types and leave a more detailed comparison with multiparty session types for the con-
clusion of Chapter 5, where we also discuss, in broad lines, how our type system compares with
more general behavioral type systems.

Session types, as introduced by Honda [54] and by Honda et al. [55], describe the single-
threaded interaction between two parties, while conversation types capture the, possibly con-
current, set of interactions between multiple parties. Thus, dyadic session types are a particular
case of conversation types. Consider the following specification:

(νsession)
( chat · l!(session). session · l1!(hi). session · l2?(y) )
|
chat · l?(x ). x · l1?(z ). x · l2!(bye)

where we model a (single-threaded) two party interaction, characterized by conversation type:

chat : [τ l(? l1(string).! l2(string))]

where, if we abstract away from the labels, we may recognize a session-type like specification.
Labels are essential to support communication between multiple parties in a single medium: if
three parties are ready to communicate on a channel and there is no label to distinguish the
communications then we immediately have an undesired race. We view our approach as more
fundamental than most session-type presentations, since we avoid introducing session initiation
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primitives as native in the language (see [92] for an attempt).
On the one hand sessions are a medium for two-party interaction, where session participants

access the session through a session endpoint. On the other hand conversations are also a single
medium but for multiparty interaction, where any of the conversation participants accesses the
conversation through a conversation endpoint (access piece). Session channels support single-
threaded interaction protocols between the two session participants. Conversation contexts, on
the other hand, support concurrent interaction protocols between multiple participants. Sessions
always have two endpoints, created at session initialization. Participants can delegate their par-
ticipation in a session, but the delegation is full in the sense that the delegating party loses access
to the session. Conversations also initially have two endpoints. However the number of end-
points may increase (decrease) as participants join (leave) ongoing conversations. Participants
can ask a party to join a conversation and not lose access to it (partial delegation).

Since there are only two session participants, session types may describe the entire protocol by
describing the behavior of just one of the participants (the type of the other participant is dual).
Conversations types, on the other hand, describe the interactions between multiple parties, so
they specify the entire conversation protocol (a choreography description) that decomposes in
the types of the several participants (e.g., B = Bbuyer ./ Bseller ./ Bshipper ). Duality of sessions
is a particular case of a behavioral merge: two (τ-free) types B1, B2 are dual if there is B such
that B = B1 ./ B2 and closed(B) — i.e., if we are to behaviorally combine two τ-free types
(local types that specify only outputs and inputs) and obtain a closed type then such types are
dual.

On a more technical perspective, we remark that some session-typed based approaches have
developed interesting theories and technical artifacts that we did not explore. For instance, we
adopt an equi-recursive approach to recursive types, while in the work of Gay et al. [48] the
authors consider a more flexible theory based on coinductive definitions. Also, the works of
Castagna et al. [34] and Padovani [80] provide with notions of semantic subtyping for session
types, which allow for a more general presentation of the subtyping relation relying on behavioral
equivalences between types. For simplicity, we restricted our development to consider only
monadic messages. We expect our techniques can be extended to the polyadic case, in which
case we would also exclude arity mismatch errors.

The structure of the basic conversation types language already elucidates on what is the sort
of communication model we are aiming at: interaction in a system is described by a number of
conversations, each one grouping a set of related interactions in a structured way. Building on
this abstract notion of conversation we propose a model for service-oriented computing, which
includes primitives that support the access to conversations and that provide a means to specify
interaction in such conversations in a simple and natural way, described next.
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Chapter 4

The Conversation Calculus

In this chapter we introduce the (core) Conversation Calculus, our proposal for modeling service-
oriented systems, introduced in [95]. We start by motivating the general ideas that are at the
basis of the constructs of the language, after which we present the syntax and operational
semantics of the language. Then, we present a basic study of the behavioral semantics of the
language, where we show some interesting theoretical properties of our model — namely that the
standard definition of behavioral equivalence is a congruence for all operators of the language.
We then show how to program some examples, using some useful idioms that offer a convenient
abstraction for some typical service-oriented programming patterns. We conclude the chapter
by assessing our work through a comparison with related approaches.

4.1 Modeling Service-Oriented Computation

At the basis of our development we find the abstract notion of a conversation: a set of related
interactions between multiple parties. Such an abstract notion may be implemented in different
ways, as, for example, by using correlation tokens to encode conversations (cf., web-service
technology): a special nonce is inserted in a message so as to uniquely identify the service
interaction to which the message belongs to. Some formal models have been introduced that
are based on such notion of correlation (see [51, 61, 71]). Others prefer to encapsulate such a
set of related interactions in a dedicated medium, a session (e.g., [12, 13, 68]), however sessions
do not support multiparty interaction. Our approach is closest to the session-based approach,
since we also encapsulate the set of related interactions in the same medium of communication.
However, differently from sessions, conversations support multiparty interaction.

Consider the following πlab-Calculus specification:

chat · hi!().chat · bye?()

where a process is communicating in channel chat messages labeled by hi and bye. This process
is specifying a protocol for a party interacting in conversation chat . Since the two messages are
related and belong to the same conversation we may as well write them as:

hi!().bye?()

and somehow indicate they are to be exchanged in conversation chat : in the Conversation
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Calculus this is achieved by placing such message protocol specification inside a conversation
access piece:

chat J [ hi!().bye?() ]

We thus specify that first a message hi is to be sent and then a message bye is to be received
in conversation chat . We are then able to encapsulate a set of related interactions by placing
such protocol specifications in access pieces of the same conversation, for instance:

chat J [ hi!().bye?() ] | chat J [ hi?().bye!() ]

Moreover, we may specify as many accesses to a single conversation as needed. So, for instance
we might have a parallel protocol between four parties in conversation chat :

chat J [ hi!().bye?() ] | chat J [ hi?().bye!() ]
|
chat J [ hello!().goodbye?() ] | chat J [ hello?().goodbye!() ]

or a protocol that sequentially involves three different parties:

chat J [ hi!().bye?() ] | chat J [ hi?().hello!() ] | chat J [ hello?().bye!() ]

Since we intend to model dynamic collaborations, which is to say systems where parties are,
at runtime, asked to participate in a collaboration, it is essential that we have some way of
capturing the dynamic acquisition of the shared medium of communication. We achieve this
by allowing conversation names to be passed in communications (just like names are passed in
communications in the π-Calculus). So for instance we may specify:

chat J [ private!(privateChat).privateChat J [ hi!() ] ]
|
chat J [ private?(x).x J [ hi?() ] ]

where the process on the bottom receives a name (in message private in conversation chat)
and then uses this name to access the conversation to which he previously had no access to (we
typically ensure the name is freshly created by a name restriction — (νprivateChat)).

These are the basic ingredients of the language, which may be viewed as a specialization
of the π-Calculus, introduced by Milner et al. [79], so as to address specific issues of service-
oriented computation, namely to the particular setting of modeling multiparty interaction. In
the remaining of the chapter we present the syntax of the language (Section 4.2) and provide a
mathematical interpretation of the language constructs by means of a labeled transition system
(Section 4.3). Then, we prove that the standard notion of behavioral equivalence induced by
the labeled transition system — bisimilarity — enjoys some essential properties, namely that
bisimilarity is a congruence for all operators of the language, thus showing that our syntacti-
cally chosen constructs are proper functions at the level of the abstract behavior (Section 4.4).
We then turn to a more practical perspective and illustrate the expressiveness of the language
by programming a couple of examples, where we make use of higher level service-oriented id-
ioms that we show can be encoded in more basic communication primitives in our language
(Section 4.5).
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a, b, c, . . . ∈ Λ (Names)
x, y, z, . . . ∈ V (Variables)
n, m, o, u, v . . . ∈ Λ ∪ V (Identifiers)
l, s . . . ∈ L (Labels)
X ,Y, . . . ∈ χ (Recursion Variables)

P,Q,R ::= 0 (Inaction)
| P | Q (Parallel Composition)
| (νa)P (Name Restriction)
| recX .P (Recursion)
| X (Variable)
| n J [P ] (Conversation Access)
| Σi∈I αi.Pi (Prefix Guarded Choice)

d ::= � | � (Directions)
α ::= ld!(n1, . . . , nk) (Output)

| ld?(x1, . . . , xk) (Input)
| this(x) (Conversation Awareness)

Figure 4.1: The Core Conversation Calculus Syntax.

4.2 The Core Conversation Calculus

In this section we first define the syntax of the core Conversation Calculus, then we describe in
detail the individual constructs of the language. In a nutshell, the core Conversation Calculus
extends the static fragment of the π-Calculus with the conversation construct n J [P ], and
replaces channel based communication with context-sensitive message based communication.

We assume given an infinite set of names Λ, an infinite set of variables V, an infinite set of
labels L, and an infinite set of recursion variables χ. We next define the syntax of the language.

Definition 4.2.1 (CC Syntax)

The syntax of the Core Conversation Calculus is given in Figure 4.1.

The static fragment is defined by the inaction 0, parallel composition P | Q, name restriction
(νa)P and recursion recX .P . The conversation access construct n J [P ] allows a process to
initiate interactions, as specified by P , in the conversation n.

Communication is expressed by the guarded choice construct Σi∈I αi.Pi, which expresses
that the process may select some initial action αi and then progress as Pi. Communication
actions are of two forms: ld!(n1, . . . , nk) for sending messages (e.g., askPrice�!(prod)) and
ld?(x1, . . . , xk) for receiving messages (e.g., price�?(p)), where the variables in x1, . . . , xk are
pairwise distinct. Message communication is thus defined by the label l and the direction d.
There are two message directions: � (read “here”) meaning that the interaction should take
place in the current conversation, and � (read “up”) meaning that the interaction should take
place in the caller conversation. A basic action may also be of the form this(x), allowing the
process to dynamically access the identity of the current conversation.

Notice that message labels (from L) are not names but free identifiers (cf. record labels
or XML tags), and therefore are not subject to fresh generation, restriction or binding. Also,
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message labels are not communicated in messages. Only conversation names may be subject to
binding, freshly generated via (νa)P , and be sent in messages.

To lighten notation we introduce the following syntactic conventions and abbreviations.

Syntactic conventions:

recX .P | Q is to be read as (recX .P ) | Q.

(νa)P | Q is to be read as ((νa)P ) | Q.

α.P | Q is to be read as (α.P ) | Q.

Abbreviations:

(νã)P and (νa1, . . . , ak)P stand for (νa1) . . . (νak)P .

ld!(ñ).P stands for ld!(n1, . . . , nk).P .

ld?(x̃).P stands for ld?(x1, . . . , xk).P .

S (S1, S2, . . .) stands for Σi∈I αi.Pi.

l!(x̃).P stands for l�!(x̃).P .

l?(x̃).P stands for l�?(x̃).P .

α stands for α.0, where appropriate.

In order to present the operational semantics of the language we first need to introduce some
auxiliary operators that collect some syntactic information of processes, that will be used to
syntactically manipulate the processes when we are characterizing how they evolve. Namely, we
introduce the sets of free and bound names of a process, the set of free labels, and the sets of
free variables and free recursion variables. The distinguished occurrences of a, x̃, x and X are
binding occurrences in (νa)P , ld?(x̃).P , this(x).P , and recX .P , respectively. To define the set
of free names of a process P , noted fn(P ), since the set of variables V is separate from the set
of names Λ, we need only to collect the names from Λ which are not under the scope of a name
restriction. The set of restricted names is the object collected by the set of bound names of a
process P , noted bn(P ). The set of free labels of a process P , noted fl(P ), collects all labels
that occur in the process.

Definition 4.2.2 (Free Names)

The set of free names of a process P , noted fn(P ), is inductively defined on the structure of
processes as follows:

fn(0) , ∅ fn(n J [P ]) , ({n} ∩ Λ) ∪ fn(P )
fn(P | Q) , fn(P ) ∪ fn(Q) fn(ld!(ñ).P ) , (ñ ∩ Λ) ∪ fn(P )
fn(X ) , ∅ fn(ld?(x̃).P ) , fn(P )
fn(rec X .P ) , fn(P ) fn(this(x).P ) , fn(P )
fn((νa)P ) , fn(P ) \ {a} fn(Σi∈I αi.Pi) ,

⋃
i∈I fn(αi.Pi)
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Definition 4.2.3 (Bound Names)

The set of bound names of a process P , noted bn(P ), is inductively defined on the structure of
processes as follows:

bn(0) , ∅ bn(n J [P ]) , bn(P )
bn(P | Q) , bn(P ) ∪ bn(Q) bn(ld!(ñ).P ) , bn(P )
bn(X ) , ∅ bn(ld?(x̃).P ) , bn(P )
bn(rec X .P ) , bn(P ) bn(this(x).P ) , bn(P )
bn((νa)P ) , bn(P ) ∪ {a} bn(Σi∈I αi.Pi) ,

⋃
i∈I bn(αi.Pi)

Definition 4.2.4 (Free Labels)

The set of free labels of a process P , noted fl(P ), is inductively defined on the structure of
processes as follows:

fl(0) , ∅ fl(n J [P ]) , fl(P )
fl(P | Q) , fl(P ) ∪ fl(Q) fl(ld!(ñ).P ) , {l} ∪ fl(P )
fl(X ) , ∅ lb(ld?(x̃).P ) , {l} ∪ fl(P )
fl(rec X .P ) , fl(P ) fl(this(x).P ) , fl(P )
fl((νa)P ) , fl(P ) fl(Σi∈I αi.Pi) ,

⋃
i∈I fl(αi.Pi)

Next we define the set free variables of a process P , noted fv(P ), hence the set of variable
identifiers that occur not within the scope of an input prefix or a this. Also we define the set
of free recursion variables of a process P , noted frv(P ), hence the set of recursion variables that
occur not within the scope of a binding recursive process construct.

Definition 4.2.5 (Free Variables)

The set of free variables of a process P , noted fv(P ), is inductively defined on the structure of
processes as follows:

fv(0) , ∅ fv(n J [P ]) , ({n} ∩ V) ∪ fv(P )
fv(P | Q) , fv(P ) ∪ fv(Q) fv(ld!(ñ).P ) , (ñ ∩ V) ∪ fv(P )
fv(X ) , ∅ fv(ld?(x̃).P ) , fv(P ) \ x̃

fv(rec X .P ) , fv(P ) fv(this(x).P ) , fv(P ) \ {x}
fv((νa)P ) , fv(P ) fv(Σi∈I αi.Pi) ,

⋃
i∈I fv(αi.Pi)

Definition 4.2.6 (Free Recursion Variables)

The set of free process variables of a process P , noted frv(P ), is inductively defined on the
structure of processes as follows:

frv(0) , ∅ frv(n J [P ]) , frv(P )
frv(P | Q) , frv(P ) ∪ frv(Q) frv(ld!(ñ).P ) , frv(P )
frv(X ) , {X} frv(ld?(x̃).P ) , frv(P )
frv(rec X .P ) , frv(P ) \ {X} frv(this(x).P ) , frv(P )
frv((νa)P ) , frv(P ) frv(Σi∈I αi.Pi) ,

⋃
i∈I frv(αi.Pi)

We say a process is closed if it has no free variables. Since we usually are interested only in
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closed processes we often refer to closed processes simply as processes.

Definition 4.2.7 (Closed Process)

We say P is a closed process if fv(P ) = ∅ and frv(P ) = ∅.

Convention 4.2.8 We use the term process to refer to closed processes, where appropriate.

We define application of substitution to a process, noted P{n1, . . . , nk/m1, . . . ,mk}, which re-
places all free occurrences of the ni identifiers by the respective mi identifiers. In the definition
we use # to indicate set disjointness and ñ, m̃ to represent ñ ∪ m̃.

Definition 4.2.9 (Substitution)

Given identifiers n1, . . . , nk and m1, . . . ,mk, the application of substitution to a process, noted
P{n1, . . . , nk/m1, . . . ,mk} or P{ñ/m̃}, is inductively defined on the structure of processes as:

0{ñ/m̃} , 0

(P | Q){ñ/m̃} , P{ñ/m̃} | Q{ñ/m̃}
X{ñ/m̃} , X
rec X .P{ñ/m̃} , rec X .(P{ñ/m̃})
((νa)P ){ñ/m̃} , (νa)(P{ñ/m̃}) (if a 6∈ ñ, m̃)

ni J [P ]{ñ/m̃} , mi J [P{ñ/m̃}]
u J [P ]{ñ/m̃} , u J [P{ñ/m̃}] (if u 6∈ ñ)

(ld!(õ).P ){ñ/m̃} , ld!(ṽ).(P{ñ/m̃}) (if oj = ni then vj = mi else vj = oj)

(ld?(x̃).P ){ñ/m̃} , ld?(x̃).(P{ñ/m̃}) (if x̃# ñ, m̃)

(this(x).P ){ñ/m̃} , this(x).(P{ñ/m̃}) (if x 6∈ ñ, m̃)

(Σi∈I αi.Pi){ñ/m̃} , Σi∈I (αi.Pi{ñ/m̃})

N.B. By i we denote an index such that i ∈ 1, . . . , k.

We introduce α-equivalence which identifies processes which are equivalent up to a (safe) re-
naming of bound names and variables.

Definition 4.2.10 (α-Equivalence)

α-equivalence, noted ≡α, is the least congruence on processes that satisfies the following rules:

(νa)P ≡α (νb)(P{a/b}) (b 6∈ fn(P )) (Restriction)

ld?(x̃).P ≡α ld?(ỹ).(P{x̃/ỹ}) (ỹ # fv(P )) (Input)

this(x).P ≡α this(y).(P{x/y}) (y 6∈ fv(P )) (This)

Processes which are α-equivalent essentially represent the same specification, as they differ only
in the particular identities of some bound names that can freely be renamed without changing
the meaning of the process. We thus implicitly identify them so as to simplify presentation.

Convention 4.2.11 We implicitly identify α-equivalent processes.
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Recursive processes repeat their behavior at the point where the recursion variable occurs, which
we represent by unfolding the recursive process definition, which amounts to say we substitute
the recursion variable by the whole recursive definition. To that end, we define the application
of substitution of a recursion variable by a process.

Definition 4.2.12 (Recursion Variable Substitution)

Given recursion variable X and process P the application of a recursion variable substitution to
a process in Q, noted Q{X/P}, is inductively defined on the structure of processes as follows:

(Q | R){X/P} , Q{X/P} | R{X/P} 0{X/P} , 0

X{X/P} , P Y{X/P} , Y
(rec X .Q){X/P} , rec X .Q (rec Y.Q){X/P} , rec Y.(Q{X/P})
n J [Q]{X/P} , n J [Q{X/P}] ((νa)Q){X/P} , (νa)(Q{X/P})
(ld!(ñ).Q){X/P} , ld!(ñ).(Q{X/P}) (ld?(x̃).Q){X/P} , ld?(x̃).(Q{X/P})
(this(x).Q){X/P} , this(x).(Q{X/P}) (Σi∈I αi.Qi){X/P} , Σi∈I (αi.Qi{X/P})

Before presenting the operational semantics of the core CC model, which provides a means to
precisely characterize how CC processes evolve, we informally describe the language constructs.

Static Fragment

Inaction 0, parallel composition P | Q, restriction (νa)P and recursion recX .P are constructs
commonly found in process calculi based on the π-Calculus. Inaction represents the process that
has no behavior. Parallel composition represents two processes that are simultaneously active,
so the behavior of the parallel composition can be the result of behavior of either one of the
branches individually, but also from synchronizations between the two branches. Restriction
allows for the creation of new unique names that are local to a part of a system, but where
the scope of the name can dynamically grow since the name can be communicated in messages.
Recursion allows for representing infinite behavior, as recX .P behaves as P{X/recX .P}.

Communication

Communication between subsystems is realized by means of message passing. In particular, we
denote the input and the output of messages from/to the current context by the constructs:

messageLabel�?(x̃).P messageLabel�!(ñ).P

In the output case, the terms ni represent message arguments, values to be sent, as expected. In
the input case, the variables xi represent message parameters that are bound in P , as expected.
The target symbol � (read “here”) says that the corresponding communication actions must
interact in the current context. Since messages to the current conversation (�) are the most
frequently used, we sometimes omit the � symbol to simplify presentation. Second, we denote
the input and the output of messages from/to the outer context by the constructs:

messageLabel�?(x̃).P messageLabel�!(ñ).P
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The target symbol � (read “up”) says that the corresponding communication actions must
interact in the (uniquely determined) outer context, where “outer” is understood relatively to
the context where the �? or �! process is running.

For example, consider the following process:

info�?(data).fwdInfo�!(data)

which can be described as a forwarding process, since it is waiting to receive on message info

some data in the current (�) conversation, and upon reception forwards the received data in mes-
sage fwdInfo to the enclosing (�) conversation. If we are to place this process in a context where
a process is willing to send message info in the current conversation (e.g., info�!(myData)),
then the info message can be exchanged, as captured by the following reduction:

info�?(data).fwdInfo�!(data) | info�!(myData) → fwdInfo�!(myData)

which describes such system evolves to a process that is willing to emit message fwdInfo to
the enclosing conversation, carrying the myData exchanged in the info message. To determine
the enclosing conversation we need to look at the enclosing environment where the processes
specifying the message exchanges are placed, namely to enclosing conversation access constructs.

Conversation Access

The conversation access construct n J [P ] allows a process to initiate interactions, as specified
by P , in conversation n. Conversation contexts are a medium for related interactions, and
processes may access such contexts by specifying a conversation access indicating the name of
the conversation to be accessed (e.g., n in n J [P ]). Consider the following specification of a
process willing to send a message chat in conversation chatRoom:

chatRoom J [ chat!(hi) ]

where we omit the � direction in the message. On the other hand, processes may also interact
in the enclosing conversation by means of � directed messages, which is determined as the
conversation enclosing their current context. For instance:

chatRoom J
[
privateChat J

[
chat�!(hi)

] ]
specifies a process that is willing to send message chat in conversation chatRoom as before,
but where now the process is actually running inside a nested conversation privateChat and is
interacting in the enclosing conversation via a � directed message.

Processes can access conversations from different points of a system, so a conversation context
can actually be distributed in many access pieces, and processes inside any piece can seamlessly
interact with processes located in any other piece of the same conversation. For example, consider
the following processes P and Q, defined as:

P , chatRoom J [ chat!(b) | chat?(x) ]

Q , chatRoom J [ chat!(b) ] | chatRoom J [ chat?(x) ]
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where the chat message exchange can take place in both the configurations given by P and by
Q. Each conversation piece will potentially be placed at a different enclosing context. On the
other hand, any such conversation piece will necessarily be placed at a single enclosing context.
The relationship between the enclosing context and a nested conversation piece may be seen as a
call/callee relationship, but where both entities may interact continuously through � messages.
For instance, the context where a service instantiation new is located in is the caller context
which performs the call to the service, while the conversation in which the service interaction
takes place is the callee, and processes located in the latter can interact in the former via �
messages. Consider process R:

R , chatRoom J [ chat?(x) | privateChat J [ chat�!(b) ] ]

where the chat message exchange takes place in conversation chatRoom, similarly to the message
exchange in process P , but where the process emitting the message is actually located in a nested
conversation (privateChat), and the output prefix is specified with the � direction. Each context
is uniquely identified by a name (cf., a URI). Therefore, access pieces specifying different names
will access distinct communication mediums, so in the following process:

R , chatRoomA J [ chat!(b) ] | chatRoomB J [ chat?(x) ]

the chat message exchange cannot take place since messages pertain to different conversations
(chatRoomA 6= chatRoomB). Sometimes it is useful for a process to dynamically gain access to
the identify of the conversation in which it is interacting, a capability supported by the context
awareness primitive described next.

Conversation Awareness

A process running inside a given conversation context is able to dynamically access the identity
of the conversation. This capability may be realized by the construct:

this(x).P

The variable x will be replaced inside the process P by the name n of the current context.
The computation will proceed as P{x/n}. This primitive bears some similarity with the self or
this of object-oriented languages, even if it has a different semantics. For instance, consider the
process:

chatRoom J [ this(x).P ]

which specifies a process that is willing to access the identity of the conversation in which it is
running in, the chatRoom conversation. This system can evolve to:

chatRoom J [P{x/chatRoom} ]

where the variable x is replaced by the conversation name chatRoom. This primitive will reveal
its most important use when we program the service oriented idioms, namely the joining of a
partner to the current conversation, allowing to avoid explicit reference to conversation names.
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Given this intuitive presentation of the primitives of the language, we now turn to providing
them with a rigorously defined operational semantics, so as to allow us to precisely characterize
how core CC processes evolve through interaction.

4.3 Operational Semantics

The operational semantics of the core CC is defined by a labeled transition system. A transition
P

λ−→ Q states that process P may evolve to process Q by performing the action represented
by the transition label λ. Our transition labels characterize both the autonomous evolutions of
processes — the internal actions — and also the interactions a process has with the external
environment. To simplify the presentation of the definition of transition labels, we introduce
an auxiliary notion of actions which characterize the basic observations that can be made over
processes. We define transition labels, actions, and extended directions.

Definition 4.3.1 (Extended Directions, Actions and Transition Labels)

Extended directions, actions and transition labels are defined as follows:

de ::= d | �� (Extended Directions)
σ ::= τ | ld!(ã) | ld?(ã) | thisde (Actions)
λ ::= c σ | σ | (νa)λ (Transition Labels)

We denote by T the set of all transition labels.

An action τ denotes an internal communication, actions ld!(ã) and ld?(ã) represent communica-
tions with the environment, and action thisde represents a conversation identity access. Output
and input actions have a direction d as processes can specify that a message is to be exchanged
in either the current � or the enclosing � conversation. Although processes can only explicitly
access the identity of the current conversation (captured by a this� action), we also use the
this action to represent other behaviors that are contextually dependent — we identify such
behaviors in Definition 4.3.8. Then, depending on the direction de (�, � or ��), the thisde action
specifies a different conversation which is to be accessed: a this� label accesses the identity of
the current conversation, a this� label accesses the identity of the enclosing conversation, and a
this�� label checks if the identity of the enclosing and of the current conversations is the same.

To capture the communication capabilities of processes, transition labels need to register not
only the action but also the conversation where the action takes place. So, a transition label
λ containing c σ is said to be located at conversation c (or just located), otherwise is said to be
unlocated. In (νa)λ the distinguished occurrence of a is bound with scope λ (cf., the π-Calculus
bound output actions). We use fn(λ) and bn(λ) to denote (respectively) the free and bound
names of a transition label, and na(λ) to denote both free and bound names of a transition
label. We introduce the free names of an action fnA(σ), and then define fn(λ), bn(λ) and na(λ).

Definition 4.3.2 (Action Free Names)

The set of free names of an action σ, noted fnA(σ), is defined as follows:

fnA(τ) , ∅ fnA(ld!(ã)) , ã fnA(ld?(ã)) , ã fnA(thisde) , ∅
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Definition 4.3.3 (Transition Free Names)

The set of free names of a transition λ, noted fn(λ), is defined as follows:

fn(c σ) , c ∪ fnA(σ) fn(σ) , fnA(σ) fn((νa)λ) , fn(λ) \ {a}

Definition 4.3.4 (Transition Bound Names)

The set of bound names of a transition λ, noted bn(λ), is defined as follows:

bn(c σ) , ∅ bn(σ) , ∅ bn((νa)λ) , {a} ∪ bn(λ)

Definition 4.3.5 (Transition Names)

The set of names of a transition λ, noted na(λ), is defined as follows:

na(λ) , fn(λ) ∪ bn(λ)

We usually abbreviate the set of bound names in a transition as follows.

Notation 4.3.6 We abbreviate (νa1) . . . (νak)λ with (νã)λ.

In order to define the labeled transition system, we introduce a synchronization algebra (in-
troduced by Winskel [96]) that describes how two parallel processes may synchronize. The
synchronization algebra specifies how any pair of transition labels may be combined, and what
is the label obtained from that combination. Since not all combinations represent accepted
synchronizations we use ◦ to represent undefined (in such way avoiding the introduction of a
partial function). We motivate the definition of our synchronization algebra with an example.

Example 4.3.7 Consider the following process:

l�!().P | c J
[
l�?().Q

]
(4.3.7.1)

which specifies that a message l is to be sent at the current conversation, after which P is
activated, and a message l is to be received at conversation c, after which Q is activated. If such
a process is to be placed in a conversation c piece, i.e.:

c J
[
l�!().P | c J

[
l�?().Q

]]
then both input and output refer to the same conversation c and therefore the message may be
exchanged in conversation c. We then have:

c J
[
l�!().P | c J

[
l�?().Q

]] τ−→ c J [P | c J [Q]]

When locally describing the behavior of the process shown in (4.3.7.1) we must then account
for a possible synchronization if the current conversation is the c conversation. This can be
captured by a c this� transition which may only progress in a c conversation piece:

l�!().P | c J
[
l�?().Q

] c this�
−→ P | c J [Q]
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Since messages do not a priori explicitly refer the conversation to which they pertain, the op-
erational semantics of the core CC must locally account for synchronizations which may arise
depending on the surrounding context. The synchronization algebra realizes this notion by spec-
ifying this labels as the result of combining transition labels that may synchronize depending on
the surrounding conversations. If two labels directly synchronize, i.e., regardless of the enclosing
environment, then the resulting label is τ , as usual. We define the synchronization algebra.

Definition 4.3.8 (Core CC Synchronization Algebra)

The synchronization algebra for core CC processes is defined as a triple (T ∪ ◦, ◦, • ) where •
is a function on pairs of T ∪ ◦ defined by the following table:

• τ l�!(ã) l�?(ã) l�!(ã) l�?(ã) c l�!(ã) c l�?(ã) . . . c this� . . . ◦
τ ◦ ◦ ◦ ◦ ◦ ◦ ◦ . . . ◦ . . . ◦

l�!(ã) ◦ ◦ τ ◦ this�� ◦ c this� . . . ◦ . . . ◦
l�?(ã) ◦ τ ◦ this�� ◦ c this� ◦ . . . ◦ . . . ◦
l�!(ã) ◦ ◦ this�� ◦ τ ◦ c this� . . . ◦ . . . ◦
l�?(ã) ◦ this�� ◦ τ ◦ c this� ◦ . . . ◦ . . . ◦

c l�!(ã) ◦ ◦ c this� ◦ c this� ◦ τ . . . ◦ . . . ◦
c l�?(ã) ◦ c this� ◦ c this� ◦ τ ◦ . . . ◦ . . . ◦

...
...

...
...

...
...

...
...

. . .
...

. . . ◦
c this� ◦ ◦ ◦ ◦ ◦ ◦ ◦ . . . ◦ . . . ◦

...
...

...
...

...
...

...
...

. . .
...

. . . ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ . . . ◦ . . . ◦

We then have that a located label c l�?(ã) and an unlocated label l�!(ã) may synchronize,
provided the interaction is to take place in conversation c, i.e., provided the current conversation
is c, which is captured by the c this� label. Likewise we have that c l�?(ã) and l�!(ã) can
synchronize provided the enclosing conversation is c, captured by c this�. Also, we have that
l�?(ã) and l�!(ã) may synchronize, provided that the current and enclosing conversations have
the same identity, captured by the this�� label.

Our transition system rules rely on some operations over transition labels and some auxiliary
notation, which we now introduce. We define an operator that collects the set of names emitted
in an output transition, used to determine extrusion of restricted names.

Definition 4.3.9 (Emitted Names)

We denote by out(λ) the set of names emitted in an output label, defined inductively as follows:

out(τ) , ∅ out(ld!(ã)) , ã out(ld?(ã)) , ∅ out(thisde) , ∅

out(c σ) , out(σ) \ {c} out((νa)λ) , out(λ) \ {a}

To simplify presentation of the transition rules that require some update in the labels, we
introduce an auxiliary notation used to represent the change of the direction of a transition
label, used in the rules that characterize how transitions cross conversation boundaries.
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Notation 4.3.10 We note by λd a transition label λd defined in direction d (�, �), and by λd ′

the label obtained by replacing d by d ′ in λd .

So, for example, if λ� is askPrice�?(a) then λ� is askPrice�?(a). Next we define an operation
used to locate a transition in a determined conversation.

Definition 4.3.11 (Locating a Transition)

Given an unlocated label λ, we represent by c · λ the label obtained by locating λ at c defined
inductively as follows:

c · τ , τ c · ld!(ã) , c ld!(ã) c · ld?(ã) , c ld?(ã)

c · thisde , thisde c · (νa)λ , (νa)c · λ (if a 6= c)

For instance, we have that if λ� is askPrice�?(p) then c ·λ� is c askPrice�?(p). The c· operator
will be used to locate output and input transitions which are not already located. Notice that
we do not locate τ and this labels, since τ transitions are not subject to being located, while
this transitions require specific handling. To distinguish the sort of labels we intend to capture
in the rules we introduce two predicates: one that identifies output and input labels which are
already located — the loc predicate — and other that identifies output and input labels which
are not located and defined in the � direction — the unloc predicate. While loc labels are not
subject to change when crossing a conversation syntactic barrier, unloc labels must be located
in a conversation when crossing the corresponding conversation syntactic barrier.

Definition 4.3.12 (Located Transitions Predicate)

We say λ is a located output or input transition label, noted loc(λ), if there is c, ã, b̃, l such that
either λ = (νã)c l�!(b̃) or λ = c l�?(b̃).

Definition 4.3.13 (Unlocated Transitions Predicate)

We say λ is an unlocated output or input transition label, noted unloc(λ), if there is ã, b̃, l such
that either λ = (νã)l�!(b̃) or λ = l�?(b̃).

We may now present the transition relations. We start by describing informally the key rules
and then present the definition. This first set of rules is standard, in the sense that the same
rules are found in the π-Calculus labeled transition system (see [85]).

ld!(ã).P
ld!(ã)−→ P (Out) ld?(x̃).P

ld?(ã)−→ P{x̃/ã} (In)
αj .Pj

λ−→ Q j ∈ I

Σi∈I αi.Pi
λ−→ Q

(Sum)

In rule (Out) an output is observed over the output-prefixed process, representing a message
emission to the external environment, being the arrival state of the transition the continuation
of the output-prefixed process. The symmetric rule (In) specifies the input observation over
the input-prefixed process, representing a message reception from the external environment.
The arrival state of the transition is the continuation of the input prefixed-process where the
variables x̃ are replaced by the received names ã. Rule (Sum) describes the behavior of the
prefixed guarded choice, that can choose between any of its initial actions and evolve to the
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respective continuation. The following two rules for name restriction are also standard.

P
λ−→ Q a ∈ out(λ)

(νa)P
(νa)λ−→ Q

(Open)
P

λ−→ Q a 6∈ na(λ)

(νa)P λ−→ (νa)Q
(Res)

While rule (Res) describes that transitions that do not mention the restricted name transparently
cross the restriction boundary, rule (Open) describes the case when the transition is an output
action that is emitting the restricted name. In such case, the restriction scope is opened, since
it will be enlarged so as to comprehend the process that will receive the name. The following
rules are also standard.

P
λ−→ Q bn(λ) # fn(R)

P | R
λ−→ Q | R

(Par)
P{X/recX .P} λ−→ Q

recX .P
λ−→ Q

(Rec)

Rule (Par) describes that a behavior observed over one of the parallel branches is also observed
at the level of the parallel composition, since both branches are simultaneously active. The
side condition guarantees there is no unintended name capture. Rule (Rec) says the recursive
process behaves as its one step unfolding. The next rule captures the synchronization of parallel
processes, relying on the synchronization algebra that refines the notion of duality.

P
λ1−→ P ′ Q

λ2−→ Q′ λ1 • λ2 6= ◦

P | Q
λ1 •λ2−→ P ′ | Q′

(Comm)

Thus two processes may synchronize if they exhibit transitions which can be explained by the
synchronization operation • . If the transitions are dual then λ1 • λ2 is τ , otherwise λ1 • λ2

is defined over a this label that will then read the necessary contextual information so as to
determine if the labels are dual with respect to such context. Rule (Close) extends rules (Comm)
as usual, considering the output is carrying some bound names which scope is now to be closed.

P
(νã)λ1−→ P ′ Q

λ2−→ Q′ ã# fn(Q) λ1 • λ2 6= ◦

P | Q
λ1 •λ2−→ (νã)(P ′ | Q′)

(Close)

The scope of the restricted names is thus enlarged so to contain both emitter (who already knew
the restricted names) and receiver (who gains knowledge of the restricted names) and hence
the scope is closed, provided the bound name identifiers are fresh to Q. We now turn to the
rules specific to our setting that explain the behavior of conversation access pieces and of the
conversation awareness primitive.

P
λ�
−→ Q (c 6∈ bn(λ))

c J [P ] λ�
−→ c J [Q]

(Here)

Rule (Here) describes that an action directed to the enclosing conversation becomes an action
directed to the current conversation when crossing a conversation boundary, captured by the
update of the direction. Instead, when the action pertains to the current conversation we have:

P
λ−→ Q (unloc(λ))

c J [P ] c·λ−→ c J [Q]
(Loc)
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which specifies that a not yet located � action gets located in the conversation in which it
originates. If an action is already located in some conversation then it transparently crosses the
conversation boundary, as specified in the following rule:

P
λ−→ Q (loc(λ), c 6∈ bn(λ))

c J [P ] λ−→ c J [Q]
(Through)

Likewise an internal action transparently crosses a conversation boundary, hence:

P
τ−→ Q

c J [P ] τ−→ c J [Q]
(Tau)

The conversation awareness primitive reads the identity of the current conversation by means
of a c this� transition, as specified in the following rule:

this(x).P c this�
−→ P{x/c} (This)

where the variable x is replaced by the name read in the label c. Such transition may only
progress if the immediate conversation boundary it finds is in fact, a c conversation access, as
expressed in the following rule:

P
c this�
−→ Q

c J [P ] τ−→ c J [Q]
(ThisLoc)

Rule (ThisLoc) also captures the case of a c this� that originates from a synchronization ( • )
of two labels, while c this� labels are captured in rule (Here) previously described, hence:

P
c this�
−→ Q

c J [P ] c this�
−→ c J [Q]

The last case of transitions that are the result of a • is the this�� label, captured in the rule:

P
this��
−→ Q

c J [P ] c this�
−→ c J [Q]

(ThisHere)

which reads the enclosing conversation through a c this� label, where c is the name of the
current conversation, thus ensuring that the enclosing and current conversations are the same.

Given this informal understanding, we may now present the definition of the transition
relations. For clarity, we split the presentation into two sets of rules: the one in Figure 4.2
contains the rules for the basic operators, which essentially correspond to the ones found in the
π-Calculus transition relation (see [85]) and that of the πlab-Calculus (see Figure 2.2), except
for the duality which is here refined by the synchronization algebra ( • ); the other in Figure 4.3
groups the rules specific to the Conversation Calculus.

Definition 4.3.14 (Transition Relations)

The transition relations { λ−→ | λ ∈ T } are defined by the rules in Figure 4.2 and Figure 4.3.
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ld!(ã).P
ld!(ã)−→ P (Out) ld?(x̃).P

ld?(ã)−→ P{x̃/ã} (In)
αj .Pj

λ−→ Q j ∈ I

Σi∈I αi.Pi
λ−→ Q

(Sum)

P
λ−→ Q a ∈ out(λ)

(νa)P
(νa)λ−→ Q

(Open)
P

λ−→ Q a 6∈ na(λ)

(νa)P λ−→ (νa)Q
(Res)

P
λ−→ Q bn(λ) # fn(R)

P | R
λ−→ Q | R

(Par -l)
P

λ−→ Q bn(λ) # fn(R)

R | P
λ−→ R | P

(Par -r)

P
(νã)λ1−→ P ′ Q

λ2−→ Q′ ã# fn(Q) λ1 • λ2 6= ◦

P | Q
λ1 •λ2−→ (νã)(P ′ | Q′)

(Close-l)

P
λ1−→ P ′ Q

(νã)λ2−→ Q′ ã# fn(P ) λ1 • λ2 6= ◦

P | Q
λ1 •λ2−→ (νã)(P ′ | Q′)

(Close-r)

P
λ1−→ P ′ Q

λ2−→ Q′ λ1 • λ2 6= ◦

P | Q
λ1 •λ2−→ P ′ | Q′

(Comm)
P{X/recX .P} λ−→ Q

recX .P
λ−→ Q

(Rec)

Figure 4.2: Transition Rules for Basic Operators (π-Calculus).

The labelled transition system describes not only the autonomous evolution of processes, cap-
tured by τ transitions, but also the interactions with the external environment. When we focus
on closed systems, not subject to interaction with the environment, we are only interested on
autonomous behavior (τ transitions), which we capture by a notion of reduction.

Definition 4.3.15 (Reduction)

The relation of reduction between processes, noted P → Q, is defined as P
τ−→ Q. Also, we

denote by ∗→ the reflexive transitive closure of the reduction relation.

Using the behavioral descriptions captured by the labeled transition system we define the be-
havioral semantics of the core CC, which then precisely characterizes when two core CC systems
have the same behavior, and thus correspond to the same specification from a behavioral point
of view. We present the behavioral semantics of core CC systems in the next section.

4.4 Behavioral Semantics

In this section we define the behavioral semantics of the core CC which allows us to characterize
a notion of semantic object, consisting in a behavioral equivalence class which groups systems
that exhibit the same behavior, and report results that first corroborate our syntactically chosen
constructs at the semantic level, and second illuminate on the communication model of the CC.

Building on the notion of observation over processes captured by the labelled transition
system given in Definition 4.3.14, we now characterize the core CC semantic object by an
observational equivalence, expressed in terms of standard notion of bisimilarity — introduced
by Park [81] and since then widely used in models for concurrency, in particular the π-Calculus.
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P
λ�
−→ Q (c 6∈ bn(λ))

c J [P ] λ�
−→ c J [Q]

(Here)
P

λ−→ Q (unloc(λ))

c J [P ] c·λ−→ c J [Q]
(Loc)

P
λ−→ Q (loc(λ), c 6∈ bn(λ))

c J [P ] λ−→ c J [Q]
(Through)

P
τ−→ Q

c J [P ] τ−→ c J [Q]
(Tau)

P
this��
−→ Q

c J [P ] c this�
−→ c J [Q]

(ThisHere)
P

c this�
−→ Q

c J [P ] τ−→ c J [Q]
(ThisLoc)

this(x).P c this�
−→ P{x/c} (This)

Figure 4.3: Transition Rules for Conversation Operators.

Definition 4.4.1 (Strong Bisimulation)

A (strong) bisimulation is a symmetric binary relation R on processes such that, for all processes
P and Q, if PRQ, we have:

If P
λ−→ P ′ and bn(λ) # fn(Q)

then there is Q′ such that Q
λ−→ Q′ and P ′RQ′.

Essentially two processes are related by a bisimulation if we can play a symmetric observation
game over them, where the observations performed in one process can be mimicked by the other
process and lead to (observationally) equivalent states. We establish an expected basic property
of strong bisimulations.

Proposition 4.4.2 (Closure Under Union)

Let S be a set of strong bisimulations. Then
⋃
S is a strong bisimulation.

Proof. Follows directly from the definition of strong bisimulation (see Appendix A.2).

This property allows us to define strong bisimilarity as the union of all strong bisimulations.
Since strong bisimulations are closed under union, strong bisimilarity is a strong bisimulation.

Definition 4.4.3 (Strong Bisimilarity)

Strong bisimilarity, noted ∼, is the union of all strong bisimulations.

We establish the following properties of strong bisimilarity: it is an equivalence relation; it is
preserved under a standard set of structural laws (cf., π-Calculus structural congruence [85]).

Proposition 4.4.4 (Equivalence Relation)

Strong bisimilarity is an equivalence relation.

Proof. Proofs of reflexivity and symmetry are immediate. Proof of transitivity follows by
coinduction on the definition of strong bisimulation (see Appendix A.2).

Theorem 4.4.5 (Preservation of Strong Bisimilarity Under Structural Laws)

Given processes P , Q and R, the following axioms hold:

81



1. (νa)0 ∼ 0.

2. (νa)(νb)P ∼ (νb)(νa)P .

3. If a 6∈ fn(P ) then P | (νa)Q ∼ (νa)(P | Q).

4. P | 0 ∼ P .

5. P | (Q | R) ∼ (P | Q) | R.

6. P | Q ∼ Q | P .

7. If i ∈ I if and only if i ∈ J then Σi∈I αi.Pi ∼ Σi∈J αi.Pi.

8. rec X .P ∼ P{X/rec X .P}.

Proof. By coinduction on the definition of strong bisimulation (see Appendix A.2).

The result stated in Theorem 4.4.5 can be viewed as a sanity check of the developed operational
semantics, as processes that are expected to be structurally identified, according to the standard
rules of structural congruence, are also expected to exhibit the same behaviors. In particular
notice that (− | −,0) is a commutative monoid with respect to strong bisimilarity. Also, notice
the behavioral identities involving name restrictions, in particular the identity described in
Theorem 4.4.5(3) which expresses the fact that the scope of a name restriction may grow,
provided it does not unintendedly capture any other names in its scope.

Next we establish a congruence result for strong bisimilarity, which thus testifies that all the
constructs of our calculus may be soundly interpreted as compositional semantic operators on
bisimilarity equivalence classes.

Theorem 4.4.6 (Congruence)

Strong bisimilarity is a congruence.

1. If P ∼ Q then ld!(ñ).P ∼ ld!(ñ).Q.

2. If P{x̃/ñ} ∼ Q{x̃/ñ} for all ñ then ld?(x̃).P ∼ ld?(x̃).Q.

3. If P{x/n} ∼ Q{x/n} for all n then this(x).P ∼ this(x).Q.

4. If αi.Pi ∼ α′
i.Qi, for all i ∈ I, then Σi∈I αi.Pi ∼ Σi∈I α′

i.Qi.

5. If P ∼ Q then n J [P ] ∼ n J [Q].

6. If P ∼ Q then (νa)P ∼ (νa)Q.

7. If P ∼ Q then P | R ∼ Q | R.

8. If P{X/R} ∼ Q{X/R}, for all R, then recX .P ∼ recX .Q.

Proof. By coinduction on the definition of strong bisimulation (see Appendix A.2).

Notice that in Theorem 4.4.6(2) we consider the universal instantiation congruence principle for
input: if P{x/a} ∼ Q{x/a} for all a then ld?(x).P ∼ ld?(x).Q (cf., [85] Theorem 2.2.8(2)). Like
for the π-Calculus, congruence does not hold for input, if input congruence is interpreted as a
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first order algebraic congruence. However, if input is to be viewed as some sort of a function,
then it seems sensible to compare two such functions by testing all possible input values.

The congruence result further justifies our choice of syntactical constructs, by showing they
are proper functions of behavior: given a single abstract behavior described by two different
processes, placing such two processes in a core CC language context will produce two processes
that again describe the same abstract behavior. Next, we show other interesting behavioral
equations, that confirm basic intuitions about our conversation-based communication model.

Theorem 4.4.7 (Behavioral Identities)

Given processes P and Q, the following axioms hold:

1. n J [0] ∼ 0.

2. If a 6= c then (νa)(c J [P ]) ∼ c J [(νa)P ].

3. n J [P ] | n J [Q] ∼ n J [P | Q].

4. m J [n J [o J [P ]]] ∼ n J [o J [P ]].

5. n J [l�!(ñ).P ] ∼ l�!(ñ).n J [P ].

6. If n 6∈ x̃ then n J [l�?(x̃).P ] ∼ l�?(x̃).n J [P ].

7. m J [n J [l�!(ñ).P ]] ∼ n J [l�!(ñ).m J [n J [P ]]].

8. If {m,n}# x̃ then m J [n J [l�?(x̃).P ]] ∼ n J [l�?(x̃).m J [n J [P ]]].

Proof. By coinduction on the definition of strong bisimulation (see Appendix A.2).

Theorem 4.4.7(3) captures the notion of conversation context as a single medium accessible
through distinct pieces. Theorem 4.4.7(4) expresses the fact that processes may only interact in
the conversation in which they are located and in the enclosing one (via � communications).

Example 4.4.8 Notice however that there are processes P and Q such that:

n J [m J [P ] | Q] 6∼ m J [P ] | n J [Q] (4.4.8.1)

Consider processes R1 and R2 defined as follows:

R1 , c J
[
b J

[
l�!(a)

]
| l�?(x)

]
R2 , b J

[
l�!(a)

]
| c J

[
l�?(x)

]
Since R1 exhibits a τ transition and R2 does not, we have that R1 6∼ R2.

The inequation (4.4.8.1) contrasts with Theorem 4.4.7(3): the relation between a conversation
and its caller must be preserved. Although the processes given in Example 4.4.8 do not exhibit
the same behavior, we may place them in a specific context and obtain equivalent configurations.

Example 4.4.9 Consider processes R1 and R2 of Example 4.4.8 and static context c J [·]:

c J [R1] , c J
[
c J

[
b J

[
l�!(a)

]
| l�?(x)

]]
c J [R2] , c J

[
b J

[
l�!(a)

]
| c J

[
l�?(x)

]]
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We then have that c J [R1] ∼ c J [R2], as can be proved in more general terms as follows:

n J [n J [m J [P ] | Q]] ∼ (Theorem 4.4.7(3))

n J [n J [m J [P ]] | n J [Q]] ∼ (Theorem 4.4.7(3))

n J [n J [m J [P ]]] | n J [n J [Q]] ∼ (Theorem 4.4.7(4))

n J [m J [P ]] | n J [n J [Q]] ∼ (Theorem 4.4.7(3))

n J [m J [P ] | n J [Q]]

Notice the caller conversation relationship is preserved: P is running in conversation m and its
caller conversation is n; Q is running in conversation n and its caller conversation is also n.

Example 4.4.9 already hints on the fundamental role played by the synchronization algebra
in guaranteeing Theorem 4.4.7(3) — the split rule — since it allows for synchronizations that
depend on the external environment of processes to occur. If we were to restrict synchronizations
to those of dual labels (λ1 and λ2 such that λ1 • λ2 = τ), then the split rule would no longer
hold, as the following example shows.

Example 4.4.10 Consider processes R1 and R2 defined as follows:

R1 , c J
[
l�?(x)

]
| c J

[
c J

[
l�!(a)

]]
R2 , c J

[
l�?(x) | c J

[
l�!(a)

]]
Considering the behavioral identity given by Theorem 4.4.7(3) we have that R1 ∼ R2. Both R1

and R2 may exhibit τ , c l�!(a) and c l�?(b) transitions, for some b, and arrive at states equated
by Theorem 4.4.7(3). However, the τ transition of process R1 is derived from dual transitions:

c J [l�?(x)]
c l�?(a)−→ c J [0] c J [c J [l�!(a)]]

c l�!(a)−→ c J [c J [0]] c l�?(a) • c l�!(a) = τ

c J [l�?(x)] | c J [c J [l�!(a)]] τ−→ c J [0] | c J [c J [0]]

while the τ transition of process R2 is derived from a c this� transition:

l�?(x)
l�?(a)−→ 0 c J [l�!(a)]

c l�!(a)−→ c J [0] l�?(a) • c l�!(a) = c this�

l�?(x) | c J [l�!(a)] c this�
−→ 0 | c J [0]

c J [l�?(x) | c J [l�!(a)]] τ−→ c J [0 | c J [0]]

The behavioral laws shown in Theorem 4.4.7 hint on the abstract spatial model of core CC
processes, and pave the way for the establishment of a normal form result and of an alternative
characterization of the operational semantics based on a notion of structural congruence. We
describe the former in section 4.4.1 and the latter in section 4.4.2. To complete our basic study
on the behavioral semantics of core CC systems, we present the standard weak variant of strong
bisimilarity in Section 4.4.3.

4.4.1 Normal Form

The behavioral identities stated in Theorem 4.4.7, in particular Theorem 4.4.7(3) and Theo-
rem 4.4.7(4), allow us to prove an interesting normal form property, that contributes to illumi-
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nate the abstract spatial structure of core CC systems. In order to present the normal form
result we first characterize the process normal form and an auxiliary notion of active processes.

Definition 4.4.11 (Active Process)

Active processes are defined as follows:

U, V ::= Σi∈I αi.Pi | U | V | 0 (Active Processes)

Definition 4.4.12 (Process Normal Form)

We say process P is in normal form if there are a set of active processes U0, . . . , Uk, V1, . . . , Vl

and sets of names ã, b̃, c̃, d̃, such that:

P = (νã) (U0 | b1 J [U1] | . . . | bk J [Uk] | c1 J [d1 J [V1]] | . . . | cl J [dl J [Vl]])

and where names b1, . . . , bk and sequences c1 · d1, . . . , cl · dl are pairwise distinct.

An active process is a parallel composition of prefix guarded choice processes. Then a process in
normal form is a process where the maximum conversation nesting of an active process is two.
We introduce well-formed processes to exclude undesired configurations such as, e.g., recX .X .

Definition 4.4.13 (Well-Formed Process)

A process P is well-formed if every recursion variable which occurs in it is guarded by a prefix.

We may now state our normal form result.

Proposition 4.4.14 (Normal Form)

If P is a well-formed process then there exists a process Q in normal form such that P ∼ Q.

Proof. By induction on the number of active processes (see Appendix A.2).

Intuitively, Proposition 4.4.14 states that any process is behaviorally equivalent to a process
where the maximum nesting of contexts is two. Notice that the result does not imply the normal
form characterization is invariant under process evolution, since active processes may evolve to
processes which fall out of the active process characterization (e.g., an active process may evolve
to a conversation piece). However, Proposition 4.4.14 does imply that any process reachable
from a well-formed process may be written in normal form, since the necessary well-formedness
condition on processes is invariant under process evolution.

Corollary 4.4.15 (Normal Form Preservation)

If P is a well-formed process and Q is such that P
λ1−→ . . .

λk−→ Q then there is process R in
normal form such that Q ∼ R.

Proof. Direct from Proposition 4.4.14.

We may interpret the normal form existence result as follows. A system is composed by several
conversation contexts. The set of upward (�) communication paths of a system may be seen
as a graph, where the nodes are processes and contexts, and arcs connect processes to their
call-ancestor contexts. As each such arc is uniquely defined by its two terminal nodes, so is the
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P ≡ Q (if P ≡α Q) (StructAlpha)

P | 0 ≡ P (StructParZero)

P | Q ≡ Q | P (StructParComm)

P | (Q | R) ≡ (P | Q) | R (StructParAssoc)

(νa)0 ≡ 0 (StructResZero)

(νa)(νb)P ≡ (νb)(νa)P (StructResComm)

P | (νa)Q ≡ (νa)(P | Q) (a 6∈ fn(P )) (StructResPar)

rec X .P ≡ P{X/rec X .P} (StructRec)

Σi∈I αi.Pi ≡ Σi∈J αi.Pi (if i ∈ I ⇐⇒ i ∈ J) (StructSum)

Figure 4.4: Basic Structural Congruence Rules (π-Calculus).

n J [0] ≡ 0 (StructCZero)

(νa)n J [P ] ≡ n J [(νa)P ] (a 6= n) (StructCRes)

n J [P ] | n J [Q] ≡ n J [P | Q] (StructCSplit)

n J [m J [o J [P ]]] ≡ m J [o J [P ]] (StructCNest)

n J
[
Σi∈I l�i !(m̃).Pi

]
≡ Σi∈I l�i !(m̃).n J [Pi] (StructOutUp)

n J
[
Σi∈I l�i ?(x̃).Pi

]
≡ Σi∈I l�i ?(x̃).n J [Pi] (n 6∈ x̃) (StructInUp)

n J
[
m J

[
Σi∈I l�i !(õ).Pi

]]
≡ m J

[
Σi∈I l�i !(õ).n J [m J [Pi]]

]
(StructOutHere)

n J
[
m J

[
Σi∈I l�i ?(x̃).Pi

]]
≡ m J

[
Σi∈I l�i ?(x̃).n J [m J [Pi]]

]
({n, m}# x̃)

(StructInHere)

Figure 4.5: Conversation Structural Congruence Rules.

communication structure of an arbitrary process defined (up to bisimilarity) by a system where
the (syntactic) nesting of contexts is of at most depth two. Intuitively, the structure suggested
here represents the join-subconversation relation of concurrently ongoing conversations. Then,
the normal form of Proposition 4.4.14 is analogous to a flattened representation of such a graph.

4.4.2 Structural Congruence Based Operational Semantics

In this section we provide an alternative presentation of the operational semantics, based on a
notion of structural congruence and a reduction relation. Structural congruence groups processes
into equivalence classes, abstracting from syntactic information that does not condition the
abstract behavior of processes (cf., strong bisimilarity). We thus define structural congruence
for core CC processes based on the behavioral axioms stated in Theorem 4.4.7 and Theorem 4.4.5.

Definition 4.4.16 (Structural Congruence)

Structural congruence, noted ≡, is the least congruence on processes that satisfies the rules in
Figure 4.4 and Figure 4.5.

Notice that in the axioms (StructOutUp), (StructInUp), (StructOutHere) and (StructInHere)
of Figure 4.5 we consider that prefix guarded choice processes are always defined with actions
defined on the same direction and of the same type (input or output). This restriction is
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ld!(ã).P + S1 | ld?(x̃).Q + S2 → P | (Q{x̃/ã}) (RedComm)

c J [this(x).P + S] → c J [P{x/c}] (RedThis)

P → Q

(νa)P → (νa)Q
(RedRes)

P → Q

P | R → Q | R
(RedPar)

P → Q

c J [P ] → c J [Q]
(RedConv)

P ≡ P ′ → Q′ ≡ Q

P → Q
(RedStruct)

Figure 4.6: Reduction Rules.

required, since the syntax of processes would not support the rewritings considered in such
rules, e.g., summations between different conversations. However, it is sensible since we are
excluding summations that mix actions in different conversations and conversation identity
accesses altogether. To simplify presentation we also exclude the mixed summation of inputs
and outputs with the same direction: however this latter case could be captured by a slight
tuning of the structural axioms. For the results of this section we consider only such processes.

Convention 4.4.17 For the remaining of Section 4.4.2 we consider only processes where all
prefix guarded choices are defined on the same action type and direction.

For the sake of presentation we separate the presentation of the structural congruence rules
in Figure 4.4 and Figure 4.5. The rules shown in Figure 4.4 correspond to usual π-Calculus
structural axioms, and coincide with the behavioral axioms of Theorem 4.4.5. The rules shown
in Figure 4.5 describe identities specific to the core CC, in particular to the conversation access
construct, and coincide with the behavioral identities stated in Theorem 4.4.7. We then have
the following expected result.

Proposition 4.4.18 (Structural Congruence Included in Bisimilarity)

We have that ≡ ⊆ ∼.

Proof. By coinduction on the definition of strong bisimulation (see Appendix A.2).

Structural congruence thus allows us to characterize the reduction relation by describing the
evolution of the basic representatives of the equivalence classes, and then close the reduction
relation under such equivalence classes. For describing reduction in the core CC we consider the
case of a message exchange and the case when a conversation identity is read by a this prefix.
We thus define reduction.

Definition 4.4.19 (Reduction)

The reduction relation between processes, noted P → Q, is the least relation inductively defined
by the rules in Figure 4.6.

We establish an expected result which identifies τ -transitions ( τ−→) with reductions (→). Since
the labelled transition system (Definition 4.3.14) is not closed under structural congruence,
in order to compare τ -transitions with reductions we must explicitly introduce the structural
congruence equivalence classes in the arrival state of the τ -transition.
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Notation 4.4.20 We write P
τ−→≡ Q to denote there is Q′ such that P

τ−→ Q′ and Q′ ≡ Q.

Theorem 4.4.21 (Reductions Match τ -Transitions)

Let P,Q be processes. We have that P → Q if and only if P
τ−→≡ Q.

Proof. The ⇒ and ⇐ directions follows by induction on the length of the derivation of P → Q

and of P
τ−→ Q, respectively (see Appendix A.2).

The structural congruence we introduced can be viewed as not standard due to the axioms
involving the conversation access construct. However, the reduction relation definition given
above, based on such structural congruence, is as canonical as the one found in π-Calculus
presentations. Furthermore we prove that reductions defined in such canonical way coincide
with τ -transitions, as expected.

4.4.3 Weak Bisimilarity

In this section we present a variant of the behavioral equivalence provided by strong bisimilarity,
by introducing a notion of weak bisimilarity which abstracts away from internal actions and
focuses solely on the possible interactions processes may have with the external environment.
In such way, we relax our notion of abstract behavior, allowing for processes which differ solely
in some internal actions to be identified. Intuitively, one may think of an external observer that
does not have the capability to observe the internal actions, and can only test the behavior of
systems by interacting with them. We first define weak transitions, which essentially collapse
together sequences of τ transitions, possibly along with some external action.

Definition 4.4.22 (Weak Transition)

We denote by τ−→∗ the reflexive transitive closure of τ−→. Then we say P has a weak λ

transition to Q, noted P
λ=⇒ Q, if it can be derived from:

P
τ−→∗ P ′ λ−→ Q′ τ−→∗ Q (if λ 6= τ)

or P
τ−→∗ Q (if λ = τ)

Weak transitions thus allow us to abstract away from the internal actions a process may have.
Using such weak transitions we may provide with the standard definition of weak bisimulation.

Definition 4.4.23 (Weak Bisimulation)

A weak bisimulation is a symmetric binary relation R on processes such that, for all processes
P and Q, if PRQ, we have:

If P
λ−→ P ′ and bn(λ) # fn(Q)

then there is Q′ such that Q
λ=⇒ Q′ and P ′RQ′.

Notice that to match a behavior of process P , process Q may freely perform a number of
internal actions in the meanwhile (and symmetrically). So, two processes are related by a weak
bisimulation if we can play a symmetric observation game where the observations performed in
one process can be reproduced in the other process, up to some internal actions. We establish
a basic property of weak bisimulations.
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Proposition 4.4.24 (Closure Under Union)

Let S be a set of weak bisimulations. Then
⋃
S is a weak bisimulation.

Proof. Follows directly from the definition of weak bisimulation.

This property allows us to define weak bisimilarity as the union of all weak bisimulations. Since
weak bisimulation is closed under union, weak bisimilarity is itself a weak bisimulation.

Definition 4.4.25 (Weak Bisimilarity)

Weak bisimilarity, noted ≈, is the union of all weak bisimulations.

We establish the following properties that weak bisimilarity is an equivalence relation and that
it is preserved under a standard set of structural laws.

Proposition 4.4.26 (Equivalence Relation)

Weak bisimilarity is an equivalence relation.

Proof. Proof of reflexivity is immediate and of symmetry follows directly from the definition.
Proof of transitivity follows by coinduction on the definition of weak bisimulation, along the
lines of the proof of Proposition 4.4.4.

Theorem 4.4.27 (Preservation of Weak Bisimilarity Under Structural Laws)

Given processes P , Q and R, the following axioms hold:

1. (νa)0 ≈ 0.

2. (νa)(νb)P ≈ (νb)(νa)P .

3. If a 6∈ fn(P ) then P | (νa)Q ≈ (νa)(P | Q).

4. P | 0 ≈ P .

5. P | (Q | R) ≈ (P | Q) | R.

6. P | Q ≈ Q | P .

7. If i ∈ I if and only if i ∈ J then Σi∈I αi.Pi ≈ Σi∈J αi.Pi.

8. rec X .P ≈ P{X/rec X .P}.

Proof. By coinduction on the definition of weak bisimulation, along the lines of the proof of
Theorem 4.4.5.

Hence, we have that (− | −,0) is a commutative monoid with respect to weak bisimilarity, and
other usual structural rules, for instance the scope extrusion rule (Theorem 4.4.27(3)). As for
strong bisimilarity, we also establish that weak bisimilarity is a congruence.

Theorem 4.4.28 (Congruence)

Weak bisimilarity is a congruence.

1. If P ≈ Q then ld!(ñ).P ≈ ld!(ñ).Q.
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2. If P{x̃/ñ} ≈ Q{x̃/ñ} for all ñ then ld?(x̃).P ≈ ld?(x̃).Q.

3. If P{x/n} ≈ Q{x/n} for all n then this(x).P ≈ this(x).Q.

4. If αi.Pi ≈ α′
i.Qi, for all i ∈ I, then Σi∈I αi.Pi ≈ Σi∈I α′

i.Qi.

5. If P ≈ Q then n J [P ] ≈ n J [Q].

6. If P ≈ Q then (νa)P ≈ (νa)Q.

7. If P ≈ Q then P | R ≈ Q | R.

8. If P{X/R} ≈ Q{X/R}, for all R, then recX .P ≈ recX .Q.

Proof. By coinduction on the definition of weak bisimulation, along the lines of the proof of
Theorem 4.4.6.

The congruence result for weak bisimilarity may seem surprising as it does not hold in the
π-Calculus. We next describe, in a generic way, the typical counter-example for the result.

Example 4.4.29 Consider processes α.P and Q such that Q
τ−→ α.P and such observation is

the only one that can be performed over Q. Clearly, we have that α.P ≈ Q. Now consider a
summation context ·+ R for which we then have, in general, that:

α.P + R 6≈ Q + R

since the process on the right hand side can evolve to α.P , hence Q+R → α.P , and this behavior
cannot be mimicked by the process on the left hand side, as to choose the α.P branch the process
would have to exhibit α, thus α.P + R 6→ α.P , neither can the process do “nothing” as it would
remain with the possibility of choosing the R branch further along, thus α.P + R

τ=⇒ α.P + R

but α.P + R 6≈ α.P .

Thus, in general, weak bisimilarity is not a congruence with respect to the choice construct.
However, in the Conversation Calculus it is not possible to write such a process Q, such that
Q

τ−→ α.P is the only action that can be observed in Q, and that can be placed in a summation
context. More specifically, our syntax for choice defines only outputs and inputs as guards for the
prefixes which cannot by themselves perform a τ transition, along with conversation awareness
primitives which exhibit c this� transitions, for some c. Hence it is not possible to specify a
prefixed process, which is the only kind of process admissible in our prefix guarded choice, that
only has internal actions and no external interactions.

Some calculi consider a τ prefix so as to explicitly denote some internal action. In such cases,
the process Q of Example 4.4.29 could be of the form τ.α.P . The closest we get to specifying
such a τ prefix in our model is given by the process τ.P , (νc)(c J [this(x).P ]) but, again, such
process may not be placed in a summation context.

This informal discussion completes our presentation of the study of the basic behavioral
semantics of core CC systems. Our results provide with evidence that our mathematical inter-
pretation of CC processes enjoys some fundamental properties, namely the congruence result.
Given such results that demonstrate, to some extent, the theoretical soundness of our approach,
we proceed to a more practical perspective so as to see the sort of systems that can be expressed,
in a rather simple way, in our model.
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4.5 Idioms for Service-Oriented Computing

The core CC focuses on the fundamental notions of conversation context and message-based com-
munication. From these basic mechanisms, useful programming abstractions for service-oriented
systems may be idiomatically defined, namely service definition and instantiation constructs, and
the conversation join construct, which is crucial to our approach to multiparty conversations.
These constructs may be embedded in a simple way in the minimal calculus, without hindering
the flexibility of modeling and analysis.

We present the service-oriented idioms, along with their translation in lower level communi-
cation primitives, and informally describe their meaning. We specify the service definition idiom
by def s ⇒ P , which publishes a service named s in the current conversation. Process P specifies
the code that will run in the service conversation, upon service instantiation, which implements
the service provider role in the conversation. The service definition idiom is implemented in
basic communication primitives as follows:

def s ⇒ P , s�?(x).x J [P ] (x 6∈ fv(P ))

Essentially, the service definition specifies a message — labeled by the name of the service s

— is received, carrying the identity of the service conversation. Then, code P will run in such
received conversation. Service definitions must be placed in appropriate conversation contexts
(cf., methods in objects). For instance, the following code specifies BuyService is published in
the Seller context:

Seller J [def BuyService⇒ SellerCode ]

Typically, services once published are persistent in the sense they can be instantiated several
times. To model such persistent services we introduce the recursive variant of service definition.

?def s ⇒ P , recX .s�?(x).(X | x J [P ]) (x 6∈ fv(P ))

Persistent service definitions are specified so as to always be ready to receive a service instan-
tiation request, handling each request in the conversation received in each service instantiation
message.

The idiom that supports the instantiation of a published service is noted by new n · s ⇐ Q.
The new idiom specifies the conversation where the service is published at (n), the name of the
service (s) and the code that will run on the service client side (Q). A service instantiation
resulting from a synchronization from a published service def and an instantiation new results
in the creation of a fresh conversation that is shared between service provider and service caller.
We translate the new idiom in the basic primitives of the CC as follows:

new n · s ⇐ Q , (νc)(n J
[
s�!(c)

]
| c J [Q]) (c 6∈ (fn(Q) ∪ {n}))

The service instantiation is then realized by means of a message exchange in conversation n,
where the service is published at, being the message labeled by the name of the service s and
carrying a newly created name c that identifies the conversation where the service interaction
is to take place. In parallel to the message output that instantiates the service, we find the
code of the client role Q, running in the freshly created conversation c. Notice that Q is already
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def s ⇒ P , s�?(x).x J [P ] (Service Definition)

new n · s ⇐ Q , (νc)(n J [s�!(c)] | c J [Q]) (Service Instantiation)

join n · s ⇐ Q , this(x).(n J [s�!(x)] | Q) (Conversation Join)

?def s ⇒ P , recX .s�?(x).(X | x J [P ]) (Replicated Service Definition)

Figure 4.7: Service Idioms.

active, although it has to wait for the server side to pick up the service conversation identity to
start interacting in conversation c, by means of � directed messages. Notice also that process
Q can interact in the conversation where the service instantiation request lies, using � directed
messages. To instantiate the BuyService published in the Seller conversation we write:

new Seller · BuyService⇐ BuyerCode

Service definition and instantiation idioms have a tight correspondence with session creation
primitives, where also a freshly created medium is shared between two distinct parties. The
difference here is that we introduce them as mere idioms of the language, using more general
communication primitives to program them (π-Calculus bound name communication), while in
most session-based approaches we find such session creation mechanisms as native primitives
of the language. The idiom we present next, however, does not find any correspondence in
session-based approaches, thus is a distinguishing feature of our approach.

In the core CC, conversation identifiers may be manipulated by processes if needed (accessed
via the this(x).P ), passed around in messages and subject to scope extrusion: this allows us to
model multiparty conversations by the progressive access of multiple, dynamically determined
partners, to an ongoing conversation. Joining of another partner to an ongoing conversation
is a frequent programming idiom, that may be conveniently abstracted by the join n · s ⇐ Q

construct. The semantics of the join expression is similar to the service instantiation construct
new: the key difference is that while new creates a fresh new conversation, join allows a service
s published at n to join the current conversation, and continue interacting as specified by Q.
The join idiom is implemented using the core CC primitives as follows:

join n · s ⇐ Q , this(x).(n J
[
s�!(x)

]
| Q) (x 6∈ (fv(Q) ∪ {n}))

Notice that the current conversation identity is accessed via the this primitive, and passed
along in service message s exchanged in the conversation n where s is published at. Process Q

continues to interact in the current conversation (the same that was accessed in the this). We
present the definition of our service-oriented idioms.

Definition 4.5.1 (Service-Oriented Idioms)

The definition of the service-oriented idioms is given in Figure 4.7, where x and c are fresh.

Using such idioms, multiparty conversations may be progressively and dynamically formed,
starting from dyadic ones created by service instantiation. In the following sections we revisit
the examples described in the Introduction (Section 1.2.4): to illustrate the underlying mechanics
of the idioms we describe in detail the interactions of the purchase service collaboration; then
we provide a more informed description of the Finance Portal implementation.
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4.5.1 Proving Interaction in the Purchase Scenario

We go back to our running example of the purchase service collaboration so as to show how the
service oriented idioms work concretely, in the light of the implementations we introduced above.
We next show the code — using our service idioms — for the purchase service collaboration which
involves three parties: a buyer that wants to buy a product, a seller that provides a BuyService

and a shipper that is in charge of executing the delivery, each represented idiomatically by a
distinct conversation (Buyer , Seller and Shipper).

Buyer J [ new Seller · BuyService⇐ buy�!(prod).price�?(p).details�?(d) ]

|
Seller J [ PriceDB |

def BuyService⇒ buy�?(prod).askPrice�!(prod).
priceVal�?(p).price�!(p).
join Shipper · DeliveryService⇐ product�!(prod) ]

|
Shipper J [ def DeliveryService⇒ product�?(p).details�!(data) ]

Notice that by using the service idioms we avoid any explicit reference to the service conversation
name. Thus, our service idioms allow for service conversation handling to be conveniently
abstracted. Also, the distinct directions in messages, � and �, allows us to specify messages that
are to be exchanged in the implicitly defined current and enclosing conversations, respectively,
where the former can then support the interactions of the service collaboration, while the second
allows for accessing resources located in the service provider context, or interact with the client
processes that requested the service instantiation.

Now consider the translation of the system shown above where the service idioms are replaced
by their implementation in the basic communication primitives:

Buyer J [ (νc)(Seller J [ BuyService�!(c) ] | c J [ buy�!(prod).price�?(p).details�?(d) ] ]

|
Seller J [ PriceDB |

BuyService�?(x).x J [ buy�?(prod).askPrice�!(prod).
priceVal�?(p).price�!(p).
this(y).( Shipper J [ DeliveryService�!(y) ]

| product�!(prod) ) ] ]

|
Shipper J [ DeliveryService�?(z).z J [ product�?(p).details�!(data) ] ]

This translation is already revealing on the intended behavior of the system. For starters, buyer
and seller are to interact and establish a fresh conversation between them, which is achieved by
the exchange of message BuyService in conversation Seller , carrying the identity of a freshly
created conversation c. If we look at the individual processes we may then observe that the
buyer has the following behavior:

Buyer J [(νc)(Seller J [BuyService�!(c)]) | (· · · )] (νc)Seller BuyService�!(c)−→ Buyer J [(· · · )]
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while the seller exhibits the following transition:

Seller J
[
BuyService�?(x).x J [(· · · )]

] Seller BuyService�?(c)−→ Seller J [c J [(· · · )]]

which may then synchronize ( • ) in an internal action (τ) through rule (Close) which closes the
scope of c so as to now include the seller process. Thus, at this point the system has evolved to:

(νc)

(Buyer J [ Seller J [ 0 ] | c J [ buy�!(prod).price�?(p).details�?(d) ] ]
|
Seller J [ PriceDB |

c J [ buy�?(prod).askPrice�!(prod).
priceVal�?(p).price�!(p).
this(y).( Shipper J [ DeliveryService�!(y) ] | product�!(prod) ) ] ])

|
Shipper J [ DeliveryService�?(z).z J [ product�?(p).details�!(data) ] ]

Notice that both buyer and seller now hold an access point to conversation c and can thus
interact in it, starting by the exchange of message buy, explained by the synchronization of the
following behaviors of the buyer and seller processes:

Buyer J [(· · · ) | c J [buy�!(prod).price�?(p).(· · · )]] c buy�!(prod)−→
Buyer J [(· · · ) | c J [price�?(p).(· · · )]]

and:
Seller J [c J [buy�?(prod).askPrice�?(prod).(· · · )]] c buy�?(prod)−→

Seller J [c J [askPrice�?(prod).(· · · )]]

leading the system to the following configuration:

(νc)

(Buyer J [ Seller J [ 0 ] | c J [ price�?(p).details�?(d) ] ]
|
Seller J [ PriceDB |

c J [ askPrice�!(prod).
priceVal�?(p).price�!(p).
this(y).( Shipper J [ DeliveryService�!(y) ] | product�!(prod) ) ] ])

|
Shipper J [ DeliveryService�?(z).z J [ product�?(p).details�!(data) ] ]

After that the seller service code interacts with the PriceDB in conversation Seller so as to
determine the price of the indicated product. Notice that a message that is � directed in
conversation c will become a � message once it crosses the conversation boundary:

askPrice�!(prod).(· · · ) askPrice�!(prod)−→ (· · · )

c J [askPrice�!(prod).(· · · )] askPrice
�!(prod)−→ c J [(· · · )]
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After the interactions with the PriceDB , the buyer is informed of the price of the product in
message price. The system has then evolved to:

(νc)

(Buyer J [ Seller J [ 0 ] | c J [ details�?(d) ] ]
|
Seller J [ PriceDB ′ |

c J [ this(y).( Shipper J [ DeliveryService�!(y) ] | product�!(prod) ) ]) ]

|
Shipper J [ DeliveryService�?(z).z J [ product�?(p).details�!(data) ] ]

At this point the join implementation code will allow for a third party to join in on the ongoing
service collaboration. First the this primitive accesses the name of the current conversation:

this(y).(Shipper J [ DeliveryService�!(y) ] | · · · )
c this�
−→

Shipper J [ DeliveryService�!(c) ] | · · · )

c J [this(y).(Shipper J [ DeliveryService�!(y) ] | · · · )]
τ−→

c J [Shipper J [ DeliveryService�!(c) ] | · · · )]

Then the name is sent to shipper in message DeliveryService, through a bound output transi-
tion (cf., the BuyService message exchange), which then leads the system to the configuration:

(νc)

(Buyer J [ Seller J [ 0 ] | c J [ details�?(d) ] ]
|
Seller J [ PriceDB ′ |

c J [ Shipper J [ 0 ] | product�!(prod) ) ] ]

|
Shipper J [ c J [ product�?(p).details�!(data) ]) ]

where the scope of the restriction on c now also includes the shipper process. Then, the remaining
interactions in conversation c can take place, starting by the product message exchange between
seller and shipper, after which message details is exchanged between shipper and buyer. Notice
that the seller party does not lose access to conversation c after passing the name to the shipper
party, and that, actually, seller and shipper get to interact in message product in the delegated
conversation.

4.5.2 Programming a Finance Portal

In this section we revisit the Finance portal implementation so as to show how the several
primitives and idioms of the language can be combined, allowing to model complex interaction
patterns in a rather simple way. We model a credit request scenario, where a bank client, a
bank clerk and a bank manager participate, mediated through a bank portal. The client starts
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by invoking a service available in the bank portal and places the credit request, providing his
identification and the desired amount. The implementation of such client in core CC is then:

Client J [
ClientTerminal
|
new BankPortal · CreditRequest⇐

request�!(myId , amount).
(requestApproved�?().transferDate�!(date).approved�!()
+
requestDenied�?().denied�!()) ]

The client code for the service instantiation specifies the messages that are to be exchanged in
the service conversation by using � messages. First a message request is sent, after which one of
two messages (either requestApproved or requestDenied) informing on the decision is received.
Only after receiving one of such messages is the ClientTerminal informed (correspondingly) of the
final decision. Notice that the service code interacts with the ClientTerminal process by means
of � messages approved or denied. In fact, from the point of view of ClientTerminal the external
interface of the service instance can be characterized by the process approved�!() + denied�!().

Next we show the code of the CreditRequest service published at the BankPortal context.
The service is persistently available, which is represented by the ? annotation.

BankPortal J [
? def CreditRequest⇒

request�?(userId , amount).
join Clerk · RiskAssessment⇐

assessRisk�!(userId , amount).
riskVal�?(risk).
if risk = HIGH then requestDenied�!()
else this(clientChat).

new Manager · CreditApproval⇐
requestApproval�!(clientChat , userId , amount , risk) ]

The server code specifies that, in each CreditRequest service conversation, a message request

is received, then message assessRisk is sent and then message riskVal is received. The first
will be exchanged with the service client, while the latter two will be exchanged with the clerk,
that is asked to join the ongoing conversation through service RiskAssessment. After that,
depending on the risk rate the clerk determined for the request, the bank portal is either able to
automatically reject the request, in which case it informs the client of such decision by sending
message requestDenied, or it has to consult the bank manager, creating a new instance of
the CreditApproval service to that end — notice that a new instance is created in this case.
However, since the bank manager will reply directly back to the client, the name of the client
service conversation is accessed, via the this(clientChat), and passed along to the manager (in
the first argument of message requestApproval). This pattern is similar to a join: the name
of the current conversation is sent to the remote service provider, allowing for it to join in the
conversation. The difference with respect to a join is that the remote service will only join the
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client conversation to reply back to the client. In some sense, it is as if we only delegate a basic
fragment of the client conversation (e.g., the final reply), instead of incorporating the whole
functionality provided by CreditApproval in the CreditRequest service collaboration.

We now show the code for the CreditApproval service, assuming there is a ManagerTerminal
process able to interact with the manager, similarly to the ClientTerminal process.

Manager J [
ManagerTerminal
|
? def CreditApproval⇒

requestApproval�?(clientChat , userId , amount , risk).
this(managerChat).showRequest�!(managerChat , userId , amount , risk).

(reject�?().clientChat J [ requestDenied�!() ]
+
accept�?().clientChat J [

requestApproved�!().
join BankATM · CreditTransfer⇐

orderTransfer�!(userId , amount) ] ]

The CreditApproval server code specifies the reception of a requestApproval message, car-
rying the name of the conversation where the final answer is to be given in, after which the
identity of the current conversation is accessed, and passed along to ManagerTerminal in mes-
sage showRequest in conversation Manager . This allows ManagerTerminal to reply directly to
the “right” conversation, since several copies of the CreditApproval service may be running in
parallel, and therefore several showRequest messages may have to be concurrently handled and
replied to by the ManagerTerminal: if the replies were to be placed in the Manager conversation
then they would also compete and be at risk of being picked up by the wrong (unrelated) service
instance. The ManagerTerminal thus replies in the CreditApproval service conversation with
either a reject message or an accept message. After that the credit request client is notified
accordingly in the respective conversation. Also, in the case that the credit is approved, the
manager asks service CreditTransfer published at BankATM to join the client conversation
(the current conversation for the join is the client conversation), so as to place the transfer order.

We now specify the code for the CreditTransfer service.

BankATM J [
BankATMProcess
|
? def CreditTransfer⇒

orderTransfer�?(userId , amount).
transferDate�?(date).
scheduleTransfer�!(userId , amount , date) ]

The CreditTransfer service code specifies the reception of the transfer order and of the desired
date of the transfer, after which forwards the information to a local BankATMProcess, which will
then schedule the necessary procedure. Notice that the BankATM party is only asked to join
in the conversation under some circumstances, in such case interacting with the bank manager
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in message orderTransfer and with the credit request client in message transferDate, while
otherwise it does not participate at all in the service collaboration.

The system obtained by composing the described processes captures an interesting scenario
where, not only the set of multiple participants in the collaboration is dynamically determined,
but also the actual maximum number of participants depends on some runtime condition. Such a
configuration presents some difficult challenges to analysis techniques that intend to verify prop-
erties such as conversation fidelity, since we have to statically account for all possible dynamic
joins and leaves of parties to conversations.

4.6 Remarks

Various calculi have been recently proposed with the aim to capture aspects of service-oriented
computation. At the root of each one, we find different motivations and methodological ap-
proaches. Some intend to model artifacts of the web services technology, in order to develop
applied verification techniques (e.g., COWS [71], SOCK [51]), others were introduced in order to
demonstrate analysis techniques (e.g., [20, 30]), yet others have the goal of isolating primitives for
formalizing and programming service-oriented applications (SCC [12], SSCC [68], CaSPiS [13])
just to refer a few.

We distinguish between the correlation based approaches (e.g., [51, 71]) and session based
approaches (e.g., [12, 13, 68]), as the latter seem more adequate to develop analysis techniques
that address properties such as conversation fidelity. Regarding session-based approaches, tra-
ditionally they only support binary interaction. Only recently have there been developments on
session-based approaches so as to support multiparty interaction, namely the works of Bonelli et
al. [11], Honda et al. [57] and Bettini et al. [9]. To support multiparty interaction, [57] considers
multiple session channels, while [9] considers a multiple indexed session channel, both resorting
to multiple communication pathways. We follow an essentially different approach, by letting a
single medium of interaction support concurrent multiparty interaction via labeled messages.

In [9, 57] sessions are established simultaneously between several parties through a multicast
session request. As in binary sessions, session delegation is full so the number of initial partic-
ipants is kept invariant. On the other hand our conversations are initially established between
two parties, however delegation is partial — in the sense the delegating partner does not lose
access to the delegated conversation — so the number of parties in the conversation can grow as
parties keep joining in. In such way, we may model multiparty conversations by the progressive
access of multiple, dynamically determined partners, to ongoing conversations. We believe we
can faithfully represent (up to some weak form of equivalence) the multicast session request by
a conversation bootstrap that, through conversation join, establishes the conversation between
the multiple parties in a first phase. On the other hand we do not see how our conversation
join can be represented in the approaches of [9, 57]. A similar comparison can be made to the
approach reported in [11], where not only dynamic joining of parties to a session is not supported
(in the sense above), but also there is also a more centralized communication structure, as there
is only one party that can communicate with (all the) others, which does not seem fit to address
decentralized service-oriented settings.

Our approach, based on a novel notion of conversation context, and on simple and flexible
message-passing communication, allows us to introduce the service initiation operations as mere
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idioms of the language. This contrasts with other session-based proposals for service-oriented
models — in fact, it contrasts with usual session-based models — where we find service instan-
tiation operations primitive to the language. We thus end up with a more foundational model,
where we allow for such operations to be represented by more general communication primitives.
Since we based ourselves in existing proposals, when we initially introduced the Conversation
Calculus [95], such operations were considered primitives of the language, and only later on we
realized that they could actually be defined via the elementary communication primitives [27].

At a more fine grained level of comparison, we discuss some relation of our � communication
primitive and previously introduced similar ones. Our up (�) communication primitive was
introduced with the aim of expressing the interaction between nested conversation contexts,
in particular, between service instances and their callers, with loose-coupling in mind. Similar
primitives were previously introduced in ambient calculi, namely Seal [36], Boxed Ambients [16]
and BASS [47], and also Box π [87]. Our computation model is very different from those models
(which are targeted at modeling migration and mobility), as witnessed by the normal form result
(Proposition 4.4.14). Hence, even if formally related to some primitives introduced in [16, 36],
at least when their reaction rules are considered in isolation, our communication primitives have
very different consequences at the semantic level (for example, two � messages can synchronize,
just as long as they originate in subcontexts of the same context).

In a comparison to the πlab-Calculus, we believe that a program specified in the Conversation
Calculus is much more readable, mostly due to the fact that we can define — in a completely
generic way — the service-oriented idioms, allowing us to abstract away from the manipulation of
service conversation identities. The Conversation Calculus supports a generic definition of such
idioms due to the fact that it allows for message protocols to be defined in the implicitly defined
current (and enclosing) conversation, that may then be placed in the corresponding conversation
access construct. So we may write a service definition def s ⇒ P where P does not need to
explicitly mention the identity of the conversation in which it will run in, while a πlab-Calculus
process necessarily mentions the conversation in each message exchange. This ability to specify
protocols with respect to some implicitly defined conversation turns out to be important to the
expressivity and simplicity of our analysis techniques, since the behaviors defined for the current
conversation are invariant under name substitution, thus narrowing the points in the derivation
where we must merge the behaviors. In the next chapter we show how the conversation type
system profits from this notion of behavior defined in the current conversation.
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Chapter 5

Typing Conversations

In this chapter we present the full-fledged conversation type system introduced in [27, 28],
extending the initial presentation made in Chapter 3. The full type language supports the
analysis of protocols that include alternative paths, allowing for parties to choose between a
determined set of possibilities offered by other parties. Also, we enrich behavioral types with
the notion of directed messages, which correspond directly to the directions of Conversation
Calculus communications. In such way, we are able to capture, in a minimal way, the behavioral
dependencies a process has between two (nested) conversations.

In the rest of the chapter we revisit some of the main ideas behind the conversation type
system already introduced in Chapter 3, and motivate the extensions presented here. We then
present the full conversation type language, and the associated operations that allow us to ma-
nipulate the type structure so as to capture the typing descriptions of CC systems. Then we
present the type system itself, which associates conversation types to Conversation Calculus
systems, and prove type safety results, namely Corollary 5.3.10 which says that well-typed sys-
tems are free from a certain kind of runtime errors, and enjoy the conversation fidelity property:
all participants in a conversation follow well-defined protocols of interaction. To demonstrate
the expressiveness of our technique we show that the higher-level service oriented idioms admit
typing rules mechanically derived through the typing derivations for the low-level implementa-
tions, and we type a couple of realistic service collaborations, involving an a priori undetermined
number of participants. We conclude the chapter with some remarks on related work.

5.1 Analysis of Dynamic Conversations

In a distributed computing setting it is crucial to have mechanisms to certify that distributed
parties can communicate in a disciplined way: if there is no common understanding of a protocol
of interaction then distributed parties are unlikely to be able to collaborate so as to carry out the
tasks they are intended to. In the service-oriented computing setting in particular, the challenge
of disciplining multiparty interaction is of central concern, as real service-oriented applications
rely on the decentralized collaboration between several partners. The task of statically certifying
that systems where parties dynamically call remote services follow well-defined protocols of
interaction is particularly hard, since it involves statically “predicting” all possible runtime
behaviors. The setting gets even more challenging when we consider that such protocols may
follow alternative paths at runtime. Such challenging scenarios are the target of the conversation
type system presented in this chapter.
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The main ingredients of the type language were introduced in Chapter 3: a behavioral
type system that combines, at the same level in the type language, local and global behavioral
descriptions. A global behavioral description captures the overall protocol of interaction of a
system — a conversation. A local behavioral description describes the role of an individual
participant in a conversation. By mixing the two, we are also able to describe the role of a
part of a system in a conversation, which is crucial to support the compositional analysis of
the several parts of a system involved in a conversation. Our type language characterizes the
message exchanges a process has with the external environment (output ! and input ? actions)
that capture the local behavior of processes, and characterizes internal interactions (τ) which
capture message exchanges between parties that are local to the system being characterized,
and ultimately allow us to specify the global protocols of interaction. The polarity p (either !,
? and τ) in a message type (p ld(C)) characterizes processes that send !, receive ? or internally
exchange τ a message. Message types also specify the message label l, the direction d that
specifies the conversation in which the message is to be exchanged (either in the current � or in
the enclosing �), and the argument type C of what is sent in the message.

For example, the following type (where we assume some basic value types Tp and Tm):

? buy�(Tp).! askPrice�(Tp).? priceVal�(Tm).! price�(Tm).τ product�(Tp).! details�(Tp)

characterizes a process that receives a message buy in the current � conversation, then sends
message askPrice and receives message priceVal in the enclosing � conversation, after which
sends message price, internally exchanges message product and sends message details in
the current conversation. Notice that output and input capabilities are mixed with internal
message exchanges in this behavioral description. Notice also that our types do not mention the
identity of the communicating peers. This increases the flexibility of our analysis, with respect
to other approaches (e.g., [9, 57]) that consider communication capabilities are annotated with
the identity of the party that is supposed to perform the action. In such way, we allow for
more loosely-coupled specifications, as we do not enforce a particular party to perform the
communication capability, instead we are only interested in verifying that someone exercises the
communication capability.

A key notion in our approach to support multiparty interaction is that of a dynamic join: the
dynamic call to a remote party that allows for it to start participating in an ongoing conversation.
Multiparty conversations may be then formed by the progressive join of several parties to a given
conversation. The ability to mix global and local specifications in conversation types is crucial
to characterize such runtime delegations of behavior, since parties that delegate behavior are
statically typed with their individual role in the conversation together with the communication
capabilities that will be delegated away — the type of a subpart of the system. To explain such
behavioral combinations our type system relies on a behavioral merge, which realizes behavioral
composition by merging behavioral traces. For instance, by:

? buy�(Tp).! askPrice�(Tp).? priceVal�(Tm).! price�(Tm).τ product�(Tp).! details�(Tp)
=
? buy�(Tp).! askPrice�(Tp).? priceVal�(Tm).! price�(Tm).! product�(Tp)
./

? product�(Tp).! details�(Tp)
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we specify that the type on top is a particular behavioral combination of the types on the
bottom — the resulting type synchronizes message product. Our behavioral merge is then used
to characterize conversations which have several distributed participants — by incrementally
merging the individual behaviors — and to characterize systems where parties dynamically
delegate conversation fragments.

Our type language includes message prefix M.B, which specifies that message M is to be
sent, received, or internally exchanged, after which behavior B is activated, parallel composition
B1 | B2 which allows us to describe concurrent behavior, and recursion that supports the specifi-
cation of infinite behavior. The full conversation types language also features choice and branch
types, �i∈I{Mi.Bi} and Ni∈I{Mi.Bi}, which characterize processes that can choose between one
of the Mi.Bi behaviors and branch in either of the Mi.Bi branches, respectively. For example:

�{! requestApproved�().τ orderTransfer�(T1, T2).? transferDate�(T4);
! requestDenied�()}

represents a process that can send either a requestApproved message or a requestDenied mes-
sage. In the former case, the process proceeds by internally exchanging message orderTransfer,
and after which receives message transferDate. On the other hand the following type:

N{? requestApproved�().! transferDate�().! approved�();
? requestDenied�().! denied�()}

describes a process that is ready to receive both message requestApproved and requestDenied,
where in the first case the process proceeds by sending messages transferDate and approved

(the latter to the enclosing conversation), while in the second case the process proceeds by
sending message denied (to the enclosing conversation). The merge of the choice and branch
types above yields type:

�{τ requestApproved�().τ orderTransfer�(T1, T2).τ transferDate�(T4).! approved�();
τ requestDenied�().! denied�()}

which specifies an internal choice between the two actions — the composition of the process
that chooses one of such behaviors with the process that branches in all such behaviors yields
a process that internally decides which is the branch of behavior that will be activated. Notice
that depending on the branch taken, distinct parties may be called in to collaborate in the
ongoing conversation, as conversation fragments may be delegated away in the continuations of
the message prefixes that form such choices and branches.

The behavioral types capture the protocols of interaction in a single conversation. Since
processes, in general, may interact in several conversations, characterizing a CC system involves
describing the several protocols the process has in each conversation. Then, a typing judgment
of the form:

P :: B | n : [Bn] | m : [Bm] | o : [Bo] | . . .

specifies that the behavior of process P in conversations n, m, . . . is captured by behavioral types
Bn, Bm, . . ., respectively. Notice that type B appears unlocated in such judgment: since CC
processes may interact in the current and enclosing conversations, which identity is not known at
this point as it depends on the context where P is inserted in, the typing judgment must consider
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n, m, o, . . . ∈ Λ ∪ V (Identifiers)
l, s . . . ∈ L (Labels)
X ,Y, . . . ∈ χ (Recursion Variables)

B ::= B1 | B2

∣∣ 0
∣∣ recX .B

∣∣ X ∣∣ �i∈I{Mi.Bi}
∣∣ Ni∈I{Mi.Bi} (Behavioral)

M ::= p ld(C) (Message)

p ::= !
∣∣ ?

∣∣ τ (Polarity)

C ::= [B] (Conversation)

L ::= n : C
∣∣ L1 | L2

∣∣ 0 (Located)

T ::= L | B (Process)

Figure 5.1: Conversation Types Syntax.

an unlocated behavioral type. Notice also that, in general, behavioral dependencies between
conversations are not captured by conversation types. However, it is possible to represent
behavioral dependencies between the current conversation and the enclosing conversation in the
unlocated part of the type, since it may mix � behaviors with � behaviors.

We denote by T a process type that mixes an unlocated behavioral type with some located
behavioral types. Then a typing judgement P :: T , which states that P is well-typed with type
T , intuitively says that if process P is placed in a context where a process that behaves like T is
expected then we obtain a safe system. The intended safety property will be formally stated in
Corollary 5.3.10: it implies conversations agree to declared protocols, and the absence of certain
kind of runtime errors. In the next sections we present the type language and the type system
that allows us to single out type-safe CC systems.

5.2 Type Language

In this section we formally present the full conversation types language. As already motivated
in the Introduction, our types specify the message protocols that flow between and within con-
versations. The syntax of the type language closely follows the one presented in Chapter 3,
featuring behavioral types to describe the conversation protocols, and located types that asso-
ciate behavioral types to their respective conversations. We define the syntax of the language.

Definition 5.2.1 (Conversation Type Language)

The syntax of the conversation type language is given in Figure 5.1.

With respect to the core type language presented in Chapter 3 there are three differences.
(1) The full type language features choice and branch types that characterize processes that
can choose between one of the Mi.Bi behaviors and branch in either of the Mi.Bi behaviors,
respectively. (2) Message types are defined with a direction d, accordingly to Conversation
Calculus messages, thus, message types refer to which conversation they pertain — either the
current � or the enclosing � conversation. (3) We introduce process types that are composed
by a located type and a behavioral type. Since processes may interact in several conversations,
process types describe the interactions in all such conversations: on the one hand if the identity
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of the conversation in which a process interacts is already known then the process type will
describe such interactions in a located type; on the other hand, the process type describes the
interactions of the process in the current and enclosing conversations (which identity is not yet
known) in a behavioral type. Thus, typing judgments have the form P :: T , where T is a process
type given by L | B, for some located type L and behavioral type B.

Our behavioral types include parallel composition (B1 | B2) to represent concurrent behavior,
the inactive behavior 0, recursive behavior through the combined use of the recursive definition
construct recX .B and the recursion variable X , and also choice and branch types that capture
alternative behavior: the former characterizes processes that can perform one of the Mi.Bi

choices, and the latter characterizes processes that can perform either one of the Mi.Bi branches.
The prefix M.B specifies a process that sends, receives, or internally exchanges a message M

before proceeding with behavior B. Message types specify the message polarity (either output
!, input ? and internal exchange τ), the directed label of the message ld and the argument
type C of what is communicated in the message. The argument conversation type describes the
behavior that the process receiving the message will have in the conversation which identifier
is passed in the message. Notice that message types specify both communications of a process
with the external environment (inputs ? and outputs !) and internal message exchanges (τ).

Conversation types C consist of a delimited behavior. Then, located types L collect (using
composition L1 | L2) type associations between conversation names and their types (n : C).

We introduce some convenient abbreviations and conventions for behavioral types.

Syntactic conventions:

M.B1 | B2 is to be read as (M.B1) | B2.

recX .B1 | B2 is to be read as (recX .B1) | B2.

Abbreviations:

p l(C) stands for p l�(C).

M stands for M.0.

? l(C).B stands for N{? l(C).B}.

! l(C).B stands for �{! l(C).B}.

τ l(C).B stands for �{τ l(C).B}.

�{B1; . . . ;Bk} and �{B̃} stand for �i∈1,...,k{Bi}.

N{B1; . . . ;Bk} and N{B̃} stand for Ni∈1,...,k{Bi}.

{B̃} stands for N{B̃} and for �{B̃}.

?M stands for recX .M.X .

In the following sections we present the operations that manipulate the type structure so as to
support the modifications in the types required to characterize Conversation Calculus processes.
Most of them were already introduced in Chapter 3 but we now adapt them to the current
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setting. We start by an operation which is specific to the full conversation type language:
projecting a type in a determined direction. Then we introduce the types that characterize our
intended recursive behaviors. After that we present the apartness predicate that allows us to
identify independent behavior, adapting the previously introduced auxiliary operators to the
full conversation type language. Then we present the relation between types — the subtyping
relation — which is extended with some axioms specific to the current setting. Finally, we present
the merge relation which we use to behaviorally combine types, which is a slight extension of
the one presented in Chapter 3.

5.2.1 Projecting Types

When characterizing CC process behavior we need to project the behavioral descriptions pro-
vided by types along a direction d (either � and �), in particular when we locate such behaviors
in their respective conversations. The projection d(B) in the direction d of a behavioral type
B consists in the selection of all messages that have the given direction d while filtering out the
ones in the other direction, offering a partial view of behavior B from the viewpoint of d.

Definition 5.2.2 (Direction Projection)

For each direction d, the projection d(B) of type B along direction d is defined as follows:

d(0) , 0

d(X ) , X

d(recX .B) , recX .B (if d(B) = B)

d(B1 | B2) , d(B1) | d(B2)

d(! ld
′
(C).B) , d(B) (if d 6= d′)

d(�i∈I{pi l
d
i (Ci).Bi}) , �i∈I{pi l

d
i (Ci).d(Bi)}

d(�i∈I{! ld
′

i (Ci).Bi}) , �i∈I{d(Bi)} (if d 6= d′ and d(Bi) = ! ld(C).B)

d(? ld
′
(C).B) , d(B) (if d 6= d′)

d(Ni∈I{? ldi (Ci).Bi}) , Ni∈I{? ldi (Ci).d(Bi)}

d(Ni∈I{? ld
′

i (Ci).Bi}) , �i∈I{d(Bi)} (if d 6= d′ and d(Bi) = ! ld(C).B)

Notation 5.2.3 To lighten notation we write �B instead of �(B) and �B instead of �(B).

Notice that the direction projection is a partial operation and some types are excluded at this
level (e.g., branch/choice types where the initial actions have different directions). Informally,
we sometimes refer to � B as the “here interface” of B, and likewise for � B as the “up interface”.
We illustrate the projection of choice and branch types with an example.

Example 5.2.4 Consider type:

N{? requestApproved�().! transferDate�().! approved�();
? requestDenied�().! denied�()}
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which specifies a process that can receive either a requestApproved message or a requestDenied

message in the current conversation, and eventually sends either message approved or message
denied in the enclosing conversation. Projecting the type in the � direction results in the branch
type of the two � messages (and respective � continuations), as follows:

� (N{? requestApproved�().! transferDate�().! approved�();
? requestDenied�().! denied�()})

=
N{? requestApproved�().! transferDate�();

? requestDenied�()}

On the other hand, the � projection specifies that the process chooses between one of the �
behaviors of the continuations (since the branching is invisible from this view), as follows:

� (N{? requestApproved�().! transferDate�().! approved�();
? requestDenied�().! denied�()})

=
�{! approved�(); ! denied�()}

We introduce an operator that changes the direction of all messages to � in a behavioral type.

Definition 5.2.5 (Locating a Behavioral Type)

Locating a behavioral type B in the current conversation, noted loc(B), is defined as follows:

loc(B1 | B2) , loc(B1) | loc(B2) loc(0) , 0

loc(recX .B) , recX .loc(B) loc(X ) , X
loc(�i∈I{Mi.Bi}) , �i∈I{loc(Mi.Bi)} loc(Ni∈I{Mi.Bi}) , Ni∈I{loc(Mi.Bi)}
loc(p ld(C).B) , p l�(C).loc(B)

The loc(B) operation is used when we locate behaviors in their respective conversations, more
specifically, when we locate in the current conversation the � interactions of a process located
in a nested conversation — we then use loc() to redirect � to � messages.

5.2.2 Typing Recursive Behavior

We reinstate our distinction, for typing purposes, between shared L? and plain Lp labels.

Definition 5.2.6 (Plain and Shared Labels)

We denote by L? and Lp subsets of L such that L? ∩ Lp = ∅ and L? ∪ Lp = L.

Messages that are to be used exponentially, typically messages regarding service instantiation,
are defined on shared labels, while messages that are to be used linearly, supporting linear pro-
tocol specifications in a service interaction, are defined on plain labels. We can then characterize
the interface of a persistent service definition: it consists in a number of output messages defined
on shared labels, representing calls to auxiliary services. We define exponential output types.
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Definition 5.2.7 (Exponential Output Type)

Exponential output message types, noted ?M !, exponential output behavioral types, noted ?B!,
and exponential output located types, noted ?L!, are defined as follows:

?M ! ::= ?M (M = ! ld(C) and l ∈ L?) (Exponential Output Message Type)

?B! ::= ?M !
∣∣ ? B!

1 | ? B!
2

∣∣ 0 (Exponential Output Behavioral Type)

?L! ::= n :
[
?B!

] ∣∣ ? L!
1 | ? L!

2

∣∣ 0 (Exponential Output Located Type)

Since several copies of a persistent service definition may be concurrently active, we only allow for
them to share an exponential output type, allowing for such messages that represent service calls
to compete (race) for the resource — the service definition. Instead, races on linear messages are
excluded by our type system. However, recursive processes may define linear message exchanges,
just as long as they appear in the type prefixing the recursion variable. In such way, we are
sure that such messages will never compete, as only after they have been exchanged will the
recursive behavior repeat itself. We thus define B〈X 〉 that represents a safe recursive behavior,
where the recursion variable X may occur as a leaf, and all its plain labels appear in messages
that prefix the recursion variable.

Definition 5.2.8 (Recursive Types)

Leaf recursive types, noted Bl〈X 〉, and recursive behavioral types, noted B〈X 〉, are defined as:

Bl〈X 〉 ::= 0
∣∣ X ∣∣ �i∈I{Mi.B

l
i〈X 〉}

∣∣ Ni∈I{Mi.B
l
i〈X 〉}

∣∣ Bl〈X 〉 | ?B! (if Bl〈X 〉# ?B!)

B〈X 〉 ::= 0
∣∣ �i∈I{Mi.B

l
i〈X 〉}

∣∣ Ni∈I{Mi.B
l
i〈X 〉}

∣∣ B〈X 〉 | ?B! (if B〈X 〉# ?B!)

Type B〈X 〉 thus characterizes recursive processes that can safely have several active concurrent
instances, where by safely we intend that the concurrent instances share only some exponential
behavior, since the linear behavior will be sequentially activated. Notice that some of the
messages that are to be sequentially activated may be defined on shared labels, so not all
messages prefixing the recursion variable have to be linear. Notice also that the recursion
variable may occur as a leaf in all branches and choices of branch and choice types.

Such types guarantee, by definition, there is no undesired interference in between the several
runs of a recursive process. To identify, in general, when two types characterize systems that do
not interfere in an undesired way, we introduce the apartness predicate.

5.2.3 Apartness

A crucial operation in our type system is type apartness: systems characterized by types that
are apart are ensured not to exhibit undesired interferences. To define this notion we must
distinguish between behavior in shared messages and behavior in plain messages, as the intended
notion of interference varies between the two cases. Plain messages are to be used linearly, thus
systems that exhibit the same behavior on some plain messages can interfere — the messages
can race — and thus such systems are not apart. On the other hand, systems that exhibit the
same behavior on shared messages do not interfere, just as long such messages are consistently
used — if they are defined on the same argument type. Although systems that may synchronize,
in either linear or shared messages, are safe systems, they are not independent and hence are not
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apart — such synchronizations will be explained by the behavioral merge (Definition 5.2.18).
We introduce some auxiliary operations in order to define type apartness. We define the

set of message types MsgL(B) and the set of directed message labels dLabL(B) of a behavioral
type B. Both sets are indexed by a label set L, which can be refined to either L? and Lp so as
to allow, e.g., the distinction of the message sets with labels from shared labels (from L?) and
those from plain labels (from Lp).

Definition 5.2.9 (Message Set)

We denote by MsgL(B) the set of message types defined with labels in L of a behavioral type B,
defined as follows:

MsgL(0) , ∅
MsgL(B1 | B2) , MsgL(B1) ∪MsgL(B2)

MsgL(X ) , ∅
MsgL(recX .B) , MsgL(B)

MsgL(p ld(C).B) , {(p ld(C)) | l ∈ L} ∪MsgL(B)

MsgL(�i∈I{Mi.Bi}) ,
⋃

i∈I MsgL(Mi.Bi)

MsgL(Ni∈I{Mi.Bi}) ,
⋃

i∈I MsgL(Mi.Bi)

For example, given some behavioral type B, MsgLp
(B) is the set of all plain (in Lp) message types

(p ld(C)) occurring in B, leaving out message types defined on shared labels (those belonging to
L?). Using the message set, we define the set of directed labels of a behavioral type.

Definition 5.2.10 (Set of Directed Labels)

We denote by dLabL(B) the set of directed labels from L of a behavioral type B, defined as:

dLabL(T ) , {ld | (p ld(C)) ∈ MsgL(B)}

Using the set of directed labels information we may already characterize when two types are
apart with respect to plain messages: their plain directed label sets must be disjoint. However, to
determine apartness with respect to shared messages we require another operation: conformance.

Definition 5.2.11 (Conformance)

We say two behavioral types B1, B2 are conformant, noted B1 � B2, if for any two message
types p1 ld(C1) and p2 ld(C2) such that:

(p1 ld(C1)) ∈ MsgL?
(B1) and (p2 ld(C2)) ∈ MsgL?

(B2)

then C1 = C2 and if pi = ? then pj = τ for {i, j} = {1, 2}.

Two behavioral types are compatible on shared messages if they specify messages defined on
shared labels with identical argument types and also if they are defined on determined polarities.
For instance, two message types defined on shared labels and polarity ! are conformant as they
represent compatible calls to the same service. We exclude the cases of messages presenting
dual polarities (! and ?) and when both messages present ? polarities: the former will later
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be used to force such messages to synchronize, which means a τ will be introduced in the
type to represent the possible synchronization; the latter is used to check the compatibility of
two service definitions — the combination of such types is explained by the behavioral merge
(Definition 5.2.18). Using the label set and conformance, we may define type apartness.

Definition 5.2.12 (Apartness)

We say two behavioral types B1, B2 are apart, noted B1#B2, if their sets of plain directed labels
are disjoint (dLabLp(B1) # dLabLp(B2)) and they are conformant (B1 � B2).

Essentially, apartness ensures disjointness of plain (“linear”) types, and consistency of shared
(“exponential”) types (cf. [64]). The notion of independent behavior provided by apartness is
used by the relation between types — the subtyping relation — to identify the cases when it is
possible to manipulate the type structure so as to allow more flexible behavioral characteriza-
tions. In the following section we present the subtyping relation.

5.2.4 Subtyping

Types are related by the subtyping relation we now present. Intuitively, we say type T1 is a
subtype of type T2, noted T1 <: T2, when a process of type T1 can safely be used in a context
where a process of type T2 is expected. Subtyping provides a way to generalize the typing
characterization of processes, by its use in a subsumption rule of the form:

P :: T1 T1 <: T2

P :: T2

which then allows to characterize a process by a more general type (the supertype) given the
characterization of the process by a more specific type (the subtype).

We start by informally discussing the key rules and then present the formal definition. Our
subtyping rules express expected structural relationships of types, namely that (− | −,0) is a
commutative monoid with respect to subtyping. We also specify that branches and choices can
be freely commuted in branch and choice types, respectively:

�{B̃; B̃′} ≡ �{B̃′; B̃} N{B̃; B̃′} ≡ N{B̃′; B̃}

where T1 ≡ T2 abbreviates T1 <: T2 and T2 <: T1. We adopt an equi-recursive approach to
recursive types [83], based on simple unfoldings of recursive type terms:

recX .B ≡ B{X/recX .B}

We also have a split rule:
n : [B1 | B2] ≡ n : [B1] | n : [B2]

which captures the notion that the behavior in a single conversation can be described through
distinct pieces. We embed the subtyping relation with reflexivity and with transitivity. We also
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specify the congruence closure of the relation in all contexts of the type language:

T1 <: T2

T3 | T1 <: T3 | T2

B1 <: B2

n : [B1] <: n : [B2]
B1 <: B2

recX .B1 <: recX .B2

∀i∈I Bi <: B′
i

�i∈I{Mi.Bi} <: �i∈I{Mi.B′
i}

∀i∈I Bi <: B′
i

Ni∈I{Mi.Bi} <: Ni∈I{M ′
i .B

′
i}

The following rules allow us to generalize our typing characterizations. A key subtyping rule
that introduces some flexibility at the level of protocol specification is the following:

M.(B1 | B2) <: M.B1 | B2 (M # B2, fv(B2) = ∅)

which then allows for sequential protocols to export a more general concurrent interface, provided
the behaviors specified in parallel are apart M # B2. The intuition is that if a process performs
action M and after which exhibits behavior B2 then it can safely be used in a context that
expects a process that exhibits simultaneously action M and behavior B2.

The next rule expresses a contraction principle for exponential output message types ?M !:

?M ! | ?M ! <: ?M !

which describes that a process that sends two (each infinitely often) messages (?M !) can be
safely used in a context where a process that sends such message just once (infinitely often) is
expected. Also regarding exponential output types we introduce a weakening principle by rule:

M <: ?M ! (M = ! ld(C), l ∈ L?)

which specifies that a process which outputs once a message defined on a shared label can be
used in a context where a process that outputs the message an unbounded number of times is
expected. This allows us to always expect an exponential output type which already specifies
an unbounded number of usages, for instance, in the premises of typing rules, and also in the
following rule where we allow recursive types to export such exponential interface separately:

recX .(?M !
1 | . . . | ? M !

k | B〈X 〉) <: ?M !
1 | . . . | ? M !

k | recX .B〈X 〉

The rule then allows for a process that specifies a number of exponential output messages in
between its repeated executions to be characterized by the type that separately specifies the
exponential interface and the recursive behavior.

The following rule expresses a crucial subtyping principle, where we allow a behavioral type
to be decomposed (in the supertype) in its two projections according to the message directions:

B <: �B | �B

The rule characterizes that a process that specifies some, possibly interleaved, behavior in the
current and enclosing conversations, can safely be used in a context where a process that exhibits
such behaviors independently is expected. We define subtyping for process types.

111



T1 | T2 ≡ T2 | T1 (SubParComm) T1 | (T2 | T3) ≡ (T1 | T2) | T3 (SubParAssoc)

T | 0 ≡ T (SubParZero) recX .B ≡ B{X/recX .B} (SubRecUnfold)

�{B̃; B̃′} ≡ �{B̃′; B̃} (SubChoiceComm) N{B̃; B̃′} ≡ N{B̃′; B̃} (SubBranchComm)

n : [B1 | B2] ≡ n : [B1] | n : [B2] (SubLocSplit)

T <: T (SubReflex )
T1 <: T3 T3 <: T2

T1 <: T2
(SubTrans)

T1 <: T2

T3 | T1 <: T3 | T2
(SubPar)

B1 <: B2

n : [B1] <: n : [B2]
(SubProc)

B1 <: B2

recX .B1 <: recX .B2
(SubRec)

∀i∈I Bi <: B′
i

Ni∈I{Mi.Bi} <: Ni∈I{Mi.B′
i}

(SubBranch)
∀i∈I Bi <: B′

i

�i∈I{Mi.Bi} <: �i∈I{Mi.B′
i}

(SubChoice)

rec X .(?M !
1 | . . . | ? M !

k | B〈X 〉) <: ?M !
1 | . . . | ? M !

k | rec X .B〈X 〉 (SubExpRec)

?M ! | ? M ! <: ?M ! (SubExpFold) B <: �B | �B (fv(B) = ∅) (SubProject)

M.(B1 | B2) <: M.B1 | B2 (M # B2, fv(B2) = ∅) (SubParPref )

M <: ?M ! (M = ! ld(C), l ∈ L?) (SubExpWeak)

Figure 5.2: Process Types Subtyping Rules.

Definition 5.2.13 (Process Types Subtyping and Equivalence)

We say process type T1 is a subtype of process type T2, noted T1 <: T2, if T1 <: T2 is derivable by
the rules shown in Figure 5.2. Also, we say T1 and T2 are equivalent, noted T1 ≡ T2, if T1 <: T2

and T2 <: T1.

Next we present the operation used to behaviorally combine types, that thus explains the be-
havioral composition of processes.

5.2.5 Merge Relation

Our typing characterizations crucially depend on the operation that behaviorally combines types:
the merge relation. The merge relation allows us to characterize the behavior of composite
processes, by merging the individual behaviors of the several subprocesses in a compositional
way. We thus write B = B1 ./ B2 to say that B is a particular (in general not unique) behavioral
combination of the types B1 and B2. The merge of two independent — apart — types yields the
independent composition of the two types. However, when the types specify behaviors that may
synchronize, then the merge relation introduces an internal message exchange τ in the type to
represent such synchronization potential. Thus, the merge of two behaviors is defined not only
in terms of spatial separation, but also, and crucially, in terms of merging behavioral “traces”.
Notice that it is not always the case that there is B such that B = B1 ./ B2. On the other
hand, if some such B exists, we use B1 ./ B2 to non-deterministically denote any such B.
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Notation 5.2.14 We use B1 ./ B2 to represent B such that B = B1 ./ B2.

Intuitively, B = B1 ./ B2 holds if B1 and B2 may safely synchronize or interleave so as to
produce behavioral type B. So, the merge of two types is defined when either the types are
apart, or when the non-apart messages may be synchronized, otherwise the merge is undefined.

Before defining the merge relation we introduce some auxiliary operations: one that collects
the set of directed labels of actions immediately active in a behavioral type B, noted I(B), and
another that replaces all occurrences of a message type by another, noted B{M1/M2}.

Definition 5.2.15 (Set of Initial Directed Labels)

The set of initial directed labels of a behavioral type B, noted I(B), is defined as follows:

I(0) , ∅ I(B1 | B2) , I(B1) ∪ I(B2)

I(X ) , ∅ I(recX .B) , I(B)

I(�i∈I{Mi.Bi}) ,
⋃

i∈I I(Mi.Bi) I(Ni∈I{Mi.Bi}) ,
⋃

i∈I I(Mi.Bi)

I(p ld(C).B) , {ld}

Definition 5.2.16 (Message Type Substitution)

We denote by B{M1/M2} the type obtained by replacing all occurrences of message type M1

with message type M2 in type B, defined inductively in the structure of types as follows:

0{M1/M2} , 0

(B1 | B2){M1/M2} , (B1{M1/M2}) | (B2{M1/M2})
X{M1/M2} , X
(recX .B){M1/M2} , recX .(B{M1/M2})
(M1.B){M1/M2} , M2.(B{M1/M2})
(M.B){M1/M2} , M.(B{M1/M2}) (if M 6= M1)

(�i∈I{Mi.Bi}){M/M ′} , �i∈I{(Mi.Bi){M/M ′}}
(Ni∈I{Mi.Bi}){M/M ′} , Ni∈I{(Mi.Bi){M/M ′}}

Given these basic operations we may now present the merge relation, starting by an informal
description of the key rules. There are two key rules that explain type synchronizations, one for
messages defined on plain labels, and the other for messages defined on shared labels. For plain
messages synchronization we have the following rule:

∀i∈I .(Bi = B−
i ./ B+

i li ∈ Lp)
�i∈I{τ l�i (Ci).Bi} = Ni∈I{? l�i (Ci).B−

i } ./ �i∈I{! l�i (Ci).B+
i }

(Plain)

that merges dual branch and choice types in an internal choice — a choice between a set of
internal (τ) message exchanges. The continuations of the internal actions are given by the
merge of the respective continuations of the branches and choices. Merge ./ thus allows τ l�

plain message types (“here” internal interactions) to be separated into send ! and receive ?

capabilities in respective choice and branch constructs.
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Shared message synchronization is captured by rule:

B � ! ld(C) l ∈ L?

B{! ld(C)/τ ld(C)} | ? ? ld(C) = B ./ ?? ld(C)
(Shared)

which synchronizes a persistently available input message type with all corresponding output
message types. The resulting merge is then the type obtained replacing all ! ld(C) message types
with τ ld(C) in B, in parallel with the persistent input message type: this allows for shared
labeled inputs to synchronize and still expect further outputs from the external environment,
leaving open the possibility for further synchronizations. A τ shared message type thus represents
that there is (at least one) persistently available input that matches the output, while a τ plain
message type characterizes the uniquely determined synchronization on that plain label.

The following rule ensures compatibility of persistent shared input specifications:

l ∈ L?

?? ld(C) = ?? ld(C) ./ ?? ld(C)
(SharedInp)

Thus, two persistent shared inputs may be merged if they are characterized by exactly the same
type. The following rule allows for the merge to interleave a message prefix:

M # B2 B′ | B′′ ≡ B1 ./ B2 M # B′′ I(B′) ⊆ I(B1) I(B′′) ⊆ I(B2)
M.B′ | B′′ = M.B1 ./ B2

(Shuffle)

Rule (Shuffle) explains the composition of behaviors M.B1 and B2 by first composing B1 and B2

(since M is apart from B2 it does not interfere with B2) and second by placing the message prefix
M.B′ so as to maintain (some of) the sequentiality information originally specified in M.B1. On
the one hand, such merge does not allow for M to prefix behaviors it did not originally prefix
(I(B′) ⊆ I(B)). On the other hand the behavior B′′ which is specified in parallel to M has
its initial actions defined by a subset of the ones specified by B2, so no behaviors that occurred
only in the continuation of M will be exposed in parallel. In such way, we allow for type
synchronizations to occur in the continuation of message prefixes. Notice also we only allow
shuffling on simple message prefixes (M.B), and not in choice and branch types, with respect
to which we show the following motivating example.

Example 5.2.17 Consider the following specification:

N{? requestApproved�().! transferDate�();
? requestDenied�()}

which characterizes a process that may branch in either one of two behaviors, depending if
it receives message requestApproved or message requestDenied, and, in the former case,
proceeds by sending message transferDate. Now consider type:

? transferDate�()

which characterizes a process that receives message transferDate. At this point we may ask if
these two types can be merged, as there is a possible synchronization in message transferDate,
but such synchronization is conditioned by the chosen branch. If transferDate is received by a
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party that does not influence this choice then we risk that the process receiving the transferDate

message will get stuck if the chosen branch is requestDenied. We thus disallow such merges,
and allow for message shuffling only in simple message prefixes (unary choice and branch types).

We may now define the behavioral types merge relation.

Definition 5.2.18 (Behavioral Types Merge Relation)

We say type behavioral type B is the merge of behavioral types B1 and B2, noted B = B1 ./ B2,
if B = B1 ./ B2 is derivable by the rules shown in Figure 5.3.

We state some properties of the behavioral types merge relation.

Proposition 5.2.19 (Behavioral Type Merge Relation Properties)

The behavioral types merge relation is commutative and associative:

(1 ). If B = B1 ./ B2 then B = B2 ./ B1.

(2 ). If B′ = B1 ./ B2 and B = B′ ./ B3 then there is B′′ such that B′′ = B2 ./ B3 and
B = B1 ./ B′′.

Proof. (1 ) follows immediately from the definition, while (2 ) follows by induction on the deriva-
tion of B′ = B1 ./ B2 and B = B′ ./ B3 (See Appendix A.3).

We show an example that illustrates the behavioral combination of two types via merge.

Example 5.2.20 Consider type:

! request�().N{? requestApproved�().! transferDate�();
? requestDenied�()}

which specifies a process that sends message request, and after which branches in either one
of two behaviors, depending on the reception of either message requestApproved or message
requestDenied, proceeding, in the former case, by sending message transferDate. When
merged with the type:

? request�().τ assessRisk�().τ riskVal�().
�{! requestApproved�().τ orderTransfer�().? transferDate�();

! requestDenied�()}

which specifies the dual polarity on message request and the dual choice type, over messages
requestApproved and requestDenied, and the dual polarity on message transferDate, along
with some other internal message exchanges, it yields type:

τ request�().τ assessRisk�().τ riskVal�().
�{τ requestApproved�().τ orderTransfer�().τ transferDate�();

τ requestDenied�()}

which specifies the composite behavior consisting on some internal message exchanges, including
an internal choice.
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l ∈ L?

?? ld(C) = ?? ld(C) ./ ?? ld(C)
(SharedInp)

B � ! ld(C) l ∈ L?

B{! ld(C)/τ ld(C)} | ? ? ld(C) = B ./ ?? ld(C)
(Shared -r)

B � ! ld(C) l ∈ L?

B{! ld(C)/τ ld(C)} | ? ? ld(C) = ?? ld(C) ./ B
(Shared -l)

∀i∈I(Bi = B−
i ./ B+

i li ∈ Lp)
�i∈I{τ l�i (Ci).Bi} = �i∈I{! l�i (Ci).B+

i } ./ Ni∈I{? l�i (Ci).B−
i }

(Plain-r)

∀i∈I(Bi = B−
i ./ B+

i li ∈ Lp)
�i∈I{τ l�i (Ci).Bi} = Ni∈I{? l�i (Ci).B−

i } ./ �i∈I{! l�i (Ci).B+
i }

(Plain-l)

M # B1 B′ | B′′ ≡ B1 ./ B2 M # B′ I(B′′) ⊆ I(B2) I(B′) ⊆ I(B1)
B′ | M.B′′ = B1 ./ M.B2

(Shuffle-r)

M # B2 B′ | B′′ ≡ B1 ./ B2 M # B′′ I(B′) ⊆ I(B1) I(B′′) ⊆ I(B2)
M.B′ | B′′ = M.B1 ./ B2

(Shuffle-l)

B1 �# B2 B′ = B1 ./ B2 B = B′ ./ B3

B = B1 ./ B2 | B3
(ShufflePar -r)

B1 �# B2 B′ = B1 ./ B2 B = B′ ./ B2

B = B1 ./ B3 | B2
(ShufflePar -rr)

B2 �# B3 B′ = B2 ./ B3 B = B1 ./ B′

B = B1 | B2 ./ B3
(ShufflePar -l)

B2 �# B3 B′ = B2 ./ B3 B = B1 ./ B′

B = B2 | B1 ./ B3
(ShufflePar -ll)

B = B1 ./ B2

recX .B = recX .B1 ./ recX .B2
(Rec)

X = X ./ X
(Var)

B1 # B2

B1 | B2 = B1 ./ B2
(Apart)

B′ = B1 ./ B2 B′′ = B3 ./ B4 B′ # B′′

B′ | B′′ = (B1 | B3) ./ (B2 | B4)
(Par -1 )

B′ = B1 ./ B4 B′′ = B3 ./ B2 B′ # B′′

B′ | B′′ = (B1 | B3) ./ (B2 | B4)
(Par -2 )

Figure 5.3: Behavioral Type Merge Relation Rules.
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B = B1 ./ B2

n : [B] = n : [B1] ./ n : [B2]
(MergeLoc) T = T ./ 0 (MergeZero-r)

B = B1 ./ B2 L = L1 ./ L2

L | B = L1 | B1 ./ L2 | B2
(MergeProc) T = 0 ./ T (MergeZero-l)

∀i∈1,2 Li = L+
i ./ L−

i dom(L1) # dom(L2)
L1 | L2 = L+

1 | L+
2 ./ L−

1 | L−
2

(MergeLocPar)
dom(L1) # dom(L2)
L1 | L2 = L1 ./ L2

(MergeApart)

Figure 5.4: Process Types Merge Relation Rules.

The type system relies on a merge relation between process types, which we define by lifting the
merge between behavioral types. We first define the domain of a process type.

Definition 5.2.21 (Domain of a Process Type)

The domain of a process type T , noted dom(T ), is defined as follows:

dom(T ) , {n | T ≡ T ′ | n : C}

Definition 5.2.22 (Process Types Merge Relation)

We say process type T is the merge of process types T1 and T2, noted T = T1 ./ T2, if T = T1 ./ T2

is derivable by the rules given in Figure 5.4.

We are thus able to characterize the behavioral composition of processes, explained by the merge
of their types. When such merges lead to a type that only specifies internal actions, we say that
the type is closed, since it has no open external dependencies.

Definition 5.2.23 (Closed Types)

We say type B is closed, noted closed(B), if for any message type (p ld(C)) such that (p ld(C)) ∈
MsgL(B) then either p = τ, or p = ? and l ∈ L? and B <: B′ | ? ? ld(C). We say type T is
closed, noted closed(T ), if for any type B such that T ≡ T ′ | n : [B] we have closed(B).

Closed behavioral types characterize processes that have matching receives for all sends. Closed
types are thus defined exclusively on messages of polarity τ, except for shared input ? message
types that are still open to match with further outputs.

In the next section we show how the conversation type language and associated operations,
characterize systems specified in the Conversation Calculus, so as to guarantee that processes
follow the conversation protocols prescribed by the types.

5.3 Type System

In this section we present the type system that associates conversation types to Conversation
Calculus systems. Using such type system we prove that if it is possible to type a CC system by
our rules, then such system enjoys some safety properties, namely it is free from a certain kind
of runtime errors, and also that its processes, at runtime, follow the protocols prescribed by the
types. At the end of the section we present the mechanically derived rules for the service-oriented
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idioms, showing that the derived typings actually correspond to the expected characterizations,
and type an example so as to illustrate how the rules work in a concrete setting.

A typing judgment has the form P :: T , which says that process P is well-typed with process
type T . This means that there is a derivation using our type rules for which P :: T is the
conclusion. We start by informally describing our typing rules, one for each construct of the
Conversation Calculus language, that allow us to generically characterize CC specifications.

The rule for parallel composition:

P :: T1 Q :: T2

P | Q :: T1 ./ T2

says the composition is well typed with the merge of the types of the branches. Recall the merge
explains the composition of two processes by synchronizing behavioral traces. The rule for the
inactive process:

0 :: ?L!

specifies that the process is well-typed with any exponential output located type, in such way
allowing for the process to be used in a context where a process that performs some service calls
is expected (cf., subtyping). The rule for the recursion variable also specifies such an exponential
output located type:

X :: ?L! | X

but also, and crucially, introduces a recursion variable at the level of the current conversation.
This recursion variable may then form the leaf of a (non-located) behavioral type, which is
captured by a recursive type B〈X 〉 in the premise of the recursion definition rule:

P :: ?L! | B〈X 〉
recX .P :: ?L! | recX .B〈X 〉

The recursive type will then specify some linear behavior which is to be sequentially activated
along with some exponential behavior. The body of the recursion may also specify an exponential
output located type, allowing for the process to perform calls to remote services. Recursive
processes specify the intended shared behavior using shared messages, in such way allowing
several instances of the (shared part) of the recursive process to be concurrently active — the
types of these several instances must be apart (#). The rule:

P :: T | a : [B] (closed(B), a 6∈ dom(T ))
(νa)P :: T

types the name restriction by checking the behavioral type of the restricted conversation is
closed, in such case eliding it in the conclusion of the rule. The type associated to a process only
describes the behaviors in the visible conversations, and the closed condition avoids hiding a
conversation name where unmatched communications still persist (necessary to ensure progress).

The following rule types a (piece of a) conversation:

P :: L | B fv(B) = ∅
n J [P ] :: (L ./ n : [�B]) | loc(�B)

The process located in the conversation piece P defines behavior located in conversations L, and
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some behavior B in the current conversation. Then, the type in the conclusion is obtained by
merging the process type L with a type that describes the behavior of the new conversation piece,
in parallel with the type of the toplevel conversation, the now current conversation. Essentially
the type of each projection (along the two directions) is collected appropriately: the “here”
behavior projection � B is the behavior in conversation n, and the “up” behavior projection �
of P becomes the “here” behavior at the toplevel conversation, via loc(�B). Rule:

P :: L | B1 | x : [B2] (x 6∈ dom(L))
this(x).P :: L | (B1 ./ B2)

gives the typing of the conversation awareness primitive, specifying that behavior B2 of conver-
sation x is a separate (in general, just partial) view of the current conversation. This allows to
bind the current conversation to name x, and possibly send it to other parties that may need to
join it. Names are sent in output action prefixes which are typed by the following rule:

P :: L | B

ld!(n).P :: (L ./ n : C) | �{! ld(C).B; B̃}

The continuation process P defines some located behavior L and some unlocated behavior B.
Then, the output prefix is typed by the merge of the delegated conversation fragment n : C

with the located behavior L, along with a choice type that includes the output action specified
in the prefix with respective continuation. Notice that the conversation fragment piece that is
delegated away is actually a separate ./ view of conversation n, which means that the type being
sent may actually be some separate part of the type of the conversation. This mechanism is
crucial to allow external partners to join in on ongoing conversations in a disciplined way. The
behavioral interface of the output prefixed process is a choice type, as the process can choose
the specified action from any set of choices that contains it. Notice also that the continuation is
given by the unlocated type in the premise (B), instead of being determined by a partial view
of the type of some conversation (as required in the typing of the output in the πlab-Calculus —
see Figure 3.6). In such way, the analysis is simplified as the rule does not depend on the merge
and, more importantly, the static sequentiality information introduced in the rule can always
be reproduced, even in the presence of name substitution (in the sense that if P :: L | B then
P{n/m} :: L′ | B).

The rule that types the input guarded summation is the following:

∀i∈I(Pi :: L | Bi | xi : Ci (xi 6∈ dom(L), ∀j 6=i li 6= lj))
Σi∈I ldi ?(xi).Pi :: L | Ni∈I{? ldi (Ci).Bi}

where the premises (one for each i ∈ I) state that processes Pi specify some located behavior
L, some current conversation behavior Bi, and some behavior Ci at conversation xi. Then, the
conclusion states that the input summation process is well-typed with type L, with the behavior
interface becoming the branch of the input message types ? ldi (Ci), where the argument type is
the type of the respective xi variable, with respective continuations. Notice that the located
behavior L must be common to all continuation processes (Pi), so as to allow for the external
interface of the guarded sum to be uniquely determined. Introducing some exponential behaviors
in the typing derivation at the level of the axioms (for inactive process and recursion variable)
can be useful here, as it allows for some branches that do not really use such exponential behavior
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P :: T1 Q :: T2

P | Q :: T1 ./ T2
(Par)

0 :: ?L!
(Stop)

P :: ?L! | B〈X 〉
recX .P :: ?L! | recX .B〈X 〉

(Rec)
X :: ?L! | X

(RecVar)

P :: T | a : [B] (closed(B), a 6∈ dom(T ))
(νa)P :: T

(Res)

P :: L | B (fv(B) = ∅)
n J [P ] :: (L ./ n : [�B]) | loc(�B)

(Piece)

P :: L | B1 | x : [B2] (x 6∈ dom(L))
this(x).P :: L | (B1 ./ B2)

(This)

P :: L | B

ld!(n).P :: (L ./ n : C) | �{! ld(C).B; B̃}
(Output)

∀i∈I(Pi :: L | Bi | xi : Ci (xi 6∈ dom(L), ∀j 6=i li 6= lj))
Σi∈I ldi ?(xi).Pi :: L | Ni∈I{? ldi (Ci).Bi}

(Input)

P :: T1 T1 <: T2

P :: T2
(Sub)

Figure 5.5: Typing Rules.

to share a common interface with branches that do make use of such exponential behavior.
Notice there is some asymmetry between the output and input rules: while we can safely

consider that the process can choose a given output in between any other choices, we cannot
forget any branches in the branch type, as this would allow undesired matches between choice
and branch types. If a process does not fully reveal all the behaviors if offers then, when
composed with a process that can actually choose the “forgotten” action, unexpected behaviors
may arise, i.e., behaviors not described by the type (cf., [35] where a similar problem arises
in contract compliance). Such flexibility of choice types is usually introduced at the level of
width subtyping for choice types. The reason we introduce the choice directly in the output rule
instead of specifying such a width subtyping axiom is due to the merge relation: as discussed in
Example 5.2.17 we do not allow shuffling in choice prefixes while we do allow it in simple message
prefixes, so we specify a priori the “final” type so as to avoid interference between subtyping
and merge. Subtyping characterizations are introduced by the subsumption rule:

P :: T1 T1 <: T2

P :: T2

We may now define our typing relation between CC systems and conversation types.

Definition 5.3.1 (Well-Typed CC Process)

We say a CC process P is well typed if there is process type T such that P :: T can be derived
by the rules given in Figure 5.5.

Next we show our results that prove that CC systems that get past our rules are free from a
certain kind of runtime errors, entailing that the prescribed protocols will be met at runtime.
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τ ld(C).B → B (RedTau)
B → B′

�{B; B̃} → B′
(RedChoice)

B1 → B2

n : [B1] → n : [B2]
(RedPiece)

T1 → T2

T1 | T3 → T2 | T3
(RedPar)

T → T (RedReflex )
T1 ≡ T ′

1 → T ′
2 ≡ T2

T1 → T2
(RedEquiv)

Figure 5.6: Process Types Reduction Rules.

5.3.1 Type Safety

In this section we show our type safety results that prove well-typed systems are free from a
specific class of errors, and that well-typedness is invariant under reduction, which thus entail
well-typed systems always evolve to error free configurations. Preservation of typing under
reduction — Subject Reduction — is defined using a notion of reduction on types, since each
reduction step at the process level may require a modification in the typing.

Definition 5.3.2 (Process Types Reduction)

We say process type T1 reduces to process type T2, noted T1 → T2, if T1 → T2 can be derived by
the rules given in Figure 5.6.

We can then explain a reduction in a process by reducing a τ message type, i.e., by activating
the continuation of a τ message type. Since some behavior may not visible in the type, namely
message exchanges in restricted conversations, we close the type reduction under reflexivity so
as to capture such silent evolutions. We may now state our soundness results, starting by a
weakening property of our typing associations.

Proposition 5.3.3 (Weakening)

Let P be a well-typed process such that P :: T . If exponential output located type ?L! is such that
T and ?L! are apart, hence T # ? L!, then P :: T | ? L!.

Proof. Follows by induction on the length of the derivation of P :: T in expected lines. Essentially
?L! is introduced at the level of the axioms (Stop) and (RecVar), and pushed down in the
derivation separately, being the independence guaranteed by T # ? L! (see Appendix A.3).

We now state a Substitution Lemma, main auxiliary result to Subject Reduction.

Lemma 5.3.4 (Substitution Lemma)

Let P be a well typed process such that P :: T | x : C and x 6∈ dom(T ). If there is T ′ such that
T ′ = T ./ a : C then P{x/a} :: T ′.

Proof. By induction on the length of the derivation of P :: T | x : C (see Appendix A.3).

The substitution lemma plays a crucial role in the proof of subject reduction. Synchronizations
allow for names to be passed around, so we need to make sure that once a variable is instantiated
by a name that the resulting system is still well-typed. The substitution lemma guarantees this,
provided the type of the delegated conversation fragment is “mergeable” with the overall type,
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a condition that is ensured by the process that is sending the name. We may now state our
subject reduction result.

Theorem 5.3.5 (Subject Reduction)

Let P be a well-typed process such that P :: T . If P → Q then there is T → T ′ such that Q :: T ′.

Proof. By induction on length of the derivation of P → Q (see Appendix A.3).

Subject reduction thus guarantees that well-typedness is invariant under process reduction.
Moreover, each reduction in a process is explained by a reduction in the type.

Our type safety result asserts that certain error processes are unreachable from well-typed
processes. To define error processes we introduce static process contexts and an auxiliary notion
that characterizes single output or input prefixed processes.

Definition 5.3.6 (CC Static Context)

CC static process contexts, noted C[·], are defined as follows:

C[·] ::= (νa)C[·]
∣∣ P | C[·]

∣∣ c J [C[·]]
∣∣ · (CC Static Context)

Definition 5.3.7 (CC Prefix Process)

We denote by ld−.P a prefix process that is ready to communicate on ld, defined as follows:

ld−.P ::= ld!(ã).P
∣∣ ld?(x̃).P (CC Prefix Process)

We consider an error process to be a configuration where there is an active race on a linear
message, which means two processes are willing to send or are waiting to receive the same
message. We thus characterize error processes by observing that two distinct parts of the
process can synchronize with the same message prefix.

Definition 5.3.8 (Error Process)

We say P is an error process if there are contexts C, C′, processes Q,R with P = C[Q | R],
direction d, and labels l, flag with l ∈ Lp and flag 6∈ fl(P ) such that:

C[Q | C′[ld−.flag�!()]] → C′′[flag�!()] and C[R | C′[ld−.flag�!()]] → C′′[flag�!()]

This characterization of error processes may be viewed, informally, as observational, since we
are testing the behavior of the process by allowing it to interact with a specially crafted context
(much like the proof methods used in barbed equivalences, cf., [85]). Thus, a process is not an
error only if for each possible immediate interaction in a plain message there is at most a single
sender and a single receiver. We now assert that well-typed systems are error free.

Proposition 5.3.9 (Error Freeness)

If P is a well-typed process then P is not an error process.

Proof. Follows by auxiliary results and by definition of merge (see Appendix A.3).

We thus conclude that any process reachable from a well-typed process P :: T is not an error.
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Corollary 5.3.10 (Type Safety)

Let P be a well-typed process. If there is Q such that P
∗→ Q, then Q is not an error process.

Proof. Immediate from Theorem 5.3.5 and Proposition 5.3.9.

Our type safety result ensures that, in any reduction sequence arising from a well-typed pro-
cess, for each plain-labeled message ready to communicate there is always at most a unique
input/output outstanding synchronization. More: arbitrary interactions in shared labels do not
invalidate this invariant. Another consequence of subject reduction (Theorem 5.3.5) is that any
message exchange inside the process must be explained by a τM prefix in the related conversa-
tion type (via type reduction), thus implying conversation fidelity, i.e., all conversations follow
the prescribed protocols.

Corollary 5.3.11 (Conversation Fidelity)

Let P be a process such that P :: T for some T . Then all conversations in P follow the protocols
prescribed by T .

Example 5.3.12 Consider for instance the typing for the purchase conversation presented in
the Introduction (Section 1.2.4):

τ buy(Tp).τ price(Tm).τ product(Tp).τ details(Td)

Such a (closed) type characterizes the global interaction scheme (the choreography) of the in-
teraction between parties Buyer, Seller and Shipper. In the light of Theorem 5.3.5 we then have
that each interaction in the process is explained by a reduction of a τ message type. For instance,
when message buy is exchanged between Buyer and Seller, such synchronization in the process
is explained by the following reduction in the type:

τ buy(Tp).τ price(Tm).τ product(Tp).τ details(Td)
→
τ price(Tm).τ product(Tp).τ details(Td)

after which the synchronization in message price is explained by the following type reduction:

τ price(Tm).τ product(Tp).τ details(Td)
→
τ product(Tp).τ details(Td)

and so on and so forth in the successive synchronizations. Thus, the type reductions actually
capture the evolution of the choreographies throughout system execution.

In the expected polyadic extension of core CC and type system, considering also basic values
and basic types, we would also exclude arity mismatch and type mismatch errors.

Remark 5.3.13 Extending the conversation type language with basic types at the level of ar-
gument message types (e.g., C ::= [B]

∣∣ Int ∣∣ String ∣∣ . . . ) would directly allow us to exclude
systems where message argument types mismatch (via conformance � and merge ./). To type
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identifiers which carry basic types we would impose a conformance check — such identifiers are
always used with the same type — and exclude their use as conversation names.

Remark 5.3.14 A result which is frequently found in related approaches is Subject Congruence:
well-typedness is invariant under structural congruence. Since our operational semantics does
not rely on structural congruence we do not prove this result. In fact, under the structural rules
introduced in Section 4.4.2 and the typing analysis presented here, where we exploit the syntactic
information about the current conversation, the result does not hold.

An essential property of any type system is the ability to automate the type checking pro-
cedure. Although we have not yet fully addressed the implementation issues, we may already
state a crucial property that asserts the existence of such a type checking procedure.

Theorem 5.3.15 (Decidability of Type Checking)

Let P be a process where all bound names are type annotated. Then checking if P :: T for some
T is decidable.

Proof. By induction on the derivation of P :: T , following expected lines (See Appendix A.3).

We prove decidability of our system, if binders are type annotated. This is an expected
result, since our typing rules are syntax-directed, our merge relation is finitary, and typability
is witnessed by a proof tree (as usual).

5.3.2 Derived Typings for Service Idioms

In this section we present the typing for the service-oriented idioms. Since such idioms are
defined using lower-level communication primitives, the typing rules for the idioms are not
primitive, instead they may be mechanically derived from the typing of the idioms lower-level
implementation. We recall the implementations (defined in Section 4.5) and show the derived
typing rules. The service definition is implemented as follows:

def s ⇒ P , s�?(x).x J [P ] (x 6∈ fv(P ))

we then have the following typing derivation using rules (Piece) and (Input):

P :: L | B (x 6∈ dom(L))

x J [P ] :: L | x : [�B] | loc(�B)
s�?(x).x J [P ] :: L | ? s�([�B]).(loc(�B))

where we may assume, without any loss of generality, that x is not in the domain of L since it
is not a free variable of P . We thus have the following typing for the service definition:

P :: L | B

def s⇒ P :: L | ? s�([�B]).(loc(�B))

Ignoring the continuation loc(�B), which describes the access to resources local to the context
where the service is published at, the type of a service definition def has the form ? s([B]), where
B describes the service provider behavior in the service collaboration.

124



The implementation for the persistent service definition is as follows:

?def s ⇒ P , recX .s�?(x).(X | x J [P ]) (x 6∈ fv(P ))

The typing rule for the persistent service definition is the following:

def s ⇒ P :: ?L! | ? s�(C).(?B!)
?def s ⇒ P :: ?L! | recX .? s�(C).(?B! | X )

which is mechanically derived as follows:

X :: X
P :: L | B (x 6∈ dom(L))

x J [P ] :: L | x : [�B] | loc(�B)
X | x J [P ] :: L | x : [�B] | loc(�B) | X

s�?(x).(X | x J [P ]) :: L | ? s�([�B]).(loc(�B) | X ) (?B! = loc(�B), ?L! = L)
recX .s�?(x).(X | x J [P ]) :: ?L! | recX .? s�([�B]).(?B! | X )

Notice that recX .? s�(C).(?B! | X ) <: ?B! | ? ? s�(C). Then, when we place such a persistent
service in its respective conversation we may obtain the following typing characterization:

?def s ⇒ P :: ?L! | ? B! | ? ? s�(C)
n J [?def s ⇒ P ] :: ?L! ./ (n : [?B! | ? ? s�(C)])

The merge in the conclusion thus allows, for instance, to capture the case of a service that calls
itself, in which case the merge introduces a τ in the service call specified in ?L!, as the result
of merging it with n : [?? s�(C)]. Also, the compatibility (conformance �) between the service
calls in ?L! and in n :

[
?B!

]
is checked via the merge.

For the service instantiation idiom we have the following implementation:

new n · s ⇐ P , (νc)(n J
[
s�!(c)

]
| c J [P ]) (c 6∈ (fn(P ) ∪ {n}))

for which we have the following typing derivation (by rules (Output), (Piece), (Par) and (Res)):

s�!(c) :: c : [B1] | ! s�([B1])

n J [s�!(c)] :: c : [B1] | n : [! s�([B1])]

P :: L | B2

c J [P ] :: L | c : [�B2] | loc(�B2)

n J [s�!(c)] | c J [P ] :: (L ./ n : [! s�([B1])]) | c : [B1 ./�B2] | loc(�B2) closed(B1 ./�B2)

(νc)(n J [s�!(c)] | c J [P ]) :: (L ./ n : [! s�([B1])]) | loc(�B2)

Thus, the service instantiation primitive is typed as follows:

P :: L | B2 (closed(�B2 ./ B1))
new n · s ⇒ P :: (L ./ n : [! s�([B1])]) | loc(�B2)

The type for a service instantiation is of the form ! s([B]), where B describes the compatible
server behavior. However, such type must be located at some context n, cf. the semantics
of new. Notice that the output on the service message at n is merged with the located type
L. This is necessary since P may specify behavior at n, in particular it may specify other
calls to service s which, via ./, are checked to be conformant �. Also, P itself may publish
the required service, in which case a possible synchronization is captured in the merge — P is
actually running in parallel to the service instantiation request. Although this is not the intended
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P :: L | B

def s⇒ P :: L | ? s�([�B]).(loc(�B))
(Def )

def s ⇒ P :: ?L! | ? s�(C).(?B!)
?def s ⇒ P :: ?L! | recX .? s�(C).(?B! | X )

(RepDef )

P :: L | B2 (closed(�B2 ./ B1))
new n · s ⇒ P :: (L ./ n : [! s�([B1])]) | loc(�B2)

(New)

P :: L | B2

join n · s ⇐ P :: (L ./ n : [! s�([B1])]) | B1 ./ B2
(Join)

Figure 5.7: Service Idioms Derived Typing Rules.

usage, it is not excluded by the typing, but it could be easily be so by an extra condition (e.g.,
n : [! s�(B1)] # L). The implementation of the conversation join is given as follows:

join n · s ⇐ P , this(x).(n J
[
s�!(x)

]
| P ) (x 6∈ (fv(P ) ∪ {n}))

We have the following typing for the conversation join idiom:

P :: L | B2

join n · s ⇐ P :: (L ./ n : [! s�([B1])]) | B1 ./ B2

which is derived as follows (using rules (Output), (Piece), (Par) and (This)):

s�!(x) :: x : [B1] | ! s�([B1])

n J [s�!(x)] :: x : [B1] | n : [! s�([B1])] P :: L | B2

n J [s�!(x)] | P :: (L ./ n : [! s�([B1])]) | x : [B1] | B2

this(x).(n J [s�!(x)] | P ) :: (L ./ n : [! s�([B1])]) | B1 ./ B2

The typing for join clearly displays the partial delegation of a conversation type fragment: B1

represents the conversation type defining the participation of the incoming partner, while B2

specifies the residual that remains owned by the current process.
We group the rules in Figure 5.7. We have thus shown how these rules can be mechanically

derived from the typings of the encodings. Remarkably, the typings of these idiomatic constructs,
defined from the small set of primitives in the core CC, admit the intended high level typings.

5.3.3 Typing Examples

Finance Portal

In order to show how conversation types deal with complex realistic scenarios we show the typings
for the Finance Portal example, which involves an a priori undetermined number of parties. In
the example we model a credit request scenario, involving several parties that collaborate so as
to grant or not a credit to a costumer. The interaction is mediated by a bank portal, which
asks a bank clerk to join the ongoing interaction at some point, after which it is either able to
authorize the credit automatically or delegates the final decision to a bank manager.

In the following we assume the extension of the language and type system with basic values
and basic types, respectively, and we represent the latter by a T (T1, T2, . . .). We recall the
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implementation given for the CreditTransfer service, which is ultimately called in the credit
request service collaboration so as to schedule the money transfer.

BankATMProcess ,
BankATM J [ BankATMServer

| ? def CreditTransfer⇒

CreditTransferBody ,


orderTransfer�?(userId , amount).
transferDate�?(date).
scheduleTransfer�!(userId , amount , date) ]

The body of the persistent service definition is typed as follows:

CreditTransferBody ::
? orderTransfer�(T1, T2).? transferDate�(T4).! scheduleTransfer�(T1, T2, T4)

for some basic types T1, T2 and T4. The CreditTransfer service will then be typed with the �
projection of the above type, namely:

? orderTransfer�(T1, T2).? transferDate�(T4)

while the interface of the service with the enclosing conversation is typed by the � projection:

! scheduleTransfer�(T1, T2, T4)

Since scheduleTransfer is specified in the interface of a persistent service it must be the case
that it is a shared label (from L?), otherwise we would not be able to type it, thus we have:

! scheduleTransfer�(T1, T2, T4) <: ?! scheduleTransfer�(T1, T2, T4)

We may then type the service definition as follows:

?def CreditTransfer⇒ CreditTransferBody ::
?? CreditTransfer(? orderTransfer�(T1, T2).? transferDate�(T4))
| ?! scheduleTransfer�(T1, T2, T4)

Notice that scheduleTransfer is now directed to the current � conversation — the up � interface
of the body of a service definition is the here � interface of the service definition (service message
aside). The above typing makes use of subtyping rules (SubParPref ) and (SubExpRec), so as to
allow for the exponential output interface of the recursive type to be specified separately:

recX .? CreditTransfer(? orderTransfer�(T1, T2).? transferDate�(T4)).
(?! scheduleTransfer�(T1, T2, T4) | X )

<:
recX .(? ?! scheduleTransfer�(T1, T2, T4)

| CreditTransfer(? orderTransfer�(T1, T2).? transferDate�(T4)).X )
<:
recX .? CreditTransfer(? orderTransfer�(T1, T2).? transferDate�(T4)).X
| ?! scheduleTransfer�(T1, T2, T4)
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Considering BankATMServer — which implementation we abstract away from — is a process
ready to persistently receive scheduleTransfer messages, as characterized by: BankATMServer ::
?? scheduleTransfer�(T1, T2, T4) then, we have the following typing for the BankATMProcess:

BankATMProcess ::
BankATM : [?? CreditTransfer(? orderTransfer�(T1, T2).? transferDate�(T4))

| ?τ scheduleTransfer�(T1, T2, T4) | ?? scheduleTransfer�(T1, T2, T4)]

where the τ scheduleTransfer results from the merge of the output ! and input ? polari-
ties. Since the message is shared, the merge leaves open the possibility for the input to match
with other outputs (notice the input ? message type is still present). We thus have that the
BankATMProcess publishes service CreditTransfer at conversation BankATM , which, once in-
stantiated, will receive messages orderTransfer and transferDate in the service conversation.
Also, the BankATMProcess internally exchanges messages scheduleTransfer in the BankATM
conversation, being open to receive further scheduleTransfer messages.

We now show the code for the CreditApproval service, where we consider that process
ManagerTerminal is somehow able to interact with the manager, e.g., via a computer terminal.

ManagerProcess ,
Manager J [ManagerTerminal

| ? def CreditApproval⇒
requestApproval�?(clientChat , userId , amount , risk).
this(managerChat).showRequest�!(managerChat , userId , amount , risk).

(reject�?().clientChat J [ requestDenied�!() ]
+accept�?().clientChat J [

requestApproved�!().
join BankATM · CreditTransfer⇐

orderTransfer�!(userId , amount) ] ]

The code implements a service which handles the final acceptance of a credit request by a bank
manager. The service code specifies that message requestApproval is received, containing some
data of the credit request and also the name of the conversation in which the bank client will
be notified of the manager decision (clientChat). Then, message showRequest is sent to the
ManagerTerminal process, containing the name of the current conversation (managerChat), ac-
cessed via the this. In such way, the ManagerTerminal process may reply (by sending either
message reject or accept) directly in the respective CreditApproval service instance conver-
sation. Although several showRequest messages may race in conversation Manager , as there
may be several copies of the service running concurrently, we do not intend for the replies to such
messages to compete in conversation Manager as they would be possibly be picked up by some
unrelated service instance. Thus, to guarantee that such replies are handled by their respective
service instances, they are directly placed in the respective conversations.

After receiving the decision of the manager, the service instance then informs the client
on the final decision by sending either message requestDenied or message requestApproved,
in the conversation received in the requestApproval message identified by clientChat . In the
latter case, the BankATM · CreditTransfer service is called in to collaborate in the clientChat
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conversation, and an orderTransfer message is sent to place the order for the money transfer.
Thus, the role of the manager in the client conversation is characterized by the following type:

managerRole ,
�{! requestApproved�().τ orderTransfer�(T1, T2).? transferDate�(T4);

! requestDenied�()}

where, in the case of the requestApproved choice, the behavior results from the merge of the
rest of the manager role in the client conversation with the type of the CreditTransfer service
(at the level of the typing of the this used in the implementation of the join):

! orderTransfer�(T1, T2). ./ ? orderTransfer�(T1, T2).? transferDate�(T4)

The CreditApproval service is characterized by the type:

creditApprovalB ,

? requestApproval�(managerRole, T1, T2, T3).�{τ reject�(); τ accept�()}

which specifies the reception of a requestApproval message, carrying a conversation identifier in
which the manager behaves as specified by managerRole, after which proceeding as the internal
choice between messages reject and accept. We may then type the ManagerProcess as follows:

ManagerProcess ::
Manager : [?? CreditApproval�(creditApprovalB)

| ?? showRequest�(�{! reject�(); ! accept�()}, T1, T2, T3)
| ?τ showRequest�(�{! reject�(); ! accept�()}, T1, T2, T3)]

| BankATM : [?! CreditTransfer�(? orderTransfer�(T1, T2).? transferDate�(T4))]

which specifies that CreditApproval service is published (?) at conversation Manager , and
that service CreditTransfer is required (!) at conversation BankATM . The type also spec-
ifies that some showRequest messages may be exchanged in conversation Manager , carrying
a conversation identifier in which the delegated behavior is characterized by the choice type
�{! reject�(); ! accept�()} — characterizing the role of the ManagerTerminal process in the
CreditApproval conversation.

Next we show the code of the CreditRequest service published at the BankPortal context.

BankProcess ,
BankPortal J [

? def CreditRequest⇒
request�?(userId , amount).
join Clerk · RiskAssessment⇐

assessRisk�!(userId , amount).
riskVal�?(risk).
if risk = HIGH then requestDenied�!()
else this(clientChat).

new Manager · CreditApproval⇐
requestApproval�!(clientChat , userId , amount , risk) ]
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The CreditRequest service mediates the interaction between the bank client, the bank clerk
and the bank manager. After receiving the credit request data in message request, the bank
clerk is asked to join the conversation, through the join of service RiskAssessment, so as to
determine the risk factor of the credit request. The clerk collaboration is achieved by means
of the exchange of messages assessRisk and riskVal — we abstract away from the imple-
mentation of the RiskAssessment service, and assume its behavior is characterized by type
? assessRisk�(T1, T2).! riskVal�(T3). Depending on the risk factor, the CreditRequest ser-
vice may either decide automatically to reject the credit request, or it delegates the decision to
the bank manager, via the instantiation of service CreditApproval. We assume the extension
of the typing rules with the following rule for the if statement:

P :: T Q :: T cond : bool
if cond then P else Q :: T

Thus, to type the particular if statement in the service code, both branches must have the same
type. We may type the then process as follows:

requestDenied�!() ::
�{! requestDenied�();

! requestApproved�().τ orderTransfer�(T1, T2).? transferDate�(T4)}

which is the type we identified with managerRole, hence requestDenied�!() :: managerRole
(recall that the output is typed in any choice that contains the given output). We then have
the following typing, considering the weakening property (Proposition 5.3.3):

requestDenied�!() :: managerRole | Manager : [?! CreditApproval�(creditApprovalB)]

The else process is typed via the rule for the this construct. We first show the typing for the
continuation process which instantiates the CreditApproval service:

requestApproval�!(clientChat , userId , amount , risk) ::
! requestApproval�(managerRole, T1, T2, T3)) | clientChat : [managerRole]

closed(creditApprovalB ./ ! requestApproval�(managerRole, T1, T2, T3))

new Manager · CreditApproval⇐ requestApproval�!(clientChat , userId , amount , risk) ::
Manager : [?! CreditApproval�(creditApprovalB)] | clientChat : [managerRole]

where we have that the CreditApproval service conversation is characterized by a closed type,
and that the clientChat conversation fragment delegated in the requestApproval is character-
ized by type managerRole. We then have the following typing for the this:

new Manager · CreditApproval⇐ requestApproval�!(clientChat , userId , amount , risk) ::
Manager : [?! CreditApproval�(creditApprovalB)] | clientChat : [managerRole]

this(clientChat).(· · · ) :: Manager : [?! CreditApproval�(creditApprovalB)] | managerRole

where the type in the current conversation in the conclusion (managerRole) results from the
merge of the behavior specified for the clientChat conversation and the behavior in the current
conversation in the premise (in this case managerRole and 0 respectively, hence managerRole ./

0). We thus have that the type of the if statement is the type of the then and else branches.
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Considering the type of service RiskAssessment is ? assessRisk�(T1, T2).! riskVal�(T3) we
have the following merge at the level of the join of the RiskAssessment service:

τ assessRisk�(T1, T2).τ riskVal�(T3).managerRole =
? assessRisk�(T1, T2).! riskVal�(T3) ./ ! assessRisk�(T1, T2).? riskVal�(T3).managerRole

We then have that the behavior of the CreditRequest service is captured by the following type:

creditRequestB , ? request�(T1, T2).τ assessRisk�(T1, T2).τ riskVal�(T3).managerRole

and we have the following typing for the BankProcess:

BankProcess :: BankPortal : [?? CreditRequest�(creditRequestB)]
| Clerk : [?! RiskAssessment�(? assessRisk�(T1, T2).! riskVal�(T3))]
| Manager : [?! CreditApproval�(creditApprovalB)]

which specifies that the BankProcess publishes service CreditRequest, with type creditRequestB ,
at conversation BankPortal , and requires services RiskAssessment and CreditApproval to be
available at conversations Clerk and Manager , respectively.

Finally we recall the implementation of the bank client:

ClientProcess ,
Client J [

ClientTerminal
|
new BankPortal · CreditRequest⇐

CreditRequestBody


request�!(myId , amount).

(requestApproved�?().transferDate�!(date).approved�!()
+
requestDenied�?().denied�!()) ]

The code specifies the instantiation of service CreditRequest, at conversation BankPortal , after
which a request message is sent and a notification of the bank’s decision is received (either
message requestApproved or requestDenied). Afterwards the ClientTerminal is notified of
the credit request acceptance or rejection (� directed messages approved and denied). In case
the credit is accepted, and before notifying the ClientTerminal process, the service instance code
specifies that a transferDate message is sent containing the date of the money transfer. The
typing for the body of the CreditRequest service instantiation is as follows:

CreditRequestBody ::
! request�().

N{? requestApproved�().! transferDate�().! approved�();
? requestDenied�().! denied�()}

which specifies the output of message request, then a branching that depends upon the reception
of message requestApproved or requestDenied, where the process proceeds in the former case
by sending messages transferDate and approved, and in the latter case by sending message
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denied. Notice that approved and denied messages are directed to the enclosing conversation
and will be exchanged with the ClientTerminal process. So to determine the client role in the
service conversation we must project the type in the � direction, which yields type:

! request�().N{? requestApproved�().! transferDate�();
? requestDenied�()}

Instead to characterize the interaction with the ClientTerminal process we must project the
CreditRequestBody type in the � direction, which yields type: �{! approved�(); ! denied�()}.
So, the service instance actually supplies the external environment (the Client conversation)
with a choice of one out of two actions that inform on the credit acceptance.

The CreditRequest service conversation is characterized by the type obtained from the
merge of the service type with the type of the client’s role in the interaction. The service type:

creditRequestB ,
? request�(T1, T2).τ assessRisk�(T1, T2).τ riskVal�(T3).

�{! requestApproved�().τ orderTransfer�(T1, T2).? transferDate�(T4);
! requestDenied�()}

merged with the client’s role in the interaction:

! request�().N{? requestApproved�().! transferDate�();
? requestDenied�()}

yields the following characterization of the service conversation, a closed type:

creditConversation ,
τ request�().τ assessRisk�().τ riskVal�().

�{τ requestApproved�().τ orderTransfer�().τ transferDate�();
τ requestDenied�()}

which leads to the following typing of the ClientProcess:

ClientProcess ::
Client : [�{τ approved�(); τ denied�()}]
| BankPortal : [! CreditRequest�(creditRequestB)]

which then specifies the internal choice in the Client conversation — assuming the type of
the ClientTerminal process is N{? approved�(); ? denied�()} — and the CreditRequest service
instantiation at conversation BankPortal .

Composing the several processes involved in the system we obtain the typing given in Fig-
ure 5.8, which characterizes the several message exchanges internal to the system (where the
shared input message types are left open to match with further outputs from the external envi-
ronment). Notice that the type is not closed since an unmatched RiskAssessement service call
is still present. If we were to place this system in parallel with a ClerkProcess typed as:

ClerkProcess ::
Clerk : [?? RiskAssessment�(? assessRisk�(T1, T2).! riskVal�(T3))]
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ClientProcess | BankProcess | ManagerProcess | BankATMProcess ::
Client : [�{τ approved�(); τ denied�()}]
| BankPortal : [τ CreditRequest�(creditRequestB)]
| BankPortal : [?? CreditRequest�(creditRequestB)]
| Clerk : [?! RiskAssessment�(? assessRisk�(T1, T2).! riskVal�(T3))]
| Manager : [?τ CreditApproval�(creditApprovalB)]
| Manager : [?? CreditApproval�(creditApprovalB)

| ?? showRequest�(�{! reject�(); ! accept�()}, T1, T2, T3)
| ?τ showRequest�(�{! reject�(); ! accept�()}, T1, T2, T3)]

| BankATM : [?τ CreditTransfer�(? orderTransfer�(T1, T2).? transferDate�(T4))]
| BankATM : [?? CreditTransfer(? orderTransfer�(T1, T2).? transferDate�(T4))

| ?τ scheduleTransfer�(T1, T2, T4) | ?? scheduleTransfer�(T1, T2, T4)]

Figure 5.8: Credit Request Example Typing.

Client J [
new NewsSite · Newsfeed⇐

rec X .post?(info).X ]
|
NewsSite J [

?def Newsfeed⇒
rec X .join NewsPortal · NewsService⇐ X ]

|
BBC J [

NewsPortal J [
?def NewsService⇒ post!(info) ] ]

|
CNN J [

NewsPortal J [
?def NewsService⇒ post!(info) ] ]

Figure 5.9: The Newsfeed Conversation CC Code.

we would then obtain a system characterized by a closed type.

The Newsfeed Conversation

Our next example shows a scenario where an unbounded number of parties may join a single
conversation. We consider a Newsfeed service that, upon instantiation, asks an undetermined
number of news service providers to join the conversation. Each one of the news service providers
that join the conversation send a message post (containing some news information) that is picked
up by the Newsfeed service client.

The CC implementation of this scenario is given in Figure 5.9. We define two particular news
service providers (BBC and CNN ) but the system is open to an unbounded number of such
news providers. Notice that the Newsfeed service code continuously calls external news services
to join in the conversation, and, in particular, countless copies of BBC and CNN news services
may get to join the conversation. Notice also that the Newsfeed service client is continuously
able to receive post messages, regardless of who is sending them.

The conversation types that capture the Newsfeed interaction are shown in Figure 5.10. The
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NewsfeedConversationT , ?? post(infoT ) | ?τ post(infoT )
NewsfeedClientT , ?? post(infoT )
NewsfeedServiceT , ?! post(infoT )
NewsServiceT , ! post(infoT )

Client :: NewsSite : [! Newsfeed([NewsfeedServiceT ])]

NewsSite :: NewsSite : [?? Newsfeed([NewsfeedServiceT ])]
| NewsPortal : [?! NewsService([NewsServiceT ])]

BBC :: NewsPortal : [?? NewsService([NewsServiceT ])]

CNN :: NewsPortal : [?? NewsService([NewsServiceT ])]

NewsfeedSystem
::
NewsSite : [τ Newsfeed([NewsfeedServiceT ]) | ?? Newsfeed([NewsfeedServiceT ])]
|
NewsPortal : [?τ NewsService([NewsServiceT ]) | ?? NewsService([NewsServiceT ])]

Figure 5.10: The Newsfeed System Typing.

type of the Newsfeed conversation (given by NewsfeedConversationT ) says that infinitely many
post messages are exchanged, and that the system is still open to receive further post messages.
Type NewsfeedConversationT is split in the types of the Newsfeed client and provider, where
the first specifies the reception and the second the emission (both infinitely many times) of
message post. The contribution of each NewsService is characterized by type NewsServiceT
which specifies the output of a single post message.

The typings of the four participants individually specify that: the Client expects a Newsfeed

service is available at conversation NewsSite; the NewsSite publishes a Newsfeed service and uses
(an infinite number of times) service NewsService available at conversation NewsPortal ; both
BBC and CNN publish NewsService in conversation NewsPortal . The typing for the whole
system (NewsfeedSystem) specifies the interactions in services Newsfeed and NewsService in
conversations NewsSite and NewsPortal , respectively.

5.4 Remarks

Our work shares the same goals of recent developments on multiparty session types, namely the
works of Honda et al. [57], Bettini et al. [9] and of Bonelli et al. [11]. To support multiparty in-
teraction, [57] considers multiple session channels, while [9] considers a multiple indexed session
channel, both resorting to multiple communication pathways. We follow an essentially different
approach, by letting a single medium of interaction support concurrent multiparty interaction
via labeled messages. In [9, 57] sessions are established simultaneously between several parties
through a multicast session request. As in binary sessions, session delegation is full — a dele-
gating party loses access to the delegated session — so the number of initial participants is kept
invariant, unlike in conversations where parties can keep joining in.

The approach of [9, 57] builds on two-level descriptions of service collaborations (global and
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local types), first introduced in a theory of endpoint projection [30]. The global types mention
the identities of the communicating partners, being the types of the individual participants
projections of the global type with respect to these annotations. Our merge operation ./ is
inspired by the idea of projection [30], but we follow a different approach where “global” and
“local” types are treated at the same level in the type language and types do not explicitly
mention the participants identities, so that each given protocol may be realized by different sets
of participants, provided that the composition of the types of the several participants produces
(via ./) the appropriate invariant. Our approach thus supports conversations with a dynamically
changing number of partners and ensures a higher degree of loose-coupling. We do not see how
this could be encoded in the approaches of [9, 57], neither in the approach of [11] to which we can
draw a comparison in similar lines and that, moreover, does not seem fit to address decentralized
settings since it relies on a one-to-all interaction pattern. On the other hand, we believe that
core CC with conversation types can express the same kind of systems as [9, 11, 57].

We view our approach as being more fundamental, with respect to most session-types pre-
sentations (including the cited multiparty works), since we are able to accommodate service
creation operations as mere programming idioms in the model and avoid their introduction
as primitive operations. Such service-oriented operations, implemented via lower-level message
passing, admit typing characterizations mechanically derived from the typings of the lower-level
implementations, that closely correspond to the expected typings. We are also able to implement
and type the conversation join idiom, which we do not see how to represent in existing session-
type approaches. We do not claim that our particular implementations for the service-oriented
idioms are the best possible implementations, however, we believe that they serve as a proof of
concept that such idioms can be represented and typed in a more general setting.

As most behavioral type systems (see [37, 58]), we describe a conversation behavior by some
kind of abstract process. However, fundamental ideas behind the conversation type structure, in
particular the composition/decomposition of behaviors via merge, as captured, e.g., in the typing
rule for parallel composition, and used to model delegation of conversation fragments, have not
been explored before. The work of Igarashi et al. [58], in particular, introduces a generic typing
framework for π-Calculus systems. Although we do not see how π-Calculus specifications can
support (linearly paired) multiparty interactions, we nevertheless comment on some connections.
The approach is based on a (parametric) notion of an ok predicate that typings must respect,
namely the type of a restricted name, which must be invariant under reduction. It may be
argued that our closed predicate resembles such an ok predicate, being also invariant under
reduction. Conceivably, there might be instances of the generic framework of [58] (although we
are aware of none) that can address the sort of properties we address, not considering the merge
of behaviors as we do, and keeping a “raw” type structure that is subject to some posterior
analysis to check all the synchronizations are closed. However, it does not seem an easy task to
develop an ok predicate which captures this notion, while being invariant under reduction. To
substantiate this claim, consider the following process:

(νsession)
( speak!(session) | listen!(session) )
|
speak?(x ). listen?(y). x J [ hi!(). y J [ hi?() ] ]
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The processes on top are willing to send the same channel name session in messages speak and
listen. The process on the bottom specifies the reception of two names in such messages, and
then specifies an output over the conversation which name is received first (x), and afterwards
an input over the conversation which name is received second (y). The names received are typed
as x : [! hi()] and y : [? hi()]. Therefore, we have the following typing for conversation session
when analyzing the processes on top:

speak!(session) | listen!(session) :: session : [τ hi()] | . . .

where the τ results from the merge ! hi() ./ ? hi(). Instead, adopting a typing strategy such
as the one of [58] we type session with ! hi() | ? hi(). A possible ok predicate might then say
“type ! hi() | ? hi() is ok since we can synchronize the actions and reduce it to the inaction
type”. However, the system evolves, in two steps, to the configuration:

session J [ hi!(). session J [ hi?() ] ]

where we recover the same conversation type as before via the merge in the conclusion of rule
(Piece):

hi!(). session J [ hi?() ] :: ! hi() | session : [? hi()]
session J [ hi!(). session J [ hi?() ] ] :: session : [! hi()] ./ session : [? hi()]

thus allowing for closed to still hold at the level of the restriction, while in the typing strategy
of [58] we obtain a type that specifies the two actions in sequence, e.g.,:

session J [ hi!(). session J [ hi?() ] ] :: session : [! hi().? hi()]

where the type of session is not ok as it does not reduce to inaction (it does not reduce at all),
so this informally described ok predicate does not seem invariant under reduction. Although
the typing description that best fits the process is perhaps the second alternative (the process is
indeed deadlocked), this example illustrates the flexibility introduced by the merge in our typing
characterizations. In fact, similar kind of examples are found in the session types literature to
justify heavy restrictions to analysis techniques that address progress properties (namely, the
continuation of an input uses exclusively the received name — see [40, 80]), showing that this
sort of scenarios are, in general, not easy to deal with.

Without this flexibility we would not be able to address some of the challenging scenarios
discussed, where conversation fragments are passed around in messages in a flexible way, and
therefore we do not see how our approach could be reproduced in an instance of [58]. Naturally,
we would prefer to exclude such deadlocked systems in the type system directly, but not at the
cost of losing our generality. To address the deadlock absence issue in particular, we introduce
a complementary technique to the conversation type system that singles out CC systems that
enjoy a progress property, described in the next chapter.
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Chapter 6

Proving Progress of Conversations

In this section we present the progress proof system, an analysis technique we introduced
in [27, 28] so as to guarantee systems enjoy a progress property. While the conversation type
system allows us to guarantee that conversations follow the prescribed protocols, it is not enough
to guarantee that the systems do not get stuck, due to, for instance, communication dependen-
cies between distinct conversations. We start by presenting the main ideas behind our analysis
technique that allow us to address challenging configurations that fall out of scope of other ap-
proaches, then we present the technical artifacts that instantiate these ideas so as to characterize
systems that have a lock-free communication structure — namely, event orderings. We proceed
by showing a proof system that associates Conversation Calculus processes to event orderings
that then allows us to characterize their communication dependency structure, and show the
results that can be proved for processes characterized by such event orderings. For the sake of
illustration we show an example derivation in our proof system. Also, we show how our tech-
nique can be used over systems modeled in πlab-Calculus, so as to demonstrate the generality of
the approach. At the end of the chapter we present some remarks on related work.

6.1 Progress of Dynamic Conversations

In this section, we present the main ideas behind our proof system, developed so as to enforce
progress properties on systems. As most traditional deadlock detection methods (e.g., see [40,
63, 73, 98]), we build on the construction of a well-founded ordering on events.

Consider the following example of a stuck system:

chatA J [ hello!(). chatB J [ hello!() ] ] | chatB J [ hello?(). chatA J [ hello?() ] ]

Although the conversation protocols — captured by the conversation type τ hello() for both
chatA and chatB — are followed, the system is stuck since the dependencies between the two
conversations are exercised inversely by the two parallel processes. By looking at the process on
the left hand side we conclude that the exchange of message hello in conversation chatB can
only take place after the exchange of message hello in conversation chatA. On the other hand,
the process on the right hand side tells us the exact inverse order: the exchange of message hello
in conversation chatA can only take place after the exchange of message hello in conversation
chatB . Therefore, we cannot order the message exchanges — events — in a well-founded way.

If we were to state that the exchange of message hello in conversation chatA comes first, and
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only afterwards the exchange of message hello in conversation chatB can take place, which we
capture by saying event chatA.hello is smaller than event chatB .hello, then we would exclude
the process on the right hand side (and consequently, we would also exclude the whole system) as
it does not respect the predefined ordering of events. The key process construct where we must
verify such orderings are respected is the prefixed process, since the action prefix is blocking
all the actions in its continuation, and therefore inducing an ordering. Intuitively, we need to
make sure that if a prefix is blocking some action A then it better be the case that action A

is not blocking the dual action of the prefix, otherwise the system is stuck. In other words, we
need to verify that the events specified in the continuation of a prefix are of greater rank with
respect to the event relative to the prefix itself. In the example above, considering the ordering
chatA.hello ≺ chatB .hello, we can verify that the process:

chatA J [ hello!(). chatB J [ hello!() ] ]

is well ordered since the event in the continuation (chatB .hello) is of greater rank with respect
to the event relative to the prefix (chatA.hello). On the other hand, the process:

chatB J [ hello?(). chatA J [ hello?() ] ]

is not well ordered as the event in the continuation (chatA.hello) is of lesser rank with respect
to the event relative to the prefix (chatB .hello).

This example already allowed us to introduce the basic idea behind our approach, which is
to verify the events in a process can be ordered in a well-founded way. Since we are typically
interested in more challenging configurations, let us look at the purchase service collaboration
(considering the translation of the service-oriented idioms to their lower-level implementations):

Buyer J [ (νc)(Seller J [ BuyService�!(c) ] | c J [ buy�!(prod).price�?(p).details�?(d) ] ]

|
Seller J [ PriceDB |

BuyService�?(x).x J [ buy�?(prod).askPrice�!(prod).
priceVal�?(p).price�!(p).
this(y).( Shipper J [ DeliveryService�!(y) ]

| product�!(prod) ) ] ]

|
Shipper J [ DeliveryService�?(z).z J [ product�?(p).details�!(data) ] ]

The code models a three-party purchase collaboration, where the seller party actually interleaves
the service conversation (x) with conversation Seller , to access the resource database, and
with conversation Shipper so as to allow for it to join the ongoing service conversation. The
challenge here is how to statically account for the orderings of events on conversations which
will only be dynamically instantiated. For instance, the dependency between events x.buy and
Seller .askPrice and between events x.price and Shipper .DeliveryService depends on the
name that will instantiate x upon BuyService instantiation. In other words, how do we account
for the ordering of received names?

Previous approaches on progress for session types do not cope with such configurations,
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namely the approaches of Dezani-Ciancaglini et al. [40] and of Bettini et al. [9], where this kind
of systems is excluded in their analysis, i.e., in their approach it is not possible to address systems
where processes interleave received names. However, such interleaving seems to be crucial to
allow for service instances to access local resources or to call external services.

To solve this problem we attach to our events a notion of prescribed ordering: the ordering
that captures the event ordering expected by the receiving process, that the emitted name will
have to comply to. In such way, we are able to statically determine the orderings followed by the
processes at “runtime”, through propagation of orderings in the analysis of message exchanges
that carry conversation identifiers. Technically, we proceed by developing a notion of event and
of event ordering that allow us to verify that CC processes can be ordered in a well-founded
way, including when conversation references are passed around. In the next section we describe
the formalisms that instantiate these ideas.

6.2 Event Ordering

In this section we present the formalisms that allow us to characterize the ordering of events
in processes. In the case of CC processes, events are message synchronizations taking place in
conversations. Thus, an event is identified by a conversation name and a message label. Also,
since messages carry conversation references, an event also accounts for the prescribed ordering
for the name being passed in the message.

Definition 6.2.1 (Event orderings, Parameterized Event Ordering and Events)

We say relation Γ between events is an event ordering if it is a well-founded partial order of
events. We denote by (x)Γ an event ordering which is parameterized by x, where x ∈ V. Events,
noted e, are defined as follows:

e, e1, . . . ::= n.l.(x)Γ (Event)

where n ∈ Λ ∪ V ∪ {here, up} and l ∈ L and (x)Γ is a parameterized event ordering.

Event orderings capture the overall ordering of events. Parameterized event orderings are used
to capture the prescribed ordering of conversation fragments that are passed in messages. Events
describe a message exchange by identifying the conversation (by its name, variable, or by special
identifiers here and up that represent the anonymous top level conversations), the label of the
message, and the prescribed ordering for the conversation name passed in the message.

To order our events we consider the tuple (conversation identifier,message label), which
allows us to cope with systems with multiple interleaved conversations, and back and forth com-
munications between two or more conversations in the same thread. To order the conversation
references that are passed in message synchronizations, each event in the ordering also informs
on the ordering associated to the conversation which is to be communicated in the message.
These ingredients will then allow us to check that all events in the continuation of a prefix are of
greater rank than the event of the prefix, thus guaranteeing the event dependencies are acyclic.

In the next section we show some operations that manipulate event orderings that will be
used when we characterize the ordering of events in CC processes, along with some auxiliary
notions used to order recursive processes and to locate events in CC systems.
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6.2.1 Event Ordering Operators

We define some useful operations over event orderings. The two main operations allow us to
explain name hiding, and verify the ranks of the communications in the continuations of prefixes.
For starters, we introduce some notation helpful to describe how two events in particular are
related by a given ordering, an abbreviation to denote events defined on a determined name and
a notation that elides empty event orderings in events.

Notation 6.2.2 We introduce the following notation conventions:

• By e1 ≺Γ e2 we denote that e1 is smaller than e2 in Γ.

• By e1 ≺∗
Γ ek we denote that there is e2, . . . , ek−1 such that e1 ≺Γ e2 ≺Γ . . . ≺Γ ek−1 ≺Γ ek.

• By e(n) we denote an event of conversation n, hence of the form n.l.(x)Γ, for some l, (x)Γ.

• We use n.l to abbreviate n.l.(x)Γ where Γ = ∅.

We now define some basic operators over event orderings and events, namely: the domain of an
event ordering, the set of free conversation identifiers, free names and free variables of events
and event orderings, and conversation identifier substitution over event orderings and events.

Definition 6.2.3 (Event Ordering Domain)

The domain of an event ordering Γ, noted dom(Γ), is the set of events which are related by Γ,
defined as follows:

dom(Γ) , {e | ∃e′.(e ≺Γ e′) or (e′ ≺Γ e)}

Definition 6.2.4 (Event Ordering Free Conversation Identifiers)

We denote by fids(Γ) and by fids(e) the sets of free conversation identifiers of event ordering Γ
and of event e, respectively, defined as follows:

fids(Γ) , {n | n ∈ fids(e) ∧ e ∈ dom(Γ)}
fids(m.l.(x)Γ′) , {m} ∪ {n | n ∈ fids(Γ′) ∧ n 6= x}

Definition 6.2.5 (Event Ordering Free Names)

We denote by fn(Γ) the set of free names of event ordering Γ defined as fn(Γ) , fids(Γ) ∩ Λ.

Definition 6.2.6 (Event Ordering Free Variables)

We denote by fv(Γ) the set of free variables of event ordering Γ defined as fv(Γ) , fids(Γ) ∩ V.

Definition 6.2.7 (Event Ordering Conversation Identifier Substitution)

We denote by Γ{n/m} the event ordering and by e{n/m} the event obtained by replacing all free
occurrences of conversation identifier n by conversation identifier m in event ordering Γ and in
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event e, respectively, defined as follows:

Γ{n/m} , {e1{n/m} ≺ e2{n/m} | e1 ≺Γ e2}
(n.l.(x)Γ){n/m} , m.l.(x)Γ′

(where Γ′ = {e1{n/m} ≺ e2{n/m} | e1 ≺Γ e2} and n 6= x 6= m)

(o.l.(x)Γ){n/m} , o.l.(x)Γ′

(where o 6= n and Γ′ = {e1{n/m} ≺ e2{n/m} | e1 ≺Γ e2} and n 6= x 6= m)

Next we introduce the name hiding operation that removes from an ordering Γ all events relative
to some given conversation n, noted Γ \ n. This operation will be useful to characterize name
restriction in CC processes, since our orderings only talk about the order of communications in
visible conversations.

Definition 6.2.8 (Event Ordering Conversation Identifier Hiding)

We denote by Γ \ n the event ordering obtained by removing all events defined on n in event
ordering Γ, defined as follows:

Γ \ n , {(e(m) ≺ e(o)) | (e(m) ≺Γ e(o)) ∧m 6= n 6= o} ∪
{(e(m) ≺ e(o)) | (e(m) ≺Γ e1(n) ≺Γ . . . ≺Γ ek(n) ≺Γ e(o)) ∧m 6= n 6= o}

We consider Γ \ n to be undefined when n ∈ fids(Γ \ n).

Essentially, the name hiding of n in event ordering Γ relates all events already in the initial
ordering Γ, except those defined on the name to hide (n), closing, by transitivity, the ordering
chains where events defined on n occur. The set of events related by Γ \ n, its domain, is then
the domain of Γ minus the events that are defined on n.

The operation we introduce next allows us to characterize the subrelation minored by a
given event e, which will then be used in the rules for action prefixes to check that continuations
specify interactions in events of greater rank than the event associated to the prefix.

Definition 6.2.9 (Event Ordering Subrelation Minored by e)

Given event e and event ordering Γ such that e ∈ dom(Γ) we define e⊥Γ as the subrelation of
Γ where all events are greater than e, as follows:

e⊥Γ , {(e1 ≺ e2) | (e1 ≺Γ e2) ∧ (e ≺∗
Γ e1)}

We consider e⊥Γ to be undefined when e 6∈ dom(Γ).

Intuitively, if we are to view orderings as trees, then the subrelation operation corresponds to
taking the tree under a specific node in the tree — the minor event. Notice the minoring element
is required to belong to the domain of the event ordering, otherwise the subrelation is undefined.

6.2.2 Ordering Recursive Behavior

To represent the ordering of recursive processes our system makes use of an auxiliary environment
that associates recursion variables to event orderings. To motivate the introduction of such
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environment consider the following specification of a recursive process:

a J
[
recX . hello�!(). bye�!().X

]
where we assume that event a.hello is smaller than a.bye. If such ordering is respected through-
out the system, then no process waiting on bye will only after receiving on bye activate an input
over hello. Also, the process will always respect such ordering in each of its iterations. However,
if we are to look at the one-step unfolding of the process:

a J
[
hello�!(). bye�!().recX . hello�!(). bye�!().X

]
we verify that it is no longer well ordered under the principle that actions in the continuation
of a prefix are of greater rank with respect to the prefix. To support such safe specifications
we consider that unfoldings are annotated rect so as to identify them as unfoldings. Hence, we
write the process above as:

a J
[
hello�!(). bye�!().rectX . hello�!(). bye�!().X

]
Then, we will verify that such unfoldings are well-ordered with respect to the ordering initially
considered for the rec process. To capture this, we introduce a notion of recursion environment
which is a set of associations of recursion variables and event orderings, defined next.

Definition 6.2.10 (Recursion Environment)

A recursion environment, noted ∆, is a set of associations between recursion variables and event
orderings defined as follows:

∆ , X1→Γ1, . . . ,Xk→Γk

We introduce an abbreviation useful to simplify presentation, define the domain of a recursion
environment and lift the name hiding operation to recursion environments.

Notation 6.2.11 We denote by ∆(X ) = Γ that recursion environment ∆ is such that:

∆ = X1→Γ1, . . . ,X →Γ, . . . ,Xk→Γk

Definition 6.2.12 (Recursion Environment Domain)

We denote by dom(∆) the domain of the recursion environment ∆, defined as follows:

dom(∆) , {X1, . . . ,Xk} (if ∆ = X1→Γ1, . . . ,Xk→Γk)

Definition 6.2.13 (Recursion Environment Conversation Identifier Hiding)

We denote by ∆\n the recursion environment obtained by applying the name hiding to all event
orderings in ∆, defined as follows:

∆ \ n , X1→(Γ1 \ n), . . . ,Xk→(Γk \ n) (if ∆ = X1→Γ1, . . . ,Xk→Γk)
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We introduce some notation useful to simplify presentation and define a predicate that certifies
that the combination of an event ordering and a recursion environment is well founded.

Notation 6.2.14 We denote by
⋃

∆ the event ordering obtained by the union of all event
orderings that occur in ∆, hence:

⋃
∆ , Γ1 ∪ . . . ∪ Γk for ∆ = X1→Γ1, . . . ,Xk→Γk.

Definition 6.2.15 (Well-Founded Event Ordering and Recursion Environment)

We say that the combination of an event ordering Γ and a recursion environment is well founded,
noted wf (Γ,∆), if Γ ∪

⋃
∆ is a well-founded relation.

Such predicate will be used in our rules so as to ensure that our judgements always rely on a
(overall) well-founded ordering.

6.2.3 Locating Events

When characterizing the ordering of CC processes we need to keep track of the identities of the
current and enclosing conversations. To carry such information we define the notion of locator
(`) and introduce some notation useful to simplify presentation.

Definition 6.2.16 (Locator)

We denote by ` a pair of conversation identifiers (n,m) where n,m ∈ Λ ∪ V ∪ {here, up}.

A locator ` then identifies the current and enclosing conversations, through their names or
variables, and also through the here and up identifiers that represent the special cases of process
top level, where the � and � conversations are anonymous.

Notation 6.2.17 If ` = (n,m) then we use `(�) and `(�) to refer to n and m, respectively.

Given these artifacts and operations over events, we may present our proof system that singles
out Conversation Calculus systems that enjoy a well-founded ordering of events.

6.3 Progress Proof System

In this section we present the progress proof system that associates event orderings to CC
processes, so as to guarantee the communication structure of processes is well founded. The proof
system is presented by means of judgments of the form Γ;∆ `` P . The judgment Γ;∆ `` P

states that the communications of process P follow a well determined order, given by event
ordering Γ and recursion environment ∆, where ` keeps track of the identities of the current
and enclosing conversations of P . We start by informally presenting the rules and then formally
present the proof system.

The rule for parallel composition is as follows:

Γ;∆ `` P Γ;∆ `` Q

Γ;∆ `` P | Q

which specifies that the parallel composition is well ordered by the ordering that orders both
branches of the parallel composition. Since the parallel branches are simultaneously active, the
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ordering for parallel composition needs only to make sure that the ordering for the two branches
is consistent, hence, the same. The rule for the inactive process:

wf (Γ,∆)
Γ;∆ `` 0

specifies that any (well-founded) event ordering/recursion environment Γ; ∆ orders such process.
The next rule explains the ordering for name restriction:

Γ;∆ `` P

Γ \ a;∆ \ a `` (νa)P

Essentially, the rule says that if the scope of the name restriction is well-ordered by Γ; ∆, then
we can hide a in Γ;∆ in the conclusion of the rule, since no other communication dependencies
will have to be verified for events defined over a in the outer environment, given that the name
is restricted — communication of the name to the outer environment is handled at the level of
the output. The rule for the conversation piece is as follows:

Γ;∆ `(`(�),n) P

Γ;∆ `` n J [P ]

where the premise specifies that n is the current conversation and `(�) is the enclosing conver-
sation, which is the current conversation in the conclusion.

The following rules for input and output prefixes ensure that communications originating in
the continuations, including the ones in the conversation being received/sent, are of a greater
rank. The rule for input prefix is specified as follows:

∀i∈I((`(d).li.(yi)Γ′
i⊥Γ) ∪ Γ′

i{yi/xi};∆ `` Pi Γ′
i \ yi ⊆ (`(d).li.(yi)Γ′

i⊥Γ)) wf (Γ,∆)
Γ;∆ `` Σi∈I ldi ?(xi).Pi

The rule takes the events associated to the input prefixes `(d).li.(yi)Γ′
i (for each i ∈ I), where

`(d) gives the identity of the conversation in which the message exchange will take place, and
checks that the continuation of the prefix (Pi) is well ordered. The continuations are checked to
be ordered by the relation that is minored by the event `(d).li.(yi)Γ′

i, denoted by `(d).li.(yi)Γ′
i⊥Γ,

combined with the ordering prescribed for the name which is to be received in the input (Γ′
i),

where the event ordering parameter (yi) is replaced by the variable bound in the input (xi), and
recursion environment ∆. Extending the ordering with Γ′

i{yi/xi} thus allows for the continuation
to participate in events in the received name xi, accordingly to the prescribed ordering.

If this is the case for all input prefixes and Γ; ∆ is well founded, then the input guarded
summation process is well-ordered by Γ; ∆. Notice that the events `(d).li.(yi)Γ′

i are in the
domain of Γ, otherwise the subrelations `(d).li.(yi)Γ′

i⊥Γ are undefined. Notice also that the
parameterized event orderings (yi)Γ′

i are contained in the ordering `(d).li.(yi)Γ′
i⊥Γ, excluding

the events specific to the parameter yi. The next rule orders the output prefix:

(`(d).l.(x)Γ′⊥Γ);∆ `` P Γ′{x/n} ⊆ (`(d).l.(x)Γ′⊥Γ) wf (Γ,∆)
Γ;∆ `` ld!(n).P

Analogously to the rule for the input prefix, we take the event associated to the prefix `(d).l.(x)Γ′

and verify that the continuation is ordered by events greater than `(d).l.(x)Γ′. Also, and cru-
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cially, we check that the name being passed in the output complies with the ordering prescribed
in the event (x)Γ′ by verifying that such prescribed ordering, where the variable x is replaced
by the name to be sent n, is contained in the ordering of events greater than `(d).l.(x)Γ′. In
such way, we can be sure that after the name is passed the overall ordering is still respected.

The following rule orders the conversation awareness primitive:

Γ ∪ {(e1 ≺ e2) | (e1{x/`(�)} ≺Γ e2{x/`(�)})};∆ `` P (`(�) 6= here)
Γ;∆ `` this(x).P

The rule ensures interactions in conversations x follow the ordering defined for the current
conversation (`(�)). The event ordering considered in the premise is enlarged with events defined
on conversation x, according to the ordering specified for events of conversation `(�). Condition
`(�) 6= here guarantees the this is inside some conversation piece (not at toplevel) as otherwise
the process would be stuck — cf., the semantics of this.

The next rules order the recursive process definition and recursion variable:

X 6∈ dom(∆) Γ; (∆,X →Γ) `` P

Γ;∆ `` recX .P

X ∈ dom(∆) wf (Γ,∆)
Γ;∆ `` X

∆(X );∆ `` P fv(∆(X )) = ∅ wf (Γ,∆)
Γ;∆ `` rectX .P

The rule for the recursion definition rec says that the process is well-ordered if the body of the
recursion is well-ordered by the same ordering, but where the recursion environment considers
an extra association of the current recursion variable with the current event ordering. Then,
we may order the body of the recursion up to the point a recursion variable is found, at which
stage we verify that such variable is in the domain of the recursion environment and ensure
that the Γ and ∆ mentioned in the conclusion are well founded. Finally, to order the unfolded
recursion definition, we ensure that the body is well-ordered by the event ordering associated
to the respective recursion variable, and ensure that the combination of Γ and ∆ mentioned in
the conclusion is well founded. Given this basic intuition over the rules that characterize the
ordering of CC processes, we may now define the notion of well-ordered process.

Definition 6.3.1 (Well-Ordered Process)

We say process P is well-ordered by Γ and ∆, noted Γ;∆ `` P , if Γ;∆ `` P can be derived using
the rules given in Figure 6.1.

Next we show our results that guarantee that well-ordered processes enjoy a progress property.

6.3.1 Progress Property

In this section we present our progress results, which guarantee that the well-ordered property of
processes is invariant under process reduction, and that well-ordered (and well-typed) processes
never reach deadlocked configurations. We first characterize a well-formedness condition, which
filters out some undesired configurations.

Definition 6.3.2 (Well-Formed Process)

We say process P is well-formed if for any occurrence of a recursive process recX .Q in P then
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Γ;∆ `` P Γ;∆ `` Q

Γ;∆ `` P | Q
(Par)

wf (Γ,∆)
Γ;∆ `` 0

(Stop)
Γ;∆ `` P

Γ \ a;∆ \ a `` (νa)P
(Res)

X 6∈ dom(∆) Γ; (∆,X →Γ) `` P

Γ;∆ `` recX .P
(Rec)

X ∈ dom(∆) wf (Γ,∆)
Γ;∆ `` X

(RecVar)

∆(X );∆ `` P fv(∆(X )) = ∅ wf (Γ,∆)
Γ;∆ `` rectX .P

(RecTerm)
Γ;∆ `(`(�),n) P

Γ;∆ `` n J [P ]
(Piece)

∀i∈I((`(d).li.(yi)Γ′
i⊥Γ) ∪ Γ′

i{yi/xi};∆ `` Pi Γ′
i \ yi ⊆ (`(d).li.(yi)Γ′

i⊥Γ)) wf (Γ,∆)
Γ;∆ `` Σi∈I ldi ?(xi).Pi

(Input)

(`(d).l.(x)Γ′⊥Γ);∆ `` P Γ′{x/n} ⊆ (`(d).l.(x)Γ′⊥Γ) wf (Γ,∆)
Γ;∆ `` ld!(n).P

(Output)

Γ ∪ {(e1 ≺ e2) | (e1{x/`(�)} ≺Γ e2{x/`(�)})};∆ `` P (`(�) 6= here)
Γ;∆ `` this(x).P

(This)

Figure 6.1: Progress Proof Rules.

no recursive process occurs in Q, the occurrences of X in Q are guarded by a prefix, and such
variables X do not occur in parallel processes, neither within the scope of a conversation piece.

Remark 6.3.3 We may show that well-typed processes are well-formed processes, however we
introduce the well-formedness condition so as to leave the preservation of the ordering as an
independent result with respect to the conversation type system.

Convention 6.3.4 To simplify presentation we consider that transition rule (Rec) of Figure 4.2
introduces rect in the unfolded recursive process, and such rect is afterwards conservatively kept:

P{X/rectX .P} λ−→ Q

recX .P
λ−→ Q

P{X/rectX .P} λ−→ Q

rectX .P
λ−→ Q

Also, we consider all recursion variables are distinct and that the recursion variable associated
to a rect is not subject to α-conversion.

Our first result states a weakening property that captures the fact that a process well ordered
by a given event ordering is also well ordered by any event ordering that contains the initial one.

Proposition 6.3.5 (Event Ordering Weakening)

Let P be a process such that Γ;∆ `` P . If wf (Γ′,∆′) and Γ ⊆ Γ′ and for all X such that
X ∈ dom(Γ) it is the case that ∆(X ) ⊆ ∆′(X ) then Γ′;∆′ `` P .

Proof. By induction on the length of the derivation of Γ; ∆ `` P . Intuitively, if Γ; ∆ already
prove that events are well ordered in P , then Γ′;∆′ describe extra events that do not pertain to
P and hence do not interfere in verifying the event ordering of P (see Appendix A.4).

We proceed to the result that asserts that well-ordered property of process is invariant under
process reduction — Theorem 6.3.7 — but first we state its auxiliary substitution lemma.
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Lemma 6.3.6 (Substitution)

Let P be such that Γ;∆ `` P . If Γ{x/n} ⊆ Γ \ x then Γ \ x;∆ \ x ``{x/n} P{x/n}.

Proof. By induction on the derivation of Γ; ∆ `` P . Essentially, condition Γ{x/n} ⊆ Γ\x ensures
the ordering prescribed for n in Γ copes with the ordering required for x (see Appendix A.4).

Theorem 6.3.7 (Preservation of Event Ordering)

Let process P be well-formed and Γ;∆ `` P . If P → Q then there are Γ′ and ∆′ such that
Γ′;∆,∆′ `` Q and Γ′ ∪

⋃
(∆,∆′) ⊆ Γ ∪

⋃
∆.

Proof. By induction on the length of the derivation of P → Q (see Appendix A.4).

An immediate consequence of Theorem 6.3.7 is that processes that do not contain rect, and
hence are ordered by Γ; ∅ for some Γ, preserve Γ as overall ordering throughout their evolution.

Corollary 6.3.8 (Initial Ordering)

Let process P be well-formed and Γ; ∅ `` P . If P
∗→ Q then there are Γ′ and ∆′ such that

Γ′;∆′ `` Q and Γ′ ∪
⋃

∆′ ⊆ Γ.

Proof. Immediate from Theorem 6.3.7.

Theorem 6.3.7 thus asserts that well-ordering is preserved under process reduction. Before
presenting our main progress result where we exclude processes that are stuck, we first need to
distinguish between finished processes and stuck processes.

Definition 6.3.9 (Finished Process)

We say P is a finished process if for any static context C and process Q such that P = C[Q] and

Q
λ−→ Q′ then either λ = c · l?(a) or λ = ld?(a), and l ∈ L?.

The only immediate observations that can be made over finished processes are inputs defined on
shared labels. Intuitively, finished processes can be viewed as collections of service definitions,
where there are no pending service calls, neither linear protocols to be fulfilled. We then consider
finished processes to be in a stable state, despite the fact they have no reductions. We may now
present our main progress result that ensures well-ordered systems never run into stuck states.

Theorem 6.3.10 (Lock Freeness)

Let P be a well-formed process such that P :: T , where closed(T ), and Γ;∆ `` P , where ` =
(up, here), then either P is a finished process or there is P → Q.

Proof. Follows from auxiliary results (see Appendix A.4).

An immediate consequence of Theorem 6.3.10 is that stuck processes are unreachable from
well-ordered and well-typed processes. Differently from other approaches (e.g., [9]) our analysis
focuses on systems where all communications are matched (closed type condition). We could
also express the statement so as to consider the process and a context which type merge is closed.

Corollary 6.3.11 (Progress)

Let P be a well-formed process such that P :: T , where closed(T ), and Γ; ∅ `` P , where ` =
(up, here). If there is Q such that P

∗→ Q then either Q is a finished process or there is Q → Q′.
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PurchaseSystem
,
Buyer J [ (νc)(Seller J [ BuyService�!(c) ] | c J [ buy�!(prod).price�?(p).details�?(d) ] ]
|
Seller J [ PriceDB |

BuyService�?(x).x J [ buy�?(prod).askPrice�!(prod).
priceVal�?(p).price�!(p).
this(y).( Shipper J [ DeliveryService�!(y) ]

| product�!(prod) ) ] ]
|
Shipper J [ DeliveryService�?(z).z J [ product�?(p).details�!(data) ] ]

Figure 6.2: Code of the Purchase Service Collaboration Example.

Proof. Immediate from Theorem 6.3.7, Theorem 5.3.5 and Theorem 6.3.10.

Corollary 6.3.11 thus states that the progress property is invariant throughout process evolu-
tion. This property entails services are always available upon request and protocols involving
interleaving conversations never get stuck.

In the following section we illustrate an example derivation in our proof system, that will
then allow us to assert the progress property for the purchase scenario implementation.

6.3.2 Proving Progress in the Purchase Example

In this section we prove our purchase scenario implementation is well ordered. The (low-level)
code for the purchase service collaboration is given in Figure 6.2. Let us consider Γ such that:

Seller .BuyService.(x1)Γ1 ≺Γ Seller .askPrice ≺Γ

Seller .priceVal ≺Γ Shipper .DeliveryService.(x2)Γ2

where Γ1 describes the ordering of the conversation which is passed in the BuyService ser-
vice instantiation and Γ2 describes the ordering of the conversation which is passed in the
DeliveryService service instantiation (we omit the prescribed event orderings associated to
events when they are empty, e.g., in events Seller .askPrice and Seller .priceVal).

We then have that Γ2 is such that:

x2.product ≺Γ2 x2.details

which captures the ordering of the events in which Shipper participates, and Γ1 is such that:

x1.buy ≺Γ1 Seller .askPrice ≺Γ1 Seller .priceVal ≺Γ1 x1.price ≺Γ1

Shipper .DeliveryService.(x2)Γ2 ≺Γ1 x1.product ≺Γ1 x1.details

which captures the ordering of the events associated to the Seller -Shipper subsystem (recall that
Seller dynamically invites Shipper to join the conversation).
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We thus have Γ; ∅ `(up,here) PurchaseSystem, which is derived from (cf., rule (Par)):

Γ; ∅ `(up,here) Buyer J [ (· · · ) ]

Γ; ∅ `(up,here) Seller J [ (· · · ) ]

Γ; ∅ `(up,here) Shipper J [ (· · · ) ]

When analyzing within the scope of the restricted name c, Γ is extended to Γ3 such that:

Seller .BuyService.(x1)Γ1 ≺Γ3 c.buy ≺Γ3 Seller .askPrice ≺Γ3 Seller .priceVal ≺Γ3

c.price ≺Γ3 Shipper .DeliveryService.(x2)Γ2 ≺Γ3 c.product ≺Γ3 c.details

Thus, Γ = Γ3 \ c (cf., the rule for name restriction). Notice such ordering corresponds to the
vertical timeline of the message sequence chart shown in Figure 1.2. We can then verify that:

Γ3; ∅ `(here,Buyer) Seller J [ BuyService�!(c)]

which is derived, omitting the step for rule (Piece), from rule (Output):

Γ4; ∅ `(Buyer ,Seller) BuyService
�!(c)

where Γ4 = Seller .BuyService.(x1)Γ1⊥Γ3, hence Γ4 is such that:

c.buy ≺Γ4 Seller .askPrice ≺Γ4 Seller .priceVal ≺Γ4 c.price ≺Γ4

Shipper .DeliveryService.(x2)Γ2 ≺Γ4 c.product ≺Γ4 c.details

and where we have that the sent name c complies to the prescribed ordering for BuyService,
hence Γ1{x1/c} ⊆ Γ4. We can thus be sure that the prescribed ordering for the name passed
in event Seller .BuyService.(x1)Γ1 is respected by the ordering specified for the name actually
being sent (c), relatively to events of greater rank than Seller .BuyService.(x1)Γ1. Deriving:

Γ3; ∅ `(here,Buyer) c J [ buy�!(prod).price�?(p).details�?(d) ]

follows expected lines, where each prefix causes the relation to be trimmed down accordingly.
Regarding the seller code (abstracting away from process PriceDB), we have that:

Γ; ∅ `(here,Seller) BuyService
�?(x).x J [ buy�?(prod).askPrice�!(prod).

priceVal�?(p).price�!(p).
this(y).( Shipper J [ DeliveryService�!(y) ]

| product�!(prod) ) ]

which is derived from (considering the rule for the input prefix):

Γ5; ∅ `(here,Seller) x J [ buy�?(prod).askPrice�!(prod).
priceVal�?(p).price�!(p).
this(y).( Shipper J [ DeliveryService�!(y) ]

| product�!(prod) ) ]
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where Γ5 = (Seller .BuyService.(x1)Γ1⊥Γ) ∪ Γ1{x1/x}, hence:

Γ5 = Seller .askPrice ≺Γ Seller .priceVal ≺Γ Shipper .DeliveryService.(x2)Γ2

∪ x.buy ≺Γ1 Seller .askPrice ≺Γ1 Seller .priceVal ≺Γ1 x.price ≺Γ1

Shipper .DeliveryService.(x2)Γ2 ≺Γ1 x.product ≺Γ1 x.details

= x.buy ≺Γ5 Seller .askPrice ≺Γ5 Seller .priceVal ≺Γ5 x.price ≺Γ5

Shipper .DeliveryService.(x2)Γ2 ≺Γ5 x.product ≺Γ5 x.details

The derivation for messages buy, askPrice, priceVal and price follows expected lines, leading
to the call to the shipper service, for which we then have that:

Shipper .DeliveryService.(x2)Γ2 ≺ x.product ≺ x.details; ∅ `(Seller ,x)

this(y).( Shipper J [ DeliveryService�!(y) ] | product�!(prod) )

which then leads to the following extension of the ordering (the ordering of y is obtained from
the ordering specified for the current conversation x — cf., rule (This)):

Γ6 = Shipper .DeliveryService.(x2)Γ2 ≺ x.product ≺ x.details

∪
Shipper .DeliveryService.(x2)Γ2 ≺ y.product ≺ y.details

which will then allow us to verify that:

Γ2{x2/y} ⊆ (Shipper .DeliveryService.(x2)Γ2⊥Γ6)

thus guaranteeing that the name that will eventually instantiate y copes with the ordering
prescribed for the name received by the shipper upon instantiation of the DeliveryService. The
rest of the derivation follows similar lines. According to the derivation shown in Section 3.3.2,
we have that our purchase system is characterized by the following type:

T , Seller : [ τ BuyService(? buy(Tp).! price(Tm).τ product(Tp).! details(Td))
| τ askPrice(Tp).τ priceVal(Tm) ]

| Shipper : [ τ DeliveryService(? product(Tp).! details(Td)) ]

We thus have that Γ; ∅ `(up,here) PurchaseSystem and that PurchaseSystem :: T , where T is
a closed type (closed(T )), which guarantees, in the light of Corollary 6.3.11, that the process
PurchaseSystem will never reach a stuck configuration.

Notice our progress results apply to systems where conversations can be interleaved, includ-
ing delegated conversations. For instance, consider the Seller code which interleaves the received
service conversation with the Seller conversation (to access the price database) and with conver-
sation Shipper (to ask Shipper to join in the ongoing conversation). This sort of configurations
is out of reach for reference works for progress in session type literature, namely [9, 40].

6.4 Proving Progress in the πlab-Calculus

To demonstrate our progress technique is not specific to systems specified Conversation Calcu-
lus, we reproduce the approach considering systems modeled in the πlab-Calculus. A progress
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Γ;∆ ` P Γ;∆ ` Q

Γ;∆ ` P | Q
(Par)

wf (Γ,∆)
Γ;∆ ` 0

(Stop)
Γ;∆ ` P

Γ \ a;∆ \ a ` (νa)P
(Res)

X 6∈ dom(∆) Γ; (∆,X →Γ) `` P

Γ;∆ ` rec X .P
(Rec)

X ∈ dom(∆) wf (Γ,∆)
Γ;∆ ` X

(RecVar)

∆(X );∆ `` P fv(∆(X )) = ∅ wf (Γ,∆)
Γ;∆ ` rect X .P

(RecTerm)

(n.l.(y)Γ′⊥Γ) ∪ Γ′{y/x};∆ ` P Γ′ \ y ⊆ (n.l.(y)Γ′⊥Γ) wf (Γ,∆)
Γ;∆ ` n · l?(x).P

(Input)

(n.l.(x)Γ′⊥Γ);∆ ` P Γ′{x/m} ⊆ (n.l.(x)Γ′⊥Γ) wf (Γ,∆)
Γ;∆ ` n · l!(m).P

(Output)

Figure 6.3: Progress Proof Rules (πlab-Calculus).

judgment for a πlab-Calculus process P is of the form Γ;∆ ` P , stating that P is well-ordered
by Γ; ∆. Notice the only difference is that now we no longer need the ` to keep track of the
surrounding conversations of a process, since πlab-Calculus action prefixes explicitly refer the
location in which the communication is to take place.

We define the notion of well-ordered πlab-Calculus process.

Definition 6.4.1 (Well-Ordered πlab-Calculus Process)

We say πlab-Calculus process P is well-ordered by Γ and ∆, noted Γ;∆ ` P , if Γ;∆ ` P can be
derived using the rules given in Figure 6.3.

We may then reproduce the progress results stated for CC systems. We show the main results.

Definition 6.4.2 (Well-Formed πlab-Calculus Process)

We say πlab-Calculus process P is well-formed if for any occurrence of a recursive process recX .Q

in P then no recursive process occurs in Q, the occurrences of X in Q are guarded by a prefix,
and such variables X do not occur in parallel processes.

Theorem 6.4.3 (πlab-Calculus Preservation of Event Ordering)

Let process P be well-formed and Γ;∆ ` P . If P → Q then there is Γ′ and ∆′ such that
Γ′;∆,∆′ ` Q and Γ′ ∪

⋃
(∆,∆′) ⊆ Γ ∪

⋃
∆.

Proof. By induction on the derivation of P → Q (analogously to the proof of Theorem 6.3.7).

As for CC preservation of ordering, an immediate consequence of Theorem 6.4.3 is that pro-
cesses ordered by some Γ and an empty recursion environment, preserve Γ as overall ordering
throughout their evolution.

Corollary 6.4.4 (πlab-Calculus Initial Ordering)

Let process P be well-formed and Γ; ∅ ` P . If P
∗→ Q then there is Γ′ and ∆′ such that Γ′;∆′ ` Q

and Γ′ ∪
⋃

∆′ ⊆ Γ.

Proof. Immediate from Theorem 6.4.3.
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Theorem 6.4.3 ensures the well-ordered condition is invariant under process reduction. Before
presenting our main progress result we must first introduce πlab-Calculus finished processes.

Definition 6.4.5 (πlab-Calculus Finished Process)

We say P is a finished process if for any static context C and process Q such that P = C[Q] and

Q
λ−→ Q′ then λ = c · l?(a) and l ∈ L?.

As for CC processes the only immediate observations that can be made over πlab-Calculus fin-
ished processes are inputs defined on shared labels. We may now present the main progress result
that ensures well-ordered and well-typed (with a closed type so as to ensure all communications
are matched) πlab-Calculus systems are not stuck.

Theorem 6.4.6 (πlab-Calculus Lock Freeness)

If P is a well-formed πlab-Calculus process such that P :: L, where closed(L), and Γ;∆ ` P ,
then either P is a finished process or there is P → Q.

Proof. Follows from auxiliary results (analogously to the proof of Theorem 6.3.10).

We then have as an immediate corollary that stuck processes are unreachable from well-ordered
and (closed) well-typed processes.

Corollary 6.4.7 (Progress)

Let P is a well-formed πlab-Calculus process such that P :: L, where closed(L), and Γ; ∅ ` P . If
P

∗→ Q then either Q is a finished process or there is Q → Q′.

Proof. Immediate from Theorem 6.4.3, Theorem 3.3.5 and Theorem 6.3.10.

We have thus shown that our progress technique is not specific to systems modeled in the
Conversation Calculus. In fact, our approach can be directly applied to a more canonical model.

6.5 Remarks

We close the chapter with some notes on related work. There are a number of progress studies
for binary sessions (e.g., [3, 15, 40]), and for multiparty sessions (e.g., [9, 57]). The techniques of
Dezani-Ciancaglini et al. [40] and of Bettini et al. [9] are nearer to ours as orderings on channels
are imposed to guarantee the absence of cyclic dependencies. However they disallow processes
that get back to interact in a session after interacting in another, and exclude interleaving on
received sessions, while we allow processes that re-interact in a conversation and interleave re-
ceived conversations. On the one hand, the fact that we allow processes to reenter a conversation
is a consequence of our particular underlying model, that allows us to make use not only of the
name of the conversation, but also of the message label to support the ordering of the same
conversation interleaved with others, so we may have:

c.price ≺ Shipper .DeliveryService.(x2)Γ2 ≺ c.product

which is not possible if one is to consider only the conversation name to support the ordering:

c ≺ Shipper .(x2)Γ2 ≺ c
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since we immediately obtain a non well-founded ordering. On the other hand, we believe our
technique based on prescribed event orderings is general enough to be used in other settings, so
as to support the analysis of systems where processes interleave received conversations.

Regarding other works that address progress properties of systems specified on the π-Calculus
we distinguish the works of Kobayashi and coauthors, namely [62, 63, 65]. Since our progress
proof system relies on the conversation types analysis to capture the communication structure
within each conversation, ensuring conversation protocols are followed, our approach ends up
being simpler with respect to the works of Kobayashi. Namely, we do need to annotate processes
with obligation/capability levels (cf., [62]), neither do we require a “simulation” over the type
structure ensuring such levels of obligation/capabilities are respected throughout type evolution
(cf., [63]). We do acknowledge that the approach described in [63] already provides with inference
techniques, while we do not address this problem yet.

153



154



Chapter 7

Exception Handling

In this chapter we present an extension of the CC with primitives that support exception han-
dling, originally introduced in [95]. We start by motivating the introduction of exception han-
dling primitives through some typical examples of error recovery protocols. Then we present the
language extension, define its operational semantics and briefly present some results regarding
the behavioral semantics. We then focus on a possible application of the Exception Handling
Conversation Calculus, which is to model compensations and thus give support for long running
transactions. We close the chapter with some remarks on related work.

7.1 Recovering from Error

In any realistic model for service-oriented computation we expect to find some form of language
support to handle exceptional behavior. Examples to motivate this claim include, for example,
the need to express services that may be interrupted on request at any point in their execution,
or services that may be interrupted after some timeout occurs — a party waiting on some
communication may be willing to wait only some given amount of time, giving up after that.
Of particular importance is then the coordination of the several parties involved in the service
conversation, since an exception local to a party must be somehow propagated to all other parties
involved in the service task. Other session-based approaches to service-oriented computing model
such error propagation internally to the semantics of the exception handling primitives, namely
in the SCC model (Boreale et al. [12]), in the CaSPiS model (Boreale et al. [13]), and in the
approach of Carbone et al. [31]. We take a different approach, by providing our exception
handling primitives with a standard “local” semantics, leaving the task of coordinating the
exceptions in charge of the basic communication primitives.

We introduce two primitives to support exception handling: a primitive to signal exceptions
throw.P , and a construct try P catch Q that allows process P to actively run, up to the point
an exception is thrown, in which case P is terminated and the exception handler code Q is
activated. We illustrate a few usage idioms for our exception handling primitives, starting by a
programming idiom that captures remote exception throwing.

Server J [
def Interruptible⇒

stopRequest�?().urgentStop�!().throw.0

| ServiceProtocol ]

new Server · Interruptible⇐
urgentStop�?().throw.0

| ClientProtocol
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In this example, any instance of the Interruptible service may be interrupted by process
ServiceProtocol by dropping a message stopRequest in the service conversation. Such message
causes the Interruptible service code to send an urgentStop message to the service client
side, after sending which the service code proceeds by throwing an exception which causes
abortion of the server side of the conversation. On the other hand, the client code throws
an exception at the client side upon reception of urgentStop. Notice that this behavior will
happen concurrently with ongoing interactions between ServiceProtocol and ClientProtocol . In
this case, the exception issued at the server and client sites has to be managed by appropriate
handlers (by enclosing try-catch blocks). In the next example, no exception will be propagated
to the server site, but only to the client site, and as the result of any exception thrown by the
ServiceProtocol process.

Server J [
def Interruptible⇒

try

ServiceProtocol
catch urgentStop�!()

new Server · Interruptible⇐
urgentStop�?().throw.0

| ClientProtocol

In the above examples, the decision to terminate the ongoing remote interactions is triggered by
the service code. In the next example, we show a simple variation of the idioms above, where
the decision to terminate the ongoing service instance is responsibility of the service context.
In the following, any instance of the Interruptible service may be terminated by the service
provider by means of dropping a killRequest message in conversation Server .

Server J [
def Interruptible⇒

try

killRequest�?().throw.0

| ServiceProtocol
catch urgentStop�!() ]

new Server · Interruptible⇐
urgentStop�?().throw.0

| ClientProtocol

If we were to extend the language with a wait primitive with the expected semantics, then we
would also be able to specify services that have a limited time span to run, illustrated next.

Server J [
def TimeBounded⇒

try

timeAllowed�?(delay).wait(delay).throw.0 |
ServiceProtocol

catch urgentStop�!() ]

new Server · TimeBounded⇐
urgentStop�?().throw.0

| ClientProtocol

Thus, any instance of the TimeBounded service will be allocated no more than delay time units
before being interrupted, where delay is a dynamic parameter value read from the server side
context. As a final example of our exception handling idioms, consider service Repeatable is
instantiated on site Server , and repeatedly relaunched on each failure — failure will be signaled
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by an exception thrown within the local protocol ClientProtocol , possibly as a result of a remote
urgentStop message.

Server J [
def Repeatable⇒

try

killRequest�?().throw.0

| ServiceProtocol
catch urgentStop�!() ]

rec Restart.

try

new Server · Repeatable⇐
urgentStop�?().throw.0

| ClientProtocol
catch Restart

We may thus combine the core CC primitives with the exception handling primitives so as to
model several interesting error recovery scenarios. Furthermore, exception handling primitives
also give support to the definition of more complex control flow structures. Of particular interest
to the setting of service-oriented computing is to support some form of compensation so as to
provide support for long running transactions. After formally presenting the CCexc we show
how a model of transactions with compensations can be encoded in our language.

7.2 The Exception Handling Conversation Calculus (CCexc)

In this section we define the syntax of the extension of the Conversation Calculus with exception
handling primitives (CCexc). The CCexc extends the core CC, presented in Chapter 4, with a
try-catch block and the throw primitive to signal exceptions.

Definition 7.2.1 (CCexc Syntax)

The syntax of the Exception Handling Conversation Calculus is given in Figure 7.1.

The sets of free and bound names, free labels, free variables and free recursion variables of CCexc
processes are defined as expected, extending core CC definitions with the cases of the try-catch
and the throw constructs. We informally describe these constructs next.

Exception Handling Primitives

To model exceptional behavior, in particular fault signaling, fault detection, and resource dis-
posal, we borrow the classical try− catch− and throw− from imperative languages, and adapt
them to the concurrent setting. The primitive to signal exceptional behavior is denoted by:

throw.Exception

This construct throws an exception with continuation the process Exception, and has the effect
of forcing the termination of all other processes running in all enclosing contexts, up to the point
where a try− catch block is found (if any). The continuation Exception will be activated when
(and if) the exception is caught by such an exception handler. The exception handler construct:

try P catch Handler

actively allows process P to run until some exception is thrown inside P . At that moment,
all of P is terminated, and the Handler process, which is guarded by try− catch, is activated,
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a, b, c, . . . ∈ Λ (Names)
x, y, z, . . . ∈ V (Variables)
n, m, o, u, v . . . ∈ Λ ∪ V (Identifiers)
l, s . . . ∈ L (Labels)
X ,Y, . . . ∈ χ (Recursion Variables)

P,Q,R ::= 0 (Inaction)
| P | Q (Parallel Composition)
| (νa)P (Name Restriction)
| recX .P (Recursion)
| X (Variable)
| n J [P ] (Conversation Access)
| Σi∈I αi.Pi (Prefix Guarded Choice)
| try P catch Q (Try-Catch Block)
| throw.P (Throw)

d ::= � | � (Directions)
α ::= ld!(n1, . . . , nk) (Output)

| ld?(x1, . . . , xk) (Input)
| this(x) (Conversation Awareness)

Figure 7.1: The Exception Handling Conversation Calculus (CCexc) Syntax.

concurrently with the continuation Exception of the throw.Exception that originated the excep-
tion, in the context of the given try− catch− block. By exploiting the interaction potential of
the Handler and Exception processes, one may represent many adequate recovery and resource
disposal protocols.

Given this informal understanding of the exception handling primitives we may now formally
define the operational semantics of the CCexc.

7.3 Operational Semantics

We define the operational semantics of the CCexc by means of a labeled transition system.
The CCexc labeled transition system conservatively extends that of the core CC, in the sense
it incorporates all the rules defined for the CC. We nevertheless present the full definitions,
repeating what was introduced for core CC, but focus our presentation on the new aspects.

As for the core CC, by P
λ−→ Q we denote that process P may evolve to process Q by

performing the action represented by the transition label λ. We define CCexc transition labels.

Definition 7.3.1 (CCexc Transition Labels)

Extended directions, actions and transition labels are defined as follows:

de ::= d | �� (Extended Directions)
σ ::= τ | ld!(ã) | ld?(ã) | thisde | throw (Actions)
λ ::= c σ | σ | (νa)λ (Transition Labels)
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We denote by T the set of all transition labels.

CCexc transition labels extend CC transition labels with an action throw which represents an
exception signal. We show an example to motivate the definition of the semantics of the CCexc.

Example 7.3.2 Consider process:

throw.notify�!(errorInfo)

which is willing to signal an exception and afterwards notifies another process that a particular
error has occurred. The process exhibits the following throw transition:

throw.notify�!(errorInfo) throw−→ notify�!(errorInfo)

Such a throw observation causes the termination of all processes that are running in parallel to
the process that signaled the exception, so, e.g., if in parallel lies process chat�!(text) we have:

throw.notify�!(errorInfo) | chat�!(text) throw−→ notify�!(errorInfo)

If the process is placed in a try-catch block, the throw observation is caught by the try-catch,
resulting in the activation of the handler in parallel with the continuation of the exception:

try

throw.notify�!(errorInfo) | chat�!(text)
catch notify�?(x ).P

τ−→
notify�!(errorInfo) | notify�?(x ).P

Notice that the continuation of the process that originally signals the exception gets to interact
with the try-catch handler, allowing for fault handler to exploit specific error information.

Given this basic intuition we may now present the CCexc labeled transition system. We describe
the rules specific to the exception handling behavior, starting by the rule that captures the
signaling of an exception:

throw.P
throw−→ P

The rule specifies an exception signal may be observed over a throw prefix, resulting in the
activation of the continuation process. The exception signal causes the termination of parallel
contexts and conversation pieces, as expressed by the following rules:

P
throw−→ R

P | Q
throw−→ R

P
throw−→ R

n J [P ] throw−→ R

On the other hand, the exception signal transparently crosses a name restriction boundary:

P
throw−→ R

(νa)P throw−→ (νa)R
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ld!(ã).P
ld!(ã)−→ P (Out) ld?(x̃).P

ld?(ã)−→ P{x̃/ã} (In)
αj .Pj

λ−→ Q j ∈ I

Σi∈I αi.Pi
λ−→ Q

(Sum)

P
λ−→ Q a ∈ out(λ)

(νa)P
(νa)λ−→ Q

(Open)
P

λ−→ Q a 6∈ na(λ)

(νa)P λ−→ (νa)Q
(Res)

P
λ−→ Q bn(λ) # fn(R) λ 6= throw

P | R
λ−→ Q | R

(Par -l)
P

λ−→ Q bn(λ) # fn(R) λ 6= throw

R | P
λ−→ R | P

(Par -r)

P
(νã)λ1−→ P ′ Q

λ2−→ Q′ ã# fn(Q) λ1 • λ2 6= ◦

P | Q
λ1 •λ2−→ (νã)(P ′ | Q′)

(Close-l)

P
λ1−→ P ′ Q

(νã)λ2−→ Q′ ã# fn(P ) λ1 • λ2 6= ◦

P | Q
λ1 •λ2−→ (νã)(P ′ | Q′)

(Close-r)

P
λ1−→ P ′ Q

λ2−→ Q′ λ1 • λ2 6= ◦

P | Q
λ1 •λ2−→ P ′ | Q′

(Comm)
P{X/recX .P} λ−→ Q

recX .P
λ−→ Q

(Rec)

Figure 7.2: Transition Rules for Basic Operators (π-Calculus).

The following rule captures the exception signal handling:

P
throw−→ R

try P catch Q
τ−→ R | Q

The rule specifies that if the process running in the try part signals an exception, then the
try-catch block evolves, through a τ transition, to a state where the exception handler Q is
activated in parallel with the continuation of the exception R. On the other hand, to capture
the case when the try process exhibits behavior different from throw we have the rule:

P
λ−→ Q λ 6= throw

try P catch R
λ−→ try Q catch R

which states that the try-catch block behaves like the process running in the try, except if it
signals an exception.

We may now present the formal definition of our transition relations. We assume a direct
extension of the synchronization algebra of the CC (Definition 4.3.8), adding the cases for the
throw label which does not synchronize with any label, (i.e., throw • λ = ◦ and λ • throw = ◦).
For clarity, we split the presentation into three sets of rules: the first in Figure 7.2 contains
the rules for the basic operators; the second in Figure 7.3 groups the rules specific to the core
Conversation Calculus; the third groups the rules specific to exception handling behavior.

Definition 7.3.3 (Transition Relations)

The transition relations { λ−→ | λ ∈ T } are defined by the rules in Figures 7.2, 7.3 and 7.4.
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P
λ�
−→ Q (c 6∈ bn(λ))

c J [P ] λ�
−→ c J [Q]

(Here)
P

λ−→ Q (unloc(λ))

c J [P ] c·λ−→ c J [Q]
(Loc)

P
λ−→ Q (loc(λ), c 6∈ bn(λ))

c J [P ] λ−→ c J [Q]
(Through)

P
τ−→ Q

c J [P ] τ−→ c J [Q]
(Tau)

P
this��
−→ Q

c J [P ] c this�
−→ c J [Q]

(ThisHere)
P

c this�
−→ Q

c J [P ] τ−→ c J [Q]
(ThisLoc)

this(x).P c this�
−→ P{x/c} (This)

Figure 7.3: Transition Rules for Conversation Operators.

throw.P
throw−→ P (Throw)

P
throw−→ R

P | Q
throw−→ R

(ThrowPar)

P
throw−→ R

n J [P ] throw−→ R
(ThrowConv)

P
throw−→ R

try P catch Q
τ−→ R | Q

(Catch)

P
λ−→ Q λ 6= throw

try P catch R
λ−→ try Q catch R

(Try)

Figure 7.4: Transition Rules for Exception Handling Operators.

The transition relation of the CCexc is a conservative extension of the transition relation of
the core CC (Definition 4.3.14) in the sense that any behavior that can be derived by the CC
transition system can also be derived by the CCexc transition system. Notice that action throw

is excluded in rules (Par -l) and (Par -r) since a different behavior is expected when a throw is
observed in one of the branches of a parallel composition. Notice also rule (Res) includes the
case of exception signal which transparently crosses the restriction boundary.

As for the CC we define a notion of autonomous evolution for CCexc processes, corresponding
to τ observations.

Definition 7.3.4 (CCexc Reduction)

The relation of reduction on processes, noted P → Q, is defined as P
τ−→ Q. Also, we denote

by P
∗→ Q the reflexive transitive closure of the reduction relation.

Using the operational semantics provided by the labeled transition system, we may now turn to
characterizing the behavioral semantics of the CCexc.

7.4 Behavioral Semantics

In this section we define the behavioral semantics of the CCexc and report results, as estab-
lished for the core CC, that corroborate our choices in the development of the mathematical
interpretation for the syntactical constructs of our language. The behavioral semantics of the
CCexc is defined by means of a standard notion of bisimilarity.
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Definition 7.4.1 (CCexc Strong Bisimulation)

A (strong) bisimulation is a symmetric binary relation R on processes such that, for all processes
P and Q, if PRQ, we have:

If P
λ−→ P ′ and bn(λ) # fn(Q)

then there is Q′ such that Q
λ−→ Q′ and P ′RQ′.

Two processes are related by a bisimulation if they can simulate one another by performing the
same observations and arriving at observationally-equivalent states. We prove strong bisimula-
tions are closed under set union (see Proposition 4.4.2) and define strong bisimilarity.

Definition 7.4.2 (CCexc Strong Bisimilarity)

Strong bisimilarity, noted ∼, is the union of all strong bisimulations.

By considering such observational equivalence we are able to characterize our intended notion
of semantic object: if two processes are bisimilar then they represent (possibly distinct) speci-
fications of the same abstract behavior. We also establish strong bisimilarity is an equivalence
relation and that it is preserved under the usual structural equivalence laws (see Proposition 4.4.4
and Theorem 4.4.5). As for the core CC we establish strong bisimilarity is a congruence.

Theorem 7.4.3 (Congruence)

Strong bisimilarity is a congruence.

1. If P ∼ Q then ld!(ñ).P ∼ ld!(ñ).Q.

2. If P{x̃/ñ} ∼ Q{x̃/ñ} for all ñ then ld?(x̃).P ∼ ld?(x̃).Q.

3. If P{x/n} ∼ Q{x/n} for all n then this(x).P ∼ this(x).Q.

4. If αi.Pi ∼ α′
i.Qi, for all i ∈ I, then Σi∈I αi.Pi ∼ Σi∈I α′

i.Qi.

5. If P ∼ Q then n J [P ] ∼ n J [Q].

6. If P ∼ Q then (νa)P ∼ (νa)Q.

7. If P ∼ Q then P | R ∼ Q | R.

8. If P{X/R} ∼ Q{X/R}, for all R, then recX .P ∼ recX .Q.

9. If P ∼ Q then throw.P ∼ throw.Q.

10. If P ∼ Q then try P catch R ∼ try Q catch R.

11. If P ∼ Q then try R catch P ∼ try R catch Q.

Proof. By coinduction on the definition of strong bisimulation (see Appendix A.5).

The congruence result serves as a sanity check for the mathematical interpretation we choose
for our syntactical constructs, showing they are proper functions at the level of the abstract
behavior: if we take two specifications of the same abstract behavior and place them in a CCexc
language context, then we again have two specifications of the same abstract behavior (which,
in general, is distinct from the original one).
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7.4.1 Weak Bisimilarity

In this section we introduce the weak variant of strong bisimilarity for CCexc processes, which
equates processes by observing only their external actions, abstracting away from internal be-
havior the processes may have. Weak transitions are defined as usual, by collapsing together
sequences of τ transitions, possibly along with some external action.

Definition 7.4.4 (Weak Transition)

We denote by τ−→∗ the reflexive transitive closure of τ−→. Then we say P has a weak λ

transition to Q, noted P
λ=⇒ Q, if it can be derived from:

P
τ−→∗ P ′ λ−→ Q′ τ−→∗ Q (if λ 6= τ)

or P
τ−→∗ Q (if λ = τ)

Notice that in a P
λ=⇒ Q transition, process P may not evolve at all (P τ=⇒ P ), or may evolve

in a countless number of internal reduction steps. On the other hand when λ 6= τ we are sure
that the process has evolved, at least through a λ transition. We define weak bisimulation.

Definition 7.4.5 (Weak Bisimulation)

A weak bisimulation is a symmetric binary relation R on processes such that, for all processes
P and Q, if PRQ, we have:

If P
λ−→ P ′ and bn(λ) # fn(Q)

then there is Q′ such that Q
λ=⇒ Q′ and P ′RQ′.

Two processes are related by a weak bisimulation if given an observation in one of the processes
then the other can match it, up to some internal actions, and the arrival states of the transitions
are related. We prove some properties of weak bisimulations, namely that the union of weak
bisimulations is a weak bisimulation (cf., Proposition 4.4.24), and define weak bisimilarity.

Definition 7.4.6 (Weak Bisimilarity)

Weak bisimilarity, noted ≈, is the union of all weak bisimulations.

Weak bisimilarity thus provides with another useful notion of semantic object, equating pro-
cesses that correspond to the same abstract behavior, regardless of some “private” internal
implementations. We establish that weak bisimilarity is an equivalence relation and that it is
preserved under a standard set of structural laws (cf., Proposition 4.4.26 and Theorem 4.4.27).
Analogously to strong bisimilarity we prove weak bisimilarity is a congruence.

Theorem 7.4.7 (Congruence)

Weak bisimilarity is a congruence.

1. If P ≈ Q then ld!(ñ).P ≈ ld!(ñ).Q.

2. If P{x̃/ñ} ≈ Q{x̃/ñ} for all ñ then ld?(x̃).P ≈ ld?(x̃).Q.

3. If P{x/n} ≈ Q{x/n} for all n then this(x).P ≈ this(x).Q.

4. If αi.Pi ≈ α′
i.Qi, for all i ∈ I, then Σi∈I αi.Pi ≈ Σi∈I α′

i.Qi.
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5. If P ≈ Q then n J [P ] ≈ n J [Q].

6. If P ≈ Q then (νa)P ≈ (νa)Q.

7. If P ≈ Q then P | R ≈ Q | R.

8. If P{X/R} ≈ Q{X/R}, for all R, then recX .P ≈ recX .Q.

9. If P ≈ Q then throw.P ≈ throw.Q.

10. If P ≈ Q then try P catch R ≈ try Q catch R.

11. If P ≈ Q then try R catch P ≈ try R catch Q.

Proof. By coinduction on the definition of weak bisimulation, along the lines of the proof of
Theorem 7.4.3.

Given such results that report on the theoretical soundness of our approach, we now turn to
the more practical perspective so as to illustrate what sort of service-oriented communication
patterns can be captured using the CCexc.

7.5 Implementing Compensations in the CCexc

In this section we show how the CCexc may be used to model interesting error recovery protocols,
namely we show how compensations can be implemented in CCexc. In the service-oriented
computing setting, traditional ACID transactional properties are hard to enforce, since service
transactions are most likely to be long running, and it is typically not possible to “block”
the system resources for so long so as to guarantee such properties are uphold. The notion
of compensation was developed in order to introduce some flexibility so as to support long
running transactions while keeping some of the ideal transactional properties: the intuitive idea
is that we may optimistically run the operations involved in the transaction, e.g., allowing such
operations to access uncommitted resources, and if something goes wrong further along, then
compensations are executed so as to recover the initial state of the system.

Although well known in the context of transaction processing systems for quite a long time
(see e.g., [49, 67]), the use of compensation as a mechanism to undo the effect of long running
transactions, and thus recover some properties of confined ACID transactions (at least consis-
tency and durability), is frequently assumed to be the recovery mechanism of choice for aborted
transactions in distributed services. In this context, some confusion sometimes arises between
the notions of exception and compensation: obviously these are quite different and even inde-
pendent concepts. Exceptions are a mechanism to signal abnormal conditions during program
execution, while compensations are commands intended to undo the effects of previously suc-
cessfully completed tasks during a transaction. Sometimes, an exception mechanism may be a
useful tool to describe a compensation mechanism, but this does not need to be always the case.
Clearly, compensations are most useful as a structuring device to describe undoable actions,
and make particular sense when the underlying process language is based on a concept of basic
action, which effect can be reversed in some way. Given this understanding, it is not difficult to
express a structured compensation mechanism using our primitives.

We illustrate a possible approach by encoding the Compensating CSP calculus (cCSP) pre-
sented in [18]. We start by introducing the cCSP language, then we show how we can encode it
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Atomic actions:
A,B ::= a (Primitive Action)

| 〈R〉 (Transaction)

Basic Programs:
P,Q ::= A (Action)

| P ;Q (Sequential Composition)
| P ⊕Q (Choice)
| P | Q (Parallel Composition)
| P BQ (Exception Handler)
| skip (Normal Termination)
| throw (Throw an Interrupt)

Compensable Programs:
R, T ::= A÷B (Compensation Pair)

| R;T (Sequential Composition)
| R⊕ T (Choice)
| R | T (Parallel Composition)
| RB T (Exception Handler)
| skipp (Normal Termination)
| throww (Thrown an Interrupt)

Figure 7.5: Compensating CSP (cCSP) Syntax.

in the CCexc. Although we do not present here a formal proof of correctness of the encoding,
as it falls out of scope of this text, such proof has been reported elsewhere [24].

7.5.1 The cCSP Language

We briefly present the cCSP language, starting by the language syntax (cf., [18, 24]).

Definition 7.5.1 (cCSP Syntax)

The syntax of the cCSP language is given in Figure 7.5.

We informally describe the semantics of the cCSP primitives. Atomic actions are either primitive
actions a or transactions 〈R〉. Primitive actions are some indivisible basic actions which either
execute successfully or fail, in which case they have no effect in the system state. Transactions
are composed by a structured set of actions, but have the same behavior as a primitive action:
they either successfully terminate or they fail, in which case they have no visible effect in the
system state — the final state is, in some sense, equivalent to the state of the system at the
point right before the transaction started executing.

Basic programs (P,Q) are built from such atomic actions, by composing them in parallel
(P | Q), and by composing them in sequence (P ;Q) — notice that the prefix P in P ;Q may
be a structured process which must terminate before Q can start. Also, we consider a choice
construct P ⊕Q, which represents processes that can internally choose to proceed as P or as Q,
and an exception handler construct P BQ which behaves like a try-catch block: P BQ behaves
as P up to the point an exception is signaled by P , in which case all of P is terminated and Q

is activated. The throw primitive signals an exception has occurred, while skip signals normal
termination.
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Basic programs allow us to structure atomic actions. On the other hand, compensable
programs support the specification of the operations in the scope of a transaction, ensuring that
for each atomic action there is an associated compensation. The basic compensable program
is a pair A ÷ B where A and B are atomic actions: the intuition is that the atomic action B

is able to undo the effect of the A atomic action, leading to a state that should be in some
sense equivalent to the state right before A was executed. Compensable programs may also
be specified by sequential composition, choice, parallel composition, and the exception handler
construct, analogously to basic programs, and also include primitives to signal normal and
abnormal termination: skipp and throww , respectively.

Given this basic informal understanding of the Compensating CSP language we may now
present how we encode it in the Exception Handling Conversation Calculus.

7.5.2 Encoding cCSP in CCexc

In this section we present an encoding of the Compensating CSP language in the CCexc. The
starting point to develop such an encoding is the notion of primitive action: we consider a
basic action to be any CCexc process P that, after successful completion, sends (only once) the
message ok to its environment. A basic action is always supposed to enjoy the following property:
it either executes successfully to completion, or it aborts. It the case of abortion, a basic action is
required not to perform any interesting relevant actions, except signaling abortion by throwing
an exception. Thus, to model primitive actions we assume a mapping from cCSP primitive
actions to CCexc processes that behave as described above: they either signal completion by
sending a single ok message, or signal failure by throwing an exception, leaving the system in
an equivalent state.

Before presenting the encoding we introduce anonymous protected conversation contexts,
which are useful to isolate the several parts of the code that realize the encoding, and an
auxiliary notation useful to lighten presentation.

Notation 7.5.2 We abbreviate ld!() and ld?() with ld! and ld!. Also, we omit � directions.

Definition 7.5.3 (Anonymous Protected Conversations)

By [P ] we denote that CCexc process P is running in an anonymous protected conversation,
defined as:

[P ] , (νa)(a J [P ]) (a 6∈ fn(P ))

By placing a process P in such a protected conversation, we are sure that interactions local to
P (here � messages) are not subject to interference from any other part in the system.

We denote by JP Kok the CCexc process which encodes the cCSP basic program P . The
ok subscript specifies the label of the message that signals normal completion. Basic programs
include atomic actions, therefore include primitive actions and closed transactions. We show
the inductively defined encoding of basic programs in Figure 7.6. Notice that most encodings
make use of anonymous protected conversations to protect the code from external interference.
We thus have that a throw action is implemented by the throw primitive, and that skip is
implemented by the process that sends message ok (notice [ ok�! ] ∼ ok�!). To encode the
structuring operators we use the ok messages to define the control flow (cf., Milner’s encoding of
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JaKok , Pa

J〈T 〉Kok , [ JT Kok,ab,cm,cb | ab?.throw.0 | ok?.ok�! ]

JP ;QKok , [ JP Kok1 | ok1?.JQKok | ok?.ok�! ]

JP ⊕QKok , [ t! + f! | t?.JP Kok | f?.JQKok | ok?.ok�! ]

JP | QKok , [ JP Kok1 | JQKok2 | ok1?.ok2?.ok�! ]

JP BQKok , [ (try JP Kok catch JQKok) | ok?.ok�! ]

JthrowKok , [ throw.0 ]

JskipKok , [ ok�! ]

Figure 7.6: Encoding of cCSP Basic Programs in the CCexc.

concurrent programs [75]). To encode a primitive action a we consider some process Pa, specified
by some external mapping that takes into account the intended functionality of the primitive
action. Instead, the encoding of closed transactions is given by the encoding of the compensable
action, described next.

We denote by JT Kok,ab,cm,cb the CCexc process which encodes the cCSP compensable program
T . The ok, ab, cm and cb are the message labels that capture the signals over which the encoding
is defined. The ok message is used to signal normal completion of the process, while ab signals
that the process has aborted execution before completing its task. In the case the process
successfully completes its task, it will from then on be ready to receive a cm signal (compensate
me) which results in the activation of all compensations of the actions in T , in the appropriate
order — the reverse order with respect to the order in which the actions to be compensated were
originally executed. To signal such compensating task has completed, signal cb (compensate
back) is sent so as to activate compensations of tasks that were executed before T . Given this
understanding on the signals involved in the encoding of a compensable program, we may now
give a more informed description of the encoding of the closed transaction:

J〈T 〉Kok , [ JT Kok,ab,cm,cb | ab?.throw.0 | ok?.ok�! ]

which specifies that if an ab signal is picked up then an exception is thrown, and that if an ok

signal is picked up then it is forwarded to the appropriate environment. The compensation sig-
nals cm and cb are discarded, since the closed transaction is not subject to internal compensation
due to external errors — only compensable processes are able to activate their compensations
upon external failures.

We informally describe the several encodings for compensable programs. The encoding for
the compensation pair is as follows:

JP ÷QKok,ab,cm,cb , [ try JP Kok catch ab�! | ok?.ok�!.(cm�?.JQKcb | cb?.cb�!) ]

which specifies that the positive action (P ) is to be tentatively run, in a try-catch block, up to
the point some exception is thrown (if any). If such an exception is signaled, it is picked up
by the try-catch block, resulting in the emission of message ab to signal abnormal termination.
Otherwise, if no exception is signaled and P successfully terminates then it sends message
ok, to signal normal completion, directed to the external environment (notice the usage of the
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anonymous protected context). At that point, the compensation handler is installed by means of
a process ready to receive a cm signal, after which activating the encoding of Q with completion
signal cb (notice the subscript). When Q completes it will send message cb, which is forwarded
to the external environment.

The encoding of the sequential composition T1;T2 is as follows:

JT1;T2Kok,ab,cm,cb , [ JT1Kok1,ab1,cm1,cb | ab1?.ab�! |
ok1?.JT2Kok,ab,cm,cm1 | ab?.cm1!.cb?.ab�! |
ok?.ok�!.cm�?.cm!.cb?.cb�! ]

The encoding essentially plugs the signals of the encodings of T1 and T2 so as to guarantee that:
(1) T2 is only activated after successful completion of T1 (message ok1); (2) If T2 aborts, then
the compensation of T1 is activated (message cm1); (3) if both processes succeed or one of them
fails then the enclosing environment is notified accordingly.

The encoding for the choice construct relies on a private message exchange on messages t

and f so as to simulate the internal choice:

JT1 ⊕ T2Kok,ab,cm,cb , [ t! + f! | t?.JT1Kok,ab,cm,cb | f?.JT2Kok,ab,cm,cb |
ab?.ab�! | ok?.ok�!.cm�?.cm!.cb?.cb�! ]

Instead, the encoding for parallel composition wires the signals so as wait for completion of both
processes before signaling completion of the parallel composition process:

JT1 | T2Kok,ab,cm,cb , [ JT1Kok1,ab,cm1,cb1 | JT2Kok2,ab,cm2,cb2 |
ok1?.ok2?.ok�!.cm�?.(cm1! | cm2! | cb1?.cb2?.cb�!) |
ab?.(ok1?.cm1!.cb1?.ab�! | ok2?.cm2!.cb1?.ab�! | ab?.ab�!) ]

Notice that if one of the process aborts then, before signaling abortion to the enclosing envi-
ronment, the other process must either terminate normally (in which case its compensation is
activated) or abort.

The encoding of the exception handler construct implements the try-catch behavior:

JT1 B T2Kok,ab,cm,cb , [ JT1Kok1,ab1,cm1,cb1 | ok1?.ok�!.cm�?.(cm1! | cb1?.cb�!) |
ab1?.(JT2Kok2,ab2,cm2,cb2 | ok2?.ok�!.cm�?.(cm2! | cb2?.cb�!) | ab2?.ab�!) ]

ensuring that the exception handler behaves as T1 if no exception is thrown, and otherwise,
behaves as T2.

We show the inductively defined encoding of compensable programs in Figure 7.7. We leave
open the encoding of basic actions, assuming some mapping from basic actions a to processes
Pa. However, it is not difficult to conceive how to represent such basic tasks by remote task
invocations, namely:

JaKok , new Server · a⇐ (ok�?().ok�!() + ko�?().throw.0)

which relies on a service a published at conversation Server , which may be defined as follows:

def a⇒ (try P catch ko�!().throw.0)
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JP ÷QKok,ab,cm,cb , [ try JP Kok catch ab�! |
ok?.ok�!.(cm�?.JQKcb | cb?.cb�!) ]

JT1;T2Kok,ab,cm,cb , [ JT1Kok1,ab1,cm1,cb |
ab1?.ab�! |
ok1?.JT2Kok,ab,cm,cm1 |
ab?.cm1!.cb?.ab�! |
ok?.ok�!.cm�?.cm!.cb?.cb�! ]

JT1 ⊕ T2Kok,ab,cm,cb , [ t! + f! | t?.JT1Kok,ab,cm,cb |
f?.JT2Kok,ab,cm,cb | ab?.ab�! |
ok?.ok�!.cm�?.cm!.cb?.cb�! ]

JT1 | T2Kok,ab,cm,cb , [ JT1Kok1,ab,cm1,cb1 | JT2Kok2,ab,cm2,cb2 |
ok1?.ok2?.ok�!.
cm�?.(cm1! | cm2! |

cb1?.cb2?.cb�!) |
ab?.(ok1?.cm1!.cb1?.ab�! |

ok2?.cm2!.cb1?.ab�! |
ab?.ab�!) ]

JT1 B T2Kok,ab,cm,cb , [ JT1Kok1,ab1,cm1,cb1 |
ok1?.ok�!.
cm�?.(cm1! | cb1?.cb�!) |

ab1?.(JT2Kok2,ab2,cm2,cb2 |
ok2?.ok�!.

cm�?.(cm2! | cb2?.cb�!) |
ab2?.ab�!) ]

JthrowwKok,ab,cm,cb , [ ab�! ]

JskippKok,ab,cm,cb , [ ok�!.cm�?.cb�! ]

Figure 7.7: Encoding of cCSP Compensable Programs in the CCexc.

where the service code P itself may be the result of encoding a basic program. In such way
we expect to be able to model general distributed nested compensating transactions. In the
next section we show an application for such compensating transactions in a service-oriented
scenario, where the primitive actions are implemented by means of remote services.

7.5.3 Compensations in a Service-Oriented Application

In this section we show an example of a service-oriented application where we use compensations
to model the control structure of the application. We consider a car break scenario (adapted
from the Sensoria [59] automotive case study) which involves an onboard service planner, a
car repair service, a tow truck service and a rental car service. We specify the control flow of
the example using a cCSP like specification, which allows us to structure the control flow of the
scenario using compensations. Then we implement the basic activities in CC which, since the
code that implements the cCSP composition operators is directly provided by the encoding of
cCSP in CCexc, then gives us a complete CCexc model of the car break scenario.

We informally describe the intended scenario. A car equipped with a service planner on an
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onboard computer breaks down on the road. The service planner immediately tries to book a
garage repair service, by calling some service available on the network. After that the service
planner tries to call a tow truck service so as to arrange for the pick up of the car at its current
location, and also tries to rent a car, indicating the repair shop location, so as to allow for the
driver to have the rental car waiting for him at the repair shop. On the one hand, if the car
rental booking fails, the rest of the operations should nevertheless proceed. On the other hand,
if there is no available tow truck, then the garage appointment must be canceled and the car
rental gets redirected to the broken down car location.

We implement the service planner in cCSP as follows:

〈BookRepairShop ÷ CancelRepairShop;
((BookCarRental ÷ RedirectCarRental)B skipp

|
OrderTowTruck ÷ CancelTowTruck)〉

The code specifies that first the repair shop is to be booked, then the car rental service and the
tow truck service are contacted simultaneously (in parallel). Each of such actions is accompanied
by the action that compensates them: in the case of the repair shop booking, the compensating
action is the canceling of the repair shop appointment; in the case of the tow truck request, the
compensating action is the canceling of the request; and in the case of the car rental booking,
the action that compensates it is the operation that redirects the rental car to the broken down
car location. Notice that if the car rental operation is to fail in any way, then such failure does
not influence the remaining operations, as specified by the exception handler construct B which
picks up any failure resulting from the operation that rents the car. Notice also the orthogonal
usage of the exception handling primitive and the compensation operator.

Informally, if all operations succeed then the code behaves like:

BookRepairShop; (BookCarRental | OrderTowTruck)

which corresponds to the execution of the “positive” parts of the code. Instead, if the car rental
booking fails and the other operations succeed, then the process behaves like:

BookRepairShop;OrderTowTruck

which captures the fact that a failure in the car rental does not influence the other operations.
Another possibility is that the tow truck reservation fails and other operations succeed, in which
case the behavior of the process may be described as:

BookRepairShop;BookCarRental ;RedirectCarRental ;CancelRepairShop

which captures the idea that a failure of the tow truck reservation causes the compensation of
the other activities to be executed, in the reverse order. Notice that if the repair shop booking
fails then the process should have no visible behavior at all.

Building on our encoding for cCSP processes we may now implement the basic activities in
CCexc, abstracting away from the “glue” code which is directly provided by the encoding. Our
implementation for the basic activities in CCexc must respect the external interface mentioned
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previously: they either succeed in which case they send an ok message, or they fail in which
case they throw an exception. In such way we obtain a CCexc model of the car break scenario.

We implement the repair shop basic operations as follows:

BookRepairShop ,
new RepairShop · MakeAppointment⇐

bookRepairOperation�!(myId).
(repairBookingSucceeded�?().localDiagnosis�!(data).ok�!()
+
repairBookingFailed�?().throw.0)

CancelRepairShop ,
new RepairShop · CancelAppointment⇐

cancelRepairOperation�!(myId).repairOperationCanceled�?().ok�!()

The repair shop booking specifies the instantiation of service MakeAppointment, available at
RepairShop. The service instance code sends message bookRepairOperation, after which
waits to receive either message repairBookingSucceeded or message repairBookingFailed,
informing on the success of the booking. If the booking succeeds a message containing a
localDiagnosis is sent, after which the enclosing environment is notified of the success via
� directed message ok — that will get � directed when crossing the service conversation access
piece. If the booking failed, the enclosing environment is notified of the failure by an exception
signal raised by throw.

The repair shop canceling operation specifies the instantiation of service CancelAppointment,
in which messages cancelRepairOperation and repairOperationCanceled are exchanged, af-
ter which the enclosing environment is notified of the success via message ok — here we assume
compensations do not fail. Notice the external interfaces of processes BookRepairShop and
CancelRepairShop respect the intended invariant: they either send message ok� or signal an
exception.

We assume some variables are provided by the environment of the process, namely myId
which identifies the car or driver, and data which represents some diagnosis data the service
planner locally collects. The implementation of the car rental operations follows similar lines:

BookCarRental ,
new CarRental · RentACar⇐

requestCar�!(myId).
pickUpLocation�!(shopLoc).
(carAvailable�?().ok�!()
+
noCarAvailable�?().throw.0)

RedirectCarRental ,
new CarRental · RedirectCar⇐

changePickUpLocation�!(myId ,myLoc).pickUpLocationChanged�?().ok�!()

The booking and redirecting operations instantiate services RentACar and RedirectCar, respec-
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tively, and after fulfilling the service protocol, signal success or failure by sending message ok

or by throwing an exception, respectively. We assume some extra variables are instantiated by
the environment, namely shopLoc and myLoc, representing the locations of the repair shop and
of the broken down car. Finally we implement the basic activities for the tow truck operations:

orderTowTruck ,
new TowTruck · Order⇐

requestTowTruck�!(myId).
(towTruckAvailable�?().fromTo�!(myLoc, shopLoc).ok�!()
+
noTowTruckAvailable�?().throw.0)

CancelTowTruck ,
new TowTruck · CancelOrder⇐

cancelTowTruck�!(myId).towTruckCanceled�?().ok�!()

The implementation for the OrderTowTruck and CancelTowTruck follows similar lines to the
other basic activities. We have thus provided a compete model for the car break scenario in
CCexc, illustrating how we may combine the cCSP encoding with the appropriate processes to
represent the basic activities.

7.6 Remarks

Primitives to deal with exceptional behavior (for example, closing sessions) are present in several
service calculi [12, 13, 31, 71]. Perhaps surprisingly, our exception mechanism, although clearly
based on the classical construct for imperative languages, does not seem to have been much
explored in process calculi. We believe that it allows us to express many interesting exceptional
behavior scenarios, and, combined with the basic communication primitives, support the mod-
eling of protocols that allow for the coordination of exceptional behavior between the several
distributed parties involved in a service-oriented application.

We have shown that the language extension with the exception handling primitives still enjoys
some essential fundamental properties, namely that our reference observational equivalences
(strong and weak bisimilarity) are congruences. We are not aware of the existence of such
results in related models of service-oriented computing.

Several proposals of process calculi, both flow and interaction based, natively support long
running transactions and forms of compensations [10, 14, 17, 18, 70]. We have shown an encoding
of one of such languages that natively supports compensations, namely the cCSP [18], which
thus demonstrates that the expressiveness of the CC is enough to cope with such higher level
programming constructs. We do not formally state here a proof of correctness of our encoding,
as it falls out of scope of this text, but we have reported it in [24].

We acknowledge that some related approaches already aim at typed exception handling
models, namely [31], while we are yet to develop an extension of the conversation type system
that addresses the Exception Handling Conversation Calculus.
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Chapter 8

Conclusions

We close the dissertation with a summary of our contributions and some notes on possible
evolutions and future work.

8.1 Summary of Contributions

In this dissertation we have presented a core typed model for expressing and analyzing service
and communication based systems, based on the notions of conversation, conversation context,
and context-dependent communication. Building on the identification of some general aspects
of service-based systems, we propose the Conversation Calculus as a model for service-oriented
computation, a process calculus which incorporates abstractions of the several aspects involved
by means of carefully chosen programming language primitives. We also propose analysis tech-
niques, namely the conversation type system and the progress proof system, that improve on pre-
vious works on aspects that are important from a practical point of view, as such improvements
allow us to address highly dynamic configurations that can be found in real service-oriented
applications, and that are out of reach of other approaches.

A Model for Service-Oriented Computation

We have focused our presentation of the model on a detailed justification of the concepts involved,
on examples that illustrate the expressiveness of our model, and on the semantic theory for our
calculus, based on a standard strong bisimilarity. We show how higher-level service-oriented
idioms can be programmed using the basic communication primitives of the language, thus
supporting the claim that our model is more fundamental than other session based approaches,
which include such primitives as native to the languages.

We prove that our chosen syntactical constructs enjoy essential theoretical properties, namely
that they are proper functions of behavior. The behavioral semantics allowed us to prove several
interesting behavioral identities. Some of these identities suggested a normal form result that
clarifies the spatial communication topology of Conversation Calculus systems. Obtaining the
reported results took clarifying subtle points of the model, and even some fine tuning. For
instance, the refinement of the duality in the synchronization algebra turned out to be essential
to prove the split rule, which states that two pieces of the same conversation behave the same
as one. The behavioral identities also suggested the establishment of a structural congruence
based operational semantics.
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We believe that, operationally, the core CC can be seen as a specialized idiom of the π-
Calculus [85], if one considers π extended with labeled channels or pattern matching. However,
for the purpose of studying communication disciplines for service-oriented computing and their
typings, it is much more convenient to adopt a primitive conversation context construct, for it
allows to encapsulate closely related communication and computation in a simple way, as well
as it allows for conversation identities to be kept implicit until needed.

Conversation Types

Conversation types elucidate the intended dynamic structure of conversations, in particular how
freshly instantiated conversations may dynamically engage and dismiss participants, modeling,
in a fairly abstract way, the much lower level correlation mechanisms available in Web-Services
technology. Conversation types also describe the information and control flow of general service-
based collaborations, in particular they may describe the behavior of orchestrations and chore-
ographies. We have established subject reduction and type safety theorems, which entail that
well-typed systems follow the defined protocols.

Conversation types extend the notion of binary session types to multiple participants, but
discipline their communication by exploiting distinctions between labeled messages in a single
shared communication medium, rather than by introducing multiple or indexed more traditional
session typed communication channels as, e.g., in the approach of Honda et al. [57]. Our approach
allows us to unify the notions of global type and local type, and type highly dynamic scenarios
of multiparty concurrent conversations not covered by other approaches. On the other hand,
being more abstract and uniform, our type system does not explicitly keep track of participant
identities. However, we conceive it is possible to specialize our approach so as to consider extra
constraints on projections on types and merges, restricting particular message exchanges to some
roles, so as to ensure the protocols are carried out by determined parties.

Progress Proof System

Our progress proof system allows us to single out well-ordered systems, for which we prove a
progress property — well-ordered systems never get stuck — even when parties are engaged in
multiple interleaved conversations. This implies conversation protocols proceed until they have
finished, and that parties never get stuck on a call to a service. The ability to address systems
that interleave their participation between dynamically acquired mediums of communication and
others was a previously open problem in session types literature, and is crucial, for instance, to
allow for the analysis to address systems where parties access local resources and call external
services to collaborate on a task. Thus, this ability is essential to address real service-oriented
systems, where such requirements are often found, and is out of reach of previous works.

Our examples show how we may specify and analyze challenging configurations, where parties
are dynamically engaged to participate in conversations, where the number of parties that are
simultaneously interacting in a conversation may actually depend on some runtime condition,
and where parties interleave their participation in several of such conversations, including in
conversations to which they dynamically gained access to.

To support the claim that our analysis techniques are not specific to our proposed model,
we show that they can be applied in a more canonical setting, while essentially retaining their
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expressiveness. Also we have presented a language extension that includes exception handling
primitives, and we show how it allow us to accommodate compensations, and thus give support
for long-running transactions which are often required to model the business protocols behind
service-oriented applications.

8.2 Evolutions and Future Work

The work presented in this dissertation may be seen as a first step in the direction of supporting
the specification and analysis of general dynamic multiparty interaction in communication based
systems. Naturally, there is still plenty of room for improvement and further development,
starting from the fact that we have left out of our focus important features such as failure
handling, security, and interoperation mechanisms.

There are several further developments of our model and techniques that may motivate future
work. For instance, it would be interesting to develop inference techniques for conversation types
and for event orderings. Also, extending the conversation type discipline so as to cope with the
exception handling fragment may prove to be a worthwhile challenge. At a more fine-grained
technical level we may consider generalizing the recursion constructs so as to allow for names
to be passed from one iteration to another (parameterized recursion), and lift the analysis
techniques so as to consider such setting. Also, exploring variants of the behavioral merge
relation, namely at the level of how alternative behaviors are handled, may lead to further
generalization of how protocols are distributed throughout the parties. Namely, it would be
interesting to consider shuffling of branches/choices with other behaviors so as to allow for
composing behaviors subject to possible futures.

One interesting possibility for future work at a more conceptual level would be to have a
means to allow for fragments of a distributed protocol to be local to a part of a system, hence
visible only to the parties that intervene in such fragments, while invisible for other parties.
In such way, we would still verify that a global public protocol is followed by the distributed
parties, and allow for some local hidden interactions to take place in between the public ones.
It may be argued that we can already cope with such scenarios by interleaving a conversation
shared by all with a conversation shared by a few, since conversation names can be restricted
to a part of a system. However, given the premise that such public and hidden interactions are
related, we may ask why should they take place in distinct conversations?

One idea that may be worthwhile to pursue so as to support this, would be to extend the
language with restriction over message labels (cf., conversation name restriction). Ideally, this
would allow for parts of a protocol that are realized on a determined label to be local to the
parties that intervene in the message exchanges defined for that label. As for protocols on
restricted conversations, when closing the scope of a restricted label we would elide all messages
referring such label from the behavioral types, while making sure that the interactions are closed,
hence that all such message message types have polarity τ. In such way, we would support, for
instance, service definitions that export a public interface to the clients, which may specify
message exchanges which will be carried out by several parties, but that may internally resort to
message exchanges that are not visible to the client. Notice that labels would still not be passed
in messages, so, in some sense, we would be considering CCS [74] like restriction in message
labels (no label mobility), while we would keep π-Calculus like restriction in conversation names
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(conversation name mobility).
Such a feature could prove to be important from a security point of view. For example,

consider a group of two trusted parties that are interacting in a conversation and that intend to
ask a third untrusted party to join the conversation. The three parties may share a global public
conversation protocol, while the two trusted parties may extend such protocol with some local
message exchanges, so as to allow for some sensitive information to nevertheless be exchanged.

On more general lines of research it would be interesting to see if there is a notion of typa-
bility (perhaps extending and combining conversation types and event orderings) that precisely
characterizes the abstract behavior of CC processes, in the sense that if two processes have
the same types then they have the same behavior (they are bisimilar). This would allow us
to use type-checking techniques to test behavioral equivalences, and have a means to precisely
characterize safe-substitution of subsystems up to behavior: we may replace a subsystem with
another, just as long they are typed (behave) in the same way, and obtain a system that behaves
as the original one. Notice that, in our current setting, if we are to replace subsystems by others
that are typed and ordered in the same way as the initial one, then our properties (conversation
fidelity and progress) still hold.

Another line of work which would be interesting to pursue at the level of the characterization
of the abstract semantics of the model, would be the use of logics to behaviorally characterize
CC systems — as introduced by Hennessy et al. [52] — and also spatially characterize CC
systems — as introduced by Caires et al. [25] and by Cardelli et al. [33] and further pursued
in [21, 22] — given that behavioral and spatial configurations are in some sense interlinked in
the CC model. We would then be able — following the approach of Caires [19] for which we
have developed a prototype model-checker [88] — to model-check spatial behavioral properties
of CC systems. We have already began using the prototype model-checker to verify conformance
of CC systems with respect to WS-CDL like choreographies, using translations of CC systems
into π-calculus specifications and of WS-CDL choreographies into spatial logic formulae, where
we prove that the check in the original models is equivalent to the check in the translations (de-
scribed in [5]). Also, it would be interesting to investigate the relation of such spatial behavioral
logical characterizations of CC processes and the behavioral semantics, a line of work we have
pursued previously in other models [26, 89], for instance by developing standard observational
equivalences using the notion of external observer that may interact with the system (and ob-
serve some barbs) and see if such an external observer of CC systems can, in an extensional way,
acquire knowledge of how such systems are spatially configured.

Ultimately, our developments would gain their full relevance if they were transported to prac-
tice. To that end it would be interesting to see if our notion of conversations can be mapped into
a mainstream service-oriented computing programming language, for instance, by using correla-
tion tokens to encode conversations (e.g., encoding conversations in WS-BPEL [4]) or using an
intermediate language based on correlations to establish the comparison (e.g., COWS [71]). We
establish decidability of our techniques (if bound names are type/ordering annotated) as our
rules are syntax directed and auxiliary operations are finitary, namely the merge relation, and
typability/well-ordering is witnessed by a proof tree (as usual). As such, we intend to pursue the
development of a prototype implementation of a programming language inspired by the Con-
versation Calculus, and also of a conversation type checker and progress proof system checker,
so as to serve as a proof-of-concept of the applicability of our ideas. This work has been started
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by Lourenço et al., already leading to other interesting contributions, namely a type inference
algorithm for conversation types [72].
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Appendix A

Proofs

A.1 Chapter 3

Proposition 3.2.14 (Behavioral Type Merge Relation Properties)

(repetition of the statement in page 51)

The behavioral types merge relation is commutative and associative:

(1 ). If B = B1 ./ B2 then B = B2 ./ B1.

(2 ). If B′ = B1 ./ B2 and B = B′ ./ B3 then there is B′′ such that B′′ = B2 ./ B3 and
B = B1 ./ B′′.

Proof.

(1 ). Follows immediately from the definition.

(2 ). By induction on the derivation of B′ = B1 ./ B2 and B = B′ ./ B3. Follows lines similar
to the proof of Proposition 5.2.19(2 ) (see Appendix A.3).

Proposition 3.3.3 (Weakening)

(repetition of the statement in page 58)

Let P be a well-typed process such that P :: L1. If exponential output located type ?L!
2 is such

that L1 and ?L!
2 are apart, hence L1 # ? L!

2, then P :: L1 | ? L!
2.

Proof. By induction on the length of the derivation of P :: L1. Follows lines similar to the proof
of Proposition 5.3.3 (see Appendix A.3).

Lemma 3.3.4 (Substitution Lemma)

(repetition of the statement in page 58)

Let P be a well-typed process such that P :: L | x : C and x 6∈ dom(L). If there is type L′ such
that L′ = L ./ a : C then P{x/a} :: L′.

Proof. By induction on the length of the derivation of P :: L | x : C. We show the case of rule
(Output), when P is of the form b · l!(x).P .

(Rule (Output))
We have:

b · l!(x).Q :: L | x : C (A.1.3.1)
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where x 6∈ dom(L). We have (A.1.3.1) is derived from:

Q :: L1 ./ b : [B] (A.1.3.2)

and:
L | x : C ≡ (L1 ./ b : [! l(C ′).B]) ./ x : C ′ (A.1.3.3)

In order to apply the induction hypothesis we first characterize types L1, C and L. We separate
L1 into two parts L′′ and x : C ′′ such that L′′ does not mention x (i.e., x 6∈ dom(L′′)):

L1 ≡ L′′ | x : C ′′ (A.1.3.4)

From (A.1.3.3) we have that x : C is the result of the merge of x : C ′ with the type that L1

specifies for x (which we identify in (A.1.3.4) as C ′′), hence:

x : C = x : C ′′ ./ x : C ′ (A.1.3.5)

Also, since L′′ does not mention x and x 6= b we have that ((L′′ | x : C ′′) ./ b : [! l(C ′).B]) ./

x : C ′ yields the same type as (L′′ ./ b : [! l(C ′).B]) | (x : C ′′ ./ x : C ′), hence from (A.1.3.3) we
have:

L ≡ L′′ ./ b : [! l(C ′).B] (A.1.3.6)

We now assume the hypothesis in the statement of the Lemma: there is type L′ such that:

L′ = L ./ a : C (A.1.3.7)

From (A.1.3.7) and (A.1.3.6) and since C ′′ is a partial view of C (A.1.3.5), we conclude there is
type L′

1 such that:
L′

1 = (L′′ ./ a : [B]) ./ a : C ′′ (A.1.3.8)

We rewrite (A.1.3.2) considering (A.1.3.4), using the subsumption rule, and obtain:

Q :: (L′′ ./ b : [B]) | x : C ′′ (A.1.3.9)

By induction hypothesis on (A.1.3.9) and (A.1.3.8) we conclude:

Q{x/a} :: (L′′ ./ b : [B]) ./ a : C ′′ (A.1.3.10)

from which we have:
Q{x/a} :: (L′′ ./ a : C ′′) ./ b : [B] (A.1.3.11)

From (A.1.3.11) using rule (Output) we derive:

b · l!(a).Q{x/a} :: ((L′′ ./ a : C ′′) ./ b : [! l(C).B]) ./ a : C ′ (A.1.3.12)

from which we have:

b · l!(a).Q{x/a} :: (L′′ ./ b : [! l(C).B]) ./ (a : C ′ ./ a : C ′′) (A.1.3.13)
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From (A.1.3.13) and (A.1.3.6) and (A.1.3.5) we conclude:

b · l!(a).Q{x/a} :: L ./ a : C (A.1.3.14)

which completes the proof for this case.

We start by stating some auxiliary results to the proof of Theorem 3.3.5. Such auxiliary results
allows us to characterize the types associated to processes that exhibit a determined behavior.
Then, using the type information, we may explain the several kinds of internal interactions in
the proof of Theorem 3.3.5.

Lemma A.1.4

If p l(C).B <: B′ then there are B1, B2 such that B′ ≡ B1 | p l(C).B2 and B <: B1 | B2.

Proof. By induction on the length of the derivation of p l(C).B <: B′. Follows expected lines.

Lemma A.1.5

Let L be a type such that L = L1 ./ L2. If there is L′ such that L <: L′ then there are L′
1 and

L′
2 such that L1 <: L′

1 and L2 <: L′
2 and L′ = L′

1 ./ L′
2.

Proof. Follows by induction on the length of the derivation of L <: L′ in expected lines.

Lemma A.1.6

Let P be a process such that P :: L. If P
c·l?(a)−→ Q then there are L′, C, B such that L ≡ L′ ./ c :

[? l(C).B]. Furthermore if there is L′′ = (L′ ./ c : [B]) ./ a : C then Q :: L′′.

Proof. By induction on the length of the derivation of the transition P
c·l?(a)−→ Q. We show

the case when the transition originates in an input prefix and in one component of a parallel
composition.

(Case c · l?(x).P
c·l?(a)−→ P{x/a})

We have that:

c · l?(x).P :: L and c · l?(x).P
c·l?(a)−→ P{x/a} (A.1.6.1)

From (A.1.6.1) and considering rule (Input) we have there is L′, C, B such that:

L′ ./ c : [? l(C).B] <: L (A.1.6.2)

and:

c · l?(x).P :: L′ ./ c : [? l(C).B] and P :: (L′ ./ c : [B]) | x : C (A.1.6.3)

From (A.1.6.2) and considering Lemma A.1.5 and Lemma A.1.4 we conclude there are L′′, B′, B′′

such that:
L ≡ L′′ ./ c : [B′ | ? l(C).B′′] (A.1.6.4)

and:
L′ <: L′′ and B <: B′ | B′′ (A.1.6.5)
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We rewrite (A.1.6.4) to:
L ≡ (L′′ ./ c : [B′]) ./ c : [? l(C).B′′] (A.1.6.6)

Let us now consider there is L′′ such that:

L′′′ ≡ ((L′′ ./ c : [B′]) ./ c : [B′′]) ./ a : C (A.1.6.7)

Since L′ <: L′′ and B <: B′ | B′′ and from (A.1.6.7) we directly have that there is L1 such that

L1 ≡ (L′ ./ c : [B]) ./ a : C (A.1.6.8)

Considering Lemma 3.3.4 we then have:

P{x/a} :: (L′ ./ c : [B]) ./ a : C (A.1.6.9)

From (A.1.6.9) we conclude:

P{x/a} :: (L′′ ./ c : [B′ | B′′]) ./ a : C (A.1.6.10)

hence:
P{x/a} :: ((L′′ ./ c : [B′]) ./ c : [B′′]) ./ a : C (A.1.6.11)

which completes the proof for this case.
(Case P ′ | R

c·l?(a)−→ Q′ | R)
We have that:

P ′ | R :: L and P ′ | R
c·l?(a)−→ Q′ | R (A.1.6.12)

which is derived from:
P ′ c·l?(a)−→ Q′ (A.1.6.13)

Considering (A.1.6.12) and rule (Par) we have that there is L1, L2 such that L1 ./ L2 <: L and:

P ′ | R :: L1 ./ L2 and P ′ :: L1 and R :: L2 (A.1.6.14)

By induction hypothesis on (A.1.6.13) and (A.1.6.14) we have that there is L′
1, C, B such that:

L1 ≡ L′
1 ./ c : [? l(C).B] (A.1.6.15)

From L1 ./ L2 <: L we conclude:

(L′
1 ./ c : [? l(C).B]) ./ L2 <: L (A.1.6.16)

which leads to:
(L′

1 ./ L2) ./ c : [? l(C).B] <: L (A.1.6.17)

which, considering Lemma A.1.5 and Lemma A.1.4 gives us there are L′, B′, B′′ such that:

L ≡ L′ ./ c : [B′ | ? l(C).B′′] (A.1.6.18)
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where:
(L′

1 ./ L2) <: L′ (A.1.6.19)

and:
B <: B′ | B′′ (A.1.6.20)

From (A.1.6.18), (A.1.6.15) and L1 ./ L2 <: L we have that there is (L′
1 ./ c : [B]) ./ a : C, and

thus by induction hypothesis we conclude:

Q′ :: (L′
1 ./ c : [B]) ./ a : C (A.1.6.21)

From (A.1.6.21) and (A.1.6.14) we derive:

Q′ | R :: ((L′
1 ./ c : [B]) ./ a : C) ./ L2 (A.1.6.22)

which leads to:
Q′ | R :: ((L′

1 ./ c : [B]) ./ a : C) ./ L2 (A.1.6.23)

and hence:
Q′ | R :: ((L′

1 ./ L2) ./ c : [B]) ./ a : C (A.1.6.24)

From (A.1.6.24), (A.1.6.19) and (A.1.6.20) we conclude:

Q′ | R :: (L′ ./ c : [B′ | B′′]) ./ a : C (A.1.6.25)

which completes the proof for this case.

Lemma A.1.7

Let P be a process such that P :: L. If P
c·l!(a)−→ Q then there are L′, C, B such that L ≡ L′ ./ c :

[! l(C).B] and there is L′′ such that L′ ≡ L′′ ./ a : C and Q :: L′′ ./ c : [B].

Proof. By induction on the length of the derivation of the transition P
c·l!(a)−→ Q. We show the

cases when the transition results from a output prefix.
(Case c · l!(a).P ′ c·l!(a)−→ P ′)
We have that:

c · l!(a).P ′ :: L and c · l!(a).P ′ c·l!(a)−→ P ′ (A.1.7.1)

From (A.1.7.1) and considering rule (Output) we have there is L′, C, B such that:

(L′ ./ c : [! l(C).B]) ./ a : C <: L (A.1.7.2)

and:

c · l!(a).P ′ :: (L′ ./ c : [! l(C).B]) ./ a : C and P ′ :: L′ ./ c : [B] (A.1.7.3)

We rewrite (A.1.7.2) to:
(L′ ./ a : C) ./ c : [! l(C).B] <: L (A.1.7.4)
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Then considering Lemma A.1.5 and Lemma A.1.4 we conclude there are L′′, B′, B′′ such that:

L ≡ L′′ ./ c : [B′ | ! l(C).B′′] (A.1.7.5)

where:
L′ ./ a : C <: L′′ (A.1.7.6)

and:
B <: B′ | B′′ (A.1.7.7)

From (A.1.7.6) we have that there is L1 such that L′ <: L1 and:

L′′ ≡ L1 ./ a : C (A.1.7.8)

From (A.1.7.3), L′ <: L1 and (A.1.7.7) we conclude:

P ′ :: L1 ./ c : [B′ | B′′] (A.1.7.9)

which completes the proof for this case.

Lemma A.1.8

Let P be a process such that P :: L. If P
(νa)c·l!(a)−→ Q then there are L′, C, B such that L ≡

L′ ./ c : [! l(C).B] and there are B′, C ′ such that closed(B′), a : [B′] = a : C ′ ./ a : C and
Q :: (L′ ./ c : [B]) | a : C ′.

Proof. By induction on the length of the derivation of the transition P
(νa)c·l!(a)−→ Q. The proof

follows similar lines to that of Lemma A.1.7. We show the case of rule (Open) (Figure 2.2).

(Case (νa)P ′ (νa)c·l!(a)−→ Q′)
We have that:

(νa)P ′ :: L and (νa)P ′ c·l!(a)−→ Q′ (A.1.8.1)

which is derived from:
P ′ c·l!(a)−→ Q′ (A.1.8.2)

From (A.1.8.1) and considering rule (Res) we have that there is L′, B such that:

L′ <: L and (νa)P ′ :: L′ and P ′ :: L′ | a : [B] (A.1.8.3)

and closed(B). Considering Lemma A.1.7 and (A.1.8.2) and (A.1.8.3) we have that there are
L1, C, B′ such that either:

L′ | a : [B] ≡ L1 ./ c : [! l(C).B′] (A.1.8.4)

and there is L′
1 such that:

L1 ≡ L′
1 ./ a : C (A.1.8.5)

and:
Q′ :: L′

1 ./ c : [B′] (A.1.8.6)
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We rewrite (A.1.8.4) considering (A.1.8.5):

L′ | a : [B] ≡ (L′
1 ./ a : C) ./ c : [! l(C).B′] (A.1.8.7)

From (A.1.8.7) we conclude there is L′′
1, C

′ such that L′
1 ≡ L′′

1 | a : C ′ and:

a : [B] ≡ a : C ′ ./ a : C (A.1.8.8)

and:
L′ ≡ L′′

1 ./ c : [! l(C).B′] (A.1.8.9)

From L′ <: L and (A.1.8.9), considering Lemma A.1.5) and Lemma A.1.4 we conclude there is
L′′, B1, B

′
1 such that:

L ≡ L′′ ./ c : [B1 | ! l(C).B′
1] (A.1.8.10)

where:
L′′

1 <: L′′ and B′ <: B1 | B′
1 (A.1.8.11)

We rewrite (A.1.8.6), considering L′
1 ≡ L′′

1 | a : C ′:

Q′ :: (L′′
1 | a : C ′) ./ c : [B′] (A.1.8.12)

Since a 6= c we then have:
Q′ :: (L′′

1 ./ c : [B′]) | a : C ′ (A.1.8.13)

From (A.1.8.13) and (A.1.8.11) we conclude:

Q′ :: (L′′ ./ c : [B1 | B′
1]) | a : C ′ (A.1.8.14)

which completes the proof for this case.

Lemma A.1.9

Let types L1, L
′
1, L

′
2 be such that L′

1 <: L1 and L′
1 → L′

2. Then we have that there is type L2

such that L1 and P :: L′
2 implies P :: L2.

Proof. By induction on the derivation of L′
1 <: L1, following expected lines.

Theorem 3.3.5 (Subject Reduction)

(repetition of the statement in page 58)

Let P be a well-typed process such that P :: L. If P → Q then there is L → L′ such that Q :: L′.

Proof. By induction on the length of the derivation of the reduction P → Q. We show the
case of a reduction derived through rule (Comm) and from rule (Close), distinguishing between
when the message is defined on a plain label and on a shared label.

(Case (Comm))
We have:

P1 | P2
τ−→ Q1 | Q2 (A.1.10.1)
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derived from:
P1

c·l!(a)−→ Q1 (i) and P2
c·l?(a)−→ Q2 (ii) (A.1.10.2)

Since P1 | P2 is a well-typed process, we have P1 | P2 :: L for some L,L′ such that L′ <: L and:

P1 | P2 :: L′ (A.1.10.3)

where (A.1.10.3) is derived from (rule (Par)):

P1 :: L1 (i) and P2 :: L2 (ii) and L′ = L1 ./ L2 (iii) (A.1.10.4)

From (A.1.10.2)(i) and (A.1.10.4)(i) and considering Lemma A.1.7 we conclude that there are
L′

1, C1, B1 such that:
L1 ≡ L′

1 ./ c : [! l(C1).B1] (A.1.10.5)

From (A.1.10.2)(ii) and (A.1.10.4)(ii), considering Lemma A.1.6, we conclude that there are
L′

2, C2, B2 such that:
L2 ≡ L′

2 ./ c : [? l(C2).B2] (A.1.10.6)

We consider the two possible cases: either the label is plain (l ∈ Lp) or it is shared (l ∈ L?).
(Plain label) If l is a plain label, from (A.1.10.4)(iii) we have that it must be the case that

in L′ there is a τ introduced by rule (Plain) for this synchronization which is only possible if
C1 ≡ C2 and thus:

L′ ≡ (L′
1 ./ c : [! l(C).B1]) ./ (L′

2 ./ c : [? l(C).B2]) ≡ (L′
1 ./ L′

2) ./ (c : [τ l(C).(B1 ./ B2)])
(A.1.10.7)

otherwise the merge L1 ./ L2 (A.1.10.4)(iii) would not be defined. We use C such that C ≡
C1 ≡ C2. We also have that, from Lemma A.1.7, there is L′′

1 such that:

L′
1 = L′′

1 ./ a : C (i) and Q1 :: L′′
1 ./ c : [B1] (ii) (A.1.10.8)

From the merge in (A.1.10.7) and (A.1.10.8)(i) we conclude:

L′ ≡ ((L′′
1 ./ a : C) ./ L′

2) ./ (c : [τ l(C).(B1 ./ B2)]) (A.1.10.9)

From (A.1.10.9) we have that there is L′′
2 such that: L′′

2 = (L′
2 ./ c : [B2]) ./ a : C, hence from

Lemma A.1.6 we conclude:
Q2 :: (L′

2 ./ c : [B2]) ./ a : C (A.1.10.10)

From (A.1.10.9) and (A.1.10.8)(ii) and (A.1.10.10) we conclude:

Q1 | Q2 :: ((L′′
1 ./ c : [B1]) ./ ((L′

2 ./ c : [B2]) ./ a : C)) (A.1.10.11)

We can derive a reduction for type L′ as follows:

L′ ≡ ((L′′
1 ./ a : C) ./ L′

2) ./ (c : [τ l(C).(B1 ./ B2)])
→ ((L′′

1 ./ a : C) ./ L′
2) ./ (c : [B1 ./ B2])

≡ ((L′′
1 ./ c : [B1]) ./ ((L′

2 ./ c : [B2]) ./ a : C))
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Since L′ <: L and considering Lemma A.1.9 we have that there is L′′ such that L → L′′ and
Q1 | Q2 :: T ′′ which completes the proof for this case.

(Shared label) If l is a shared label then by conformance we have that C1 ≡ C2(≡ C).
From the definition of merge and (A.1.10.4)(iii) we conclude that ? l(C).B2 ≡ ?? l(C). Also,
considering Lemma A.1.7 we have there is L′′

1 such that:

L′
1 = L′′

1 ./ a : C (i) and Q1 :: L′′
1 ./ c : [B1] (ii) (A.1.10.12)

From the merge in (A.1.10.4)(iii), and (A.1.10.12)(i) and (A.1.10.6) we conclude:

L′ = ((L′′
1 ./ a : C) ./ c : [! l(C).B1]) ./ (L′

2 ./ c : [?? l(C)]) (A.1.10.13)

for which we have:

((L′′
1 ./ a : C) ./ c : [! l(C).B1]) ./ (L′

2 ./ c : [?? l(C)])
≡
((L′′

1 ./ a : C) ./ L′
2) ./ (c : [! l(C).B1 ./ ?? l(C)])

≡
((L′′

1 ./ a : C) ./ L′
2) ./ (c : [τ l(C).(B1{! l(C)/τ l(C)}) | ? ? l(C)])

(A.1.10.14)

From (A.1.10.14) we conclude there is (L′
2 ./ c : [?? l(C)]) ./ a : C, which, from Lemma A.1.6,

gives us that:
Q2 :: (L′

2 ./ c : [?? l(C)]) ./ a : C (A.1.10.15)

From (A.1.10.12)(ii), (A.1.10.15) and (A.1.10.14) we derive:

Q1 | Q2 :: (L′′
1 ./ c : [B1]) ./ ((L′

2 ./ c : [?? l(C)]) ./ a : C) (A.1.10.16)

From (A.1.10.14) we have:

((L′′
1 ./ a : C) ./ L′

2) ./ (c : [τ l(C).(B1{! l(C)/τ l(C)}) | ? ? l(C)])
→
((L′′

1 ./ a : C) ./ L′
2) ./ (c : [(B1{! l(C)/τ l(C)}) | ? ? l(C)])

≡
((L′′

1 ./ a : C) ./ L′
2) ./ (c : [B1 ./ ?? l(C)])

≡
(L′′

1 ./ c : [B1]) ./ ((L′
2 ./ c : [?? l(C)]) ./ a : C)

(A.1.10.17)

We then have, from L′ <: L, (A.1.10.13), (A.1.10.14) and (A.1.10.17) and considering Lemma A.1.9
that there is L′′ such that L → L′′ and Q1 | Q2 :: L′′ which completes the proof for this case.

(Case (Close))
We have:

P1 | P2
τ−→ (νa)(Q1 | Q2) (A.1.10.18)

derived from:
P1

(νa)c·l!(a)−→ Q1 (i) and P2
c·l?(a)−→ Q2 (ii) (A.1.10.19)
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Since P1 | P2 is a well-typed process, we have P1 | P2 :: L for some L,L′ such that L′ <: L and:

P1 | P2 :: L′ (A.1.10.20)

where (A.1.10.20) is derived from (rule (Par)):

P1 :: L1 (i) and P2 :: L2 (ii) and L′ = L1 ./ L2 (iii) (A.1.10.21)

From (A.1.10.19)(i) and (A.1.10.21)(i) and considering Lemma A.1.8 we conclude that there are
L′

1, C1, B1 such that:
L1 ≡ L′

1 ./ c : [! l(C1).B1] (A.1.10.22)

From (A.1.10.19)(ii) and (A.1.10.21)(ii), considering Lemma A.1.6, we conclude that there are
L′

2, C2, B2 such that:
L2 ≡ L′

2 ./ c : [? l(C2).B2] (A.1.10.23)

We show the case when the label is plain — the proof for the case the label is shared follows
similar lines. From (A.1.10.21)(iii) we have that it must be the case that in L′ there is a τ

introduced by rule (Plain) for this synchronization which is only possible if C1 ≡ C2 and thus:

L′ ≡ (L′
1 ./ c : [! l(C).B1]) ./ (L′

2 ./ c : [? l(C).B2]) ≡ (L′
1 ./ L′

2) ./ (c : [τ l(C).(B1 ./ B2)])
(A.1.10.24)

otherwise the merge L1 ./ L2 (A.1.10.21)(iii) would not be defined. We use C such that
C ≡ C1 ≡ C2. We also have that, from Lemma A.1.8, there is B′, C ′ such that closed(B′) and:

a : [B′] = a : C ′ ./ a : C (i) and Q1 :: (L′
1 ./ c : [B1]) | a : C ′ (ii) (A.1.10.25)

Since a 6∈ fn(Q2) we have that there is L′′
2 such that: L′′

2 = (L′
2 ./ c : [B2]) ./ a : C, hence from

Lemma A.1.6 we conclude:
Q2 :: (L′

2 ./ c : [B2]) ./ a : C (A.1.10.26)

From (A.1.10.24) and (A.1.10.25)(ii) and (A.1.10.26) we conclude:

Q1 | Q2 :: ((L′
1 ./ c : [B1]) | a : C ′) ./ ((L′

2 ./ c : [B2]) ./ a : C)) (A.1.10.27)

From (A.1.10.27) we conclude:

Q1 | Q2 :: ((L′
1 ./ c : [B1]) ./ (L′

2 ./ c : [B2])) | (a : C ′ ./ a : C) (A.1.10.28)

which, along with closed(B′) and (A.1.10.25)(i), gives us:

(νa)(Q1 | Q2) :: (L′
1 ./ c : [B1]) ./ (L′

2 ./ c : [B2]) (A.1.10.29)

We can derive a reduction for type L′ as follows:

L′ ≡ (L′
1 ./ L′

2) ./ (c : [τ l(C).(B1 ./ B2)])
→ (L′

1 ./ L′
2) ./ (c : [B1 ./ B2])

≡ (L′
1 ./ c : [B1]) ./ (L′

2 ./ c : [B2])
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Since L′ <: L and considering Lemma A.1.9 we conclude there is L′′ such that L → L′′ and
(νa)(Q1 | Q2) :: L′′ which completes the proof.

Proposition 3.3.9 (Error Freeness)

(repetition of the statement in page 59)

If P is a well-typed process then P is not an error process.

Proof. The result follows from the definition of merge ./. A parallel composition is well typed if
the types of the parallel branches can be merged. Since it is not possible to synchronize message
types defined on plain labels with the same polarity (which is the case for competing messages)
and such types are not apart # (the label sets are not disjoint) it is not possible to merge them.
Hence the composition of processes that exhibit competing plain messages is not typable, hence
error processes are not typable.

From the definition of error process we there are C, Q,R, c, l, flag such that l ∈ Lp and
P = C [Q | R] and:

C[Q | c · l−.flag�!()] → C[Q′ | flag�!()]
and

C[R | c · l−.flag�!()] → C[R′ | flag�!()]

Let us consider the case when c · l−= c · l?(x). We then have that there is a such that either:

Q
(νa)c·l!(a)−→ Q′ (A.1.11.1)

or:
Q

c·l!(a)−→ Q′ (A.1.11.2)

and b such that either:
R

(νb)c·l!(b)−→ R′ (A.1.11.3)

or:
R

c·l!(b)−→ R′ (A.1.11.4)

We consider the case (A.1.11.1) and (A.1.11.4), and elide the proof for the remaining combina-
tions as their proofs follow similar lines. Let us assume that there are L1, L2 such that:

Q :: L1 (A.1.11.5)

and:
R :: L2 (A.1.11.6)

From (A.1.11.1) and (A.1.11.5) and Lemma A.1.8 we conclude there is L′
1, B1, C1 such that:

L1 ≡ L′
1 ./ c : [! l(C1).B1] (A.1.11.7)

and from (A.1.11.5) and (A.1.11.6) and Lemma A.1.7 we conclude there is L′
2, B2, C2 such that:

L2 ≡ L′
2 ./ c : [! l(C2).B2] (A.1.11.8)

Then, by definition of merge, we conclude it is not possible to synchronize such message types
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as they both have polarity !. Furthermore they are not apart as both types specify message l

in conversation c. Thus there is no type L1 ./ L2 and therefore Q | R is untypable.

A.2 Chapter 4

Proposition 4.4.2 (Closure Under Union)

(repetition of the statement in page 81)

Let S be a set of strong bisimulations. Then
⋃
S is a strong bisimulation.

Proof. Let us consider processes P,Q such that (P,Q) ∈
⋃
S. We intend to prove that any

transition of process P is matched by a transition of process Q leading to states which are
equated by relation

⋃
S. We have there must be R ∈ S such that PRQ, and thus for any

λ, P ′ such that P
λ−→ P ′ and bn(λ) # fn(Q) there is Q′ such that Q

λ−→ Q′ and P ′RQ′. Thus
(P ′, Q′) ∈

⋃
S, which completes the proof.

Next we show some results auxiliary to the proof of transitivity of strong bisimilarity. The first,
Lemma A.2.1, shows that given two bisimilar processes we can swap around names that occur
free in one of the processes and do not occur free in the other process, and still obtain bisimilar
processes; The second, Lemma A.2.2, shows that given two bisimilar processes we can place one
of the processes in a parallel context that has no behavior, and still obtain bisimilar processes.

Lemma A.2.1

Let P,Q be processes such that P ∼ Q. If we take σ such that it is a name permutation on
fn(Q) \ fn(P ) and the identity substitution on Λ \ (fn(Q) \ fn(P )), then P ∼ σ(Q).

Proof. Follows by coinduction on the definition of strong bisimulation in expected lines. Notice
that the set of names swapped around occurs free only in one of the processes and hence will
never be observed in the transitions. The set of names is kept invariant by the substitution
so as to prevent clashes with names introduced by bound transitions. The proof proceeds by
witnessing relation:

R , {(P, σ(Q)) | P ∼ Q ∧ fn(σ(Q)) = fn(Q) ∧ ∀R.fn(R) # (fn(Q) \ fn(P )) =⇒ σ(R) = R}
(A.2.1.1)

is contained in ∼ by coinduction on the definition of strong bisimulation.
Let us take P,Q such that (P, σ(Q)) ∈ R. We first match a transition of P by a transition

of σ(P ). We take λ, P ′ such that P
λ−→ P ′ and bn(λ) # fn(σ(Q)). From fn(σ(Q)) = fn(Q)

(A.2.1.1) we then have bn(λ) # fn(Q). Then from P ∼ Q (A.2.1.1) we have there is Q′ such that

Q
λ−→ Q′ and P ′ ∼ Q′. We then have σ(Q)

σ(λ)−→ σ(Q′). From bn(λ) # fn(Q) and fn(λ) ⊆ fn(P )
and (A.2.1.1) we have σ(P ) = P and σ(λ) = λ. Thus σ(Q) λ−→ σ(Q′), which completes this
part of the proof.

Now let us take λ, Q′ such that σ(Q) λ−→ Q′ and bn(λ) # fn(P ). We have Q
σ−1(λ)−→ σ−1(Q′).

From bn(λ) # fn(P ) we conclude bn(σ−1(λ))# fn(P ) (from σ(P ) = P ). Then from P ∼ Q we

have there is P ′ such that P
σ−1(λ)−→ P ′ and P ′ ∼ σ−1(Q′). We have σ(σ−1(λ)) = λ. Thus from

P
σ−1(λ)−→ P ′ we have σ(P )

σ(σ−1(λ))−→ σ(P ′) and hence P
λ−→ σ(P ′). From σ(Q) λ−→ Q′ we have

that bn(λ) # fn(σ(Q)), hence bn(λ) # fn(Q). We have that fn(P ′) ⊆ fn(P ) ∪ bn(λ), from which
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we then conclude fn(P ′) # (fn(Q) \ fn(P )) and hence σ(P ′) = P ′. So we have P
λ−→ P ′ and

P ′ ∼ σ−1(Q′) and therefore (P ′, Q′) ∈ R which completes the proof.

Lemma A.2.2

Let P and Q be processes such that P ∼ Q. Then P ∼ Q | (νc)(c J [l�!(ã)]).

Proof. Follows by coinduction on the definition of strong bisimulation in expected lines. Notice
process (νc)(c J [l�!(ã)]) has no observable behavior due to the name restriction on c.

Proposition 4.4.4 (Equivalence Relation)

(repetition of the statement in page 81)

Strong bisimilarity is an equivalence relation.

Proof. Proof of reflexivity is immediate and of symmetry follows directly from the definition.
Proof of transitivity follows by coinduction on the definition of strong bisimulation, by witnessing
relation:

R , {(P,Q) | ∃R.P ∼ R ∧R ∼ Q}

is a bisimulation consistent relation, i.e., R ⊆ F(R) where F is the bisimulation function, and
therefore contained in ∼, since ∼ is the union of all F-consistent relations.

Let us consider processes P,Q such that (P,Q) ∈ R. We must show that any transition of P

is matched by a transition of Q leading to states related in R. Let us consider λ, P ′ such that:

P
λ−→ P ′ and bn(λ) # fn(Q) (A.2.3.1)

From (P,Q) ∈ R we have by definition of R that there is R such that P ∼ R and R ∼ Q. We
consider two distinct cases: either bn(λ) ∩ fn(R) = ∅ or bn(λ) ∩ fn(R) 6= ∅. If bn(λ) ∩ fn(R) =
∅ then there is R′ such that R

λ−→ R′ and P ′ ∼ R′. Since R ∼ Q, from R
λ−→ R′ and

bn(λ) ∩ fn(Q) = ∅ (A.2.3.1) we have that there is Q′ such that Q
λ−→ Q′ and R′ ∼ Q′. From

P ′ ∼ R′ and R′ ∼ Q′ we conclude (P ′, Q′) ∈ R and thus complete the proof for this case.
If bn(λ)∩ fn(R) 6= ∅ we consider names ã such that bn(λ)∩ ã = ∅ and a name substitution σ

which is a bijection map between bn(λ) ∩ fn(R) and ã and the identity substitution otherwise.
Considering Lemma A.2.2 from P ∼ R we then have:

P ∼ R | (νc)(c J
[
l�!(ã)

]
)

Then from Lemma A.2.1 we obtain:

P ∼ σ(R | (νc)(c J
[
l�!(ã)

]
))

which gives us:
P ∼ σ(R) | σ((νc)(c J

[
l�!(ã)

]
))

which again from Lemma A.2.2 gives us:

P ∼ σ(R)

Likewise we show σ(R) ∼ Q. Since bn(λ) ∩ fn(σ(R)) = ∅ we can proceed as in the first case.
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Theorem 4.4.5 (Preservation of Strong Bisimilarity Under Structural Laws)

(repetition of the statement in page 81)

Given processes P , Q and R, the following axioms hold:

1. (νa)0 ∼ 0.

2. (νa)(νb)P ∼ (νb)(νa)P .

3. If a 6∈ fn(P ) then P | (νa)Q ∼ (νa)(P | Q).

4. P | 0 ∼ P .

5. P | (Q | R) ∼ (P | Q) | R.

6. P | Q ∼ Q | P .

7. If i ∈ I if and only if i ∈ J then Σi∈I αi.Pi ∼ Σi∈J αi.Pi.

8. rec X .P ∼ P{X/rec X .P}.

Proof. By coinduction on the definition of strong bisimulation.

1. Immediate as no transition can be observed on either process.

2. Follows expected lines.

3. We witness R defined as:

R , {((νã)(ν c̃)(P | (νb)Q), (νã)(νb)(ν c̃)(P | Q)) | ∀ã, c̃, b. b 6∈ fn(P )∪bn(P )} (A.2.4.1)

is such that R ∪ ∼ ⊆ ∼ by coinduction on the definition of bisimulation. N.B. We impose
b 6∈ bn(P ) to prevent bound name clashes, and then generalize the result through α-
equivalence. Let us consider ((νã)(ν c̃)(P | (νb)Q), (νã)(νb)(ν c̃)(P | Q)) ∈ R (for (P,Q) ∈
∼ the proof is direct). We show that for every R1, λ such that:

(νã)(ν c̃)(P | (νb)Q) λ−→ R1 (A.2.4.2)

and bn(λ) # fn((νã)(νb)(ν c̃)(P | Q)) then there exists R2 such that:

(νã)(νb)(ν c̃)(P | Q) λ−→ R2 (A.2.4.3)

and (R1, R2) ∈ R ∪ ∼. We omit the symmetric case which follows similar lines.

We consider the three possible distinct cases for deriving (A.2.4.2): either the derivation
results from an observation on P or on Q or from a synchronization between P and Q.

(Observation on P )

We have:
(νã)(ν c̃)(P | (νb)Q) λ−→ (νã)(ν c̃)(P ′ | (νb)Q) (A.2.4.4)

derived from:
P

λ′−→ P ′ (A.2.4.5)
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where λ = (νd̃)λ′ and d̃ = (ã ∪ c̃) ∩ out(λ′). We have that bn(λ′) # fn((νb)Q). Then since
b 6∈ fn(P )∪bn(P ) (A.2.4.1) we conclude b 6∈ na(λ′) and also bn(λ′) # fn(Q). From (A.2.4.5)
we then derive:

P | Q
λ′−→ P ′ | Q (A.2.4.6)

and thus:
(νã)(νb)(ν c̃)(P | Q) λ−→ (νã)(νb)(ν c̃)(P ′ | Q) (A.2.4.7)

which completes the proof for this case since:

((νã)(ν c̃)(P ′ | (νb)Q), (νã)(νb)(ν c̃)(P ′ | Q)) ∈ R (A.2.4.8)

(Observation on Q)

Follows similar lines.

(Synchronization between P and Q)

We show only the case of rule (Close-l) and (Close-r) (Figure 4.2), as the proofs of the
remaining cases follow similar lines.

(Case (Close-l))

We have:
(νã)(ν c̃)(P | (νb)Q) λ1 •λ2−→ (νã)(ν c̃)(νd̃)(P ′ | (νb)Q′) (A.2.4.9)

which, eliding the cases for the restriction, is derived from:

P
(νd̃)λ1−→ P ′ (A.2.4.10)

and:
Q

λ2−→ Q′ (A.2.4.11)

and λ1 • λ2 6= ◦. From (A.2.4.10) and (A.2.4.11) we derive:

P | Q
λ1 •λ2−→ (νd̃)(P ′ | Q′) (A.2.4.12)

which then gives us:

(νã)(νb)(ν c̃)(P | Q) λ1 •λ2−→ (νã)(νb)(ν c̃)(νd̃)(P ′ | Q′) (A.2.4.13)

which completes the proof for this case since:

((νã)(ν c̃)(νd̃)(P ′ | (νb)Q′), (νã)(νb)(ν c̃)(νd̃)(P ′ | Q′)) ∈ R (A.2.4.14)

(Case (Close-r))

We focus on the interesting case when Q extrudes name b to P . We have:

(νã)(ν c̃)(P | (νb)Q) λ1 •λ2−→ (νã)(ν c̃)(νd̃, b)(P ′ | Q′) (A.2.4.15)

derived from:
P

λ1−→ P ′ (A.2.4.16)
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and:
Q

(νd̃)λ2−→ Q′ (A.2.4.17)

and b ∈ out(λ), λ1 • λ2 6= ◦. From (A.2.4.16) and (A.2.4.17) we derive:

P | Q
λ1 •λ2−→ (νd̃)(P ′ | Q′) (A.2.4.18)

which then gives us:

(νã)(νb)(ν c̃)(P | Q) λ1 •λ2−→ (νã)(νb)(ν c̃)(νd̃)(P ′ | Q′) (A.2.4.19)

From Theorem 4.4.5(2) we conclude:

((νã)(ν c̃)(νd̃, b)(P ′ | Q′), (νã)(νb)(ν c̃)(νd̃)(P ′ | Q′)) ∈ ∼ (A.2.4.20)

which completes the proof for this case.

4. Immediate.

5. Follows lines similar to the proof of 3.

6. Follows expected lines.

7. Immediate from rule (Sum) (Figure 4.2).

8. Immediate from rule (Rec) (Figure 4.2).

Theorem 4.4.6 (Congruence)

(repetition of the statement in page 82)

Strong bisimilarity is a congruence.

1. If P ∼ Q then ld!(ñ).P ∼ ld!(ñ).Q.

2. If P{x̃/ñ} ∼ Q{x̃/ñ} for all ñ then ld?(x̃).P ∼ ld?(x̃).Q.

3. If P{x/n} ∼ Q{x/n} for all n then this(x).P ∼ this(x).Q.

4. If αi.Pi ∼ α′
i.Qi, for all i ∈ I, then Σi∈I αi.Pi ∼ Σi∈I α′

i.Qi.

5. If P ∼ Q then n J [P ] ∼ n J [Q].

6. If P ∼ Q then (νa)P ∼ (νa)Q.

7. If P ∼ Q then P | R ∼ Q | R.

8. If P{X/R} ∼ Q{X/R}, for all R, then recX .P ∼ recX .Q.

Proof. By coinduction on the definition of strong bisimulation.

1. The proof proceeds by witnessing relation

R , {(ld!(ñ).P, ld!(ñ).Q) | P ∼ Q} ∪ ∼
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is contained in ∼ (i.e., R ⊆ ∼) by coinduction on the definition of strong bisimulation.
Notice that pairs of processes in R are either in the strong bisimilarity relation in which
case the proof is direct, or are of the form (ld!(ñ).P, ld!(ñ).Q), where P ∼ Q, in which
case there is only one possible observation over any of the two processes (the same one),
leading to processes which are strong bisimilar and thus are in R, by definition.

2. Follows lines similar to 1, by witness relation

R , {(ld?(x̃).P, ld?(x̃).Q) | ∀ñ. P{x̃/ñ} ∼ Q{x̃/ñ}} ∪ ∼

is contained in ∼ (i.e., R ⊆ ∼) by coinduction on the definition of strong bisimulation.
Now observing the input on both processes will lead to processes P{x̃/ñ} and Q{x̃/ñ},
for some ñ, which are strong bisimilar since we have for any ñ in the definition of R.

3. Follows lines similar to 2.

4. Follows lines similar to 1.

5. The proof proceeds by witnessing relation

R , {(n J [P ] , n J [Q]) | P ∼ Q}

is contained in ∼ (i.e., R ⊆ ∼) by coinduction on the definition of strong bisimulation.
Let us consider P,Q such that (n J [P ] , n J [Q]) ∈ R. We show that if there is P ′, λ such
that:

n J [P ] λ−→ P ′ (A.2.5.1)

and bn(λ) # fn(n J [Q]) then there is a matching transition by n J [Q] leading to a process
Q′ such that (P ′, Q′) ∈ R. We have that (A.2.5.1) is derived using either (Here), (Loc),
(Through), (Tau), (ThisLoc) or (ThisHere) (Figure 4.3) from:

P
λ′−→ P ′′ (A.2.5.2)

for some λ′, P ′′ such that P ′ = n J [P ′′]. We have bn(λ′) ⊆ bn(λ) and fn(Q) ⊆ fn(n J [Q]).
Thus we have bn(λ′) # fn(Q). We then conclude, from P ∼ Q (by definition of R) and
(A.2.5.2), that there is Q′ such that:

Q
λ′−→ Q′ (A.2.5.3)

and P ′′ ∼ Q′. From (A.2.5.3) we derive (using the same rule already used to derive
(A.2.5.1) from (A.2.5.2)) that:

n J [Q] λ−→ n J
[
Q′]

which completes the proof as (n J [P ′′] , n J [Q′]) ∈ R.

6. Follows lines similar to 5.
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7. Follows lines similar to Theorem 4.4.5(3). The proof proceeds by showing relation

R , {((νã)(P | R), (νã)(Q | R)) | P ∼ Q}

is contained in ∼ (i.e., R ⊆ ∼) by coinduction on the definition of strong bisimulation.

8. Follows lines similar to 2.

Theorem 4.4.7 (Behavioral Identities)

(repetition of the statement in page 83)

Given processes P and Q, the following axioms hold:

1. n J [0] ∼ 0.

2. If a 6= c then (νa)(c J [P ]) ∼ c J [(νa)P ].

3. n J [P ] | n J [Q] ∼ n J [P | Q].

4. m J [n J [o J [P ]]] ∼ n J [o J [P ]].

5. n J [l�!(ñ).P ] ∼ l�!(ñ).n J [P ].

6. If n 6∈ x̃ then n J [l�?(x̃).P ] ∼ l�?(x̃).n J [P ].

7. m J [n J [l�!(ñ).P ]] ∼ n J [l�!(ñ).m J [n J [P ]]].

8. If {m,n}# x̃ then m J [n J [l�?(x̃).P ]] ∼ n J [l�?(x̃).m J [n J [P ]]].

Proof. By coinduction on the definition of strong bisimulation.

1. Immediate.

2. Follows expected lines.

3. The proof proceeds by showing relation:

R , {((νã)(n J [P ] | n J [Q]), n J [(νã)(P | Q)]) | ∀n, ã. n 6∈ ã} (A.2.6.1)

is contained in ∼ (R ⊆ ∼) by coinduction on the definition of strong bisimulation. Let us
consider ((νã)(n J [P ] | n J [Q]), n J [(νã)(P | Q)]) ∈ R. We show that if there is R1, λ

such that :
(νã)(n J [P ] | n J [Q]) λ−→ R1 (A.2.6.2)

then there is a matching transition by n J [(νã)(P | Q)] leading to a state R2 such that
(R1, R2) ∈ R (we omit the symmetric case as it follows similar lines). We consider the
three possible cases for the derivation of (A.2.6.2): it either results from an observation
over n J [P ], over n J [Q], or from a synchronization between n J [P ] and n J [Q]. If the
transition results from an observation over n J [P ] we have that R1 = (νã)(n J [P ′] | n J

[Q]). We can then show, in non-surprising lines, that:

n J [(νã)(P | Q)] λ−→ n J
[
(νã)(P ′ | Q)

]
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as intended. The case when (A.2.6.2) is derived from an observation over n J [Q] is
analogous. If (A.2.6.2) is derived from a synchronization between n J [P ] and n J [Q]
then it is either derived through rule (Comm) or (Close) of Figure 4.2. We show the proof
for (Close) — actually (Close-l) — as the proof for (Comm) follows similar lines. We have
that (A.2.6.2) is derived from:

n J [P ]
(νb̃)λ1−→ n J

[
P ′] (A.2.6.3)

and:
n J [Q] λ2−→ n J

[
Q′] (A.2.6.4)

and where λ = λ1 • λ2, λ 6= ◦ and R1 = (νã)(ν b̃)(n J [P ′] | n J [Q′]). We consider the
possible cases for the derivation of (A.2.6.3) (and (A.2.6.4)): either λ1 (or λ2) is a located
label in which case (A.2.6.3) (or (A.2.6.4)) is derived either through (Loc) or (Through);
or λ1 (or λ2) is not located in which case (A.2.6.3) (or (A.2.6.4)) is derived from (Here).
We show the proof for these cases, omitting symmetric cases.

((A.2.6.3) derived through (Loc) and (A.2.6.4) derived through (Loc)) Since both λ1 and
λ2 are located labels and λ1 • λ2 6= ◦ we conclude λ1 • λ2 = τ . We have that:

P
(νb̃)λ�

3−→ P ′ (A.2.6.5)

and λ1 = n · λ�
3. We also have that:

Q
λ�
4−→ Q′ (A.2.6.6)

and λ2 = n · λ�
4. Since n · λ�

3 • n · λ�
4 = τ we conclude λ�

3 • λ�
4 = τ . Thus, from (A.2.6.5)

and (A.2.6.6) we conclude:
P | Q

τ−→ (ν b̃)(P ′ | Q′)

from which we have:

n J [(νã)(P | Q)] τ−→ n J
[
(νã)(ν b̃)(P ′ | Q′)

]
which completes the proof as:

((νã)(ν b̃)(n J
[
P ′] | n J

[
Q′]), n J [

(νã)(ν b̃)(P ′ | Q′)
]
) ∈ R

((A.2.6.3) derived through (Loc) and (A.2.6.4) derived through (Through)) Since both λ1

and λ2 are located labels and λ1 • λ2 6= ◦ we conclude λ1 • λ2 = τ . We have that:

P
(νb̃)λ�

3−→ P ′ (A.2.6.7)

and λ1 = n · λ�
3. We also have that:

Q
λ2−→ Q′ (A.2.6.8)

and loc(λ2). Since n · λ�
3 • λ2 = τ we conclude: λ�

3 • λ2 = n this�. Thus, from (A.2.6.7)
and (A.2.6.8) we conclude:

P | Q
n this�
−→ (ν b̃)(P ′ | Q′)
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from which we have:

n J [(νã)(P | Q)] τ−→ n J
[
(νã)(ν b̃)(P ′ | Q′)

]
which completes the proof.

((A.2.6.3) derived through (Loc) and (A.2.6.4) derived through (Here)) We have that λ1

is a located label and λ2 is an unlocated label and λ1 • λ2 6= ◦. We also have that:

P
(νb̃)λ�

3−→ P ′ (A.2.6.9)

where λ1 = n · λ�
3, and:

Q
λ�
4−→ Q′ (A.2.6.10)

and λ2 = λ�
4. We then have that λ1 • λ2 = n this� and hence λ�

3 • λ�
4 = this��. Thus,

from (A.2.6.9) and (A.2.6.10) we conclude:

P | Q
this��
−→ (ν b̃)(P ′ | Q′)

from which we have:

n J [(νã)(P | Q)] c this�
−→ n J

[
(νã)(ν b̃)(P ′ | Q′)

]
which completes the proof for this case.

((A.2.6.3) derived through (Through) and (A.2.6.4) derived through (Through)) We have
that λ1 and λ2 are located labels and λ1 • λ2 6= ◦, thus λ1 • λ2 = τ . We also have that:

P
(νb̃)λ1−→ P ′ (A.2.6.11)

where loc((ν b̃)λ1), and:
Q

λ2−→ Q′ (A.2.6.12)

and loc(λ2). Thus, from (A.2.6.11) and (A.2.6.12) we conclude:

P | Q
τ−→ (ν b̃)(P ′ | Q′)

from which we have:

n J [(νã)(P | Q)] τ−→ n J
[
(νã)(ν b̃)(P ′ | Q′)

]
which completes the proof for this case.

((A.2.6.3) derived through (Through) and (A.2.6.4) derived through (Here)) We have that
λ1 is a located label and λ2 is an unlocated label and λ1 • λ2 6= ◦. We also have that:

P
(νb̃)λ1−→ P ′ (A.2.6.13)

where loc((ν b̃)λ1), and:

Q
λ�
4−→ Q′ (A.2.6.14)
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where λ2 = λ�
4. We then have that λ1 • λ2 = m this� and hence λ1 • λ�

4 = m this�.
Thus, from (A.2.6.13) and (A.2.6.14) we conclude:

P | Q
m this�
−→ (ν b̃)(P ′ | Q′)

from which we have:

n J [(νã)(P | Q)] m this�
−→ n J

[
(νã)(ν b̃)(P ′ | Q′)

]
which completes the proof for this case.

((A.2.6.3) derived through (Here) and (A.2.6.4) derived through (Here)) We have that λ1

and λ2 are unlocated labels and λ1 • λ2 6= ◦ and thus λ1 • λ2 = τ . We also have that:

P
(νb̃)λ�

3−→ P ′ (A.2.6.15)

where λ1 = λ�
3, and:

Q
λ�
4−→ Q′ (A.2.6.16)

where λ2 = λ�
4. We then have that λ�

3 • λ�
4 = τ . Thus, from (A.2.6.15) and (A.2.6.16) we

conclude:
P | Q

τ−→ (ν b̃)(P ′ | Q′)

from which we have:

n J [(νã)(P | Q)] τ−→ n J
[
(νã)(ν b̃)(P ′ | Q′)

]
which completes the proof.

4. The proof proceeds by showing relation:

R , {(m J [n J [o J [P ]]] , n J [o J [P ]])}

is contained in ∼ (R ⊆ ∼) by coinduction on the definition of strong bisimulation. Notice
that observations over process P will get located at most after crossing two context barriers,
and located labels transparently cross conversation construct boundaries, as is illustrated
in the following derivation:

P
σ�
−→ P ′

o J [P ] σ�
−→ o J [P ′]

n J [o J [P ]] n·σ�
−→ n J [o J [P ′]]

m J [n J [o J [P ]]] n·σ�
−→ m J [n J [o J [P ′]]]

Thus all observations over n J [o J [P ]] can be derived for m J [n J [o J [P ]]] through
(Through), and any observation over m J [n J [o J [P ]]] is surely the result of applying
rule (Through) and hence is an observation of n J [o J [P ]].
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5. Immediate from the fact that:

n J
[
l�!(ñ).P

] l�!(ñ)−→ n J [P ]

and:
l�!(ñ).n J [P ]

l�!(ñ)−→ n J [P ]

are the only possible observations over such processes.

6. Follows similar lines to the proof of 5.

7. Follows from 4 and the fact that:

m J
[
n J

[
l�!(ñ).P

]] n l�!(ñ)−→ m J [n J [P ]]

and:
n J

[
l�!(ñ).m J [n J [P ]]

] n l�!(ñ)−→ n J [m J [n J [P ]]]

are the only possible observations over such processes.

8. Follows similar lines to the proof of 7.

Proposition 4.4.14 (Normal Form)

(repetition of the statement in page 85)

If P is a well-formed process then there exists a process Q in normal form such that P ∼ Q.

Proof. By induction on the number of active processes. Essentially, we isolate each active process
(through Theorem 4.4.7(3)), reduce the nesting level (through Theorem 4.4.7(4))) and then place
the active process in the appropriate conversation piece (again through Theorem 4.4.7(3)).

We sketch the proof for the general case, for which we implicitly use the congruence result
(Theorem 4.4.6), and directly unfold recursive processes (Theorem 4.4.5(8)) and lift all restric-
tions to top-level, since it is standard to prove using scope extrusion (Theorem 4.4.5(3) and
Theorem 4.4.5(2)) and α-conversion. Let us then consider that P is of the form:

(νã) (c1 J [. . . ck−1 J [ck J [U | P1] | P2] . . . | P3] | P ′) (A.2.7.1)

for some active process U , processes P1, P2, . . . , P3, P
′ and names ñ. Considering Theorem 4.4.7(3)

we conclude:

(νã) (c1 J [. . . ck−1 J [ck J [U | P1] | P2] . . . | P3] | P ′)
∼

(νã) (c1 J [. . . ck−1 J [ck J [U ] | ck J [P1] | P2] . . . | P3] | P ′)
∼
...
∼

(νã) (c1 J [. . . ck−1 J [ck J [U ]] . . .] | c1 J [. . . ck−1 J [ck J [P1] | P2] . . . | P3] | P ′)
(A.2.7.2)
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We thus have:

(νã) (c1 J [. . . ck−1 J [ck J [U | P1] | P2] . . . | P3] | P ′)
∼

(νã) (c1 J [. . . ck−1 J [ck J [U ]] . . .] | c1 J [. . . ck−1 J [ck J [P1] | P2] . . . | P3] | P ′)
(A.2.7.3)

From (A.2.7.3) and considering Theorem 4.4.7(4) we conclude:

(νã) (c1 J [. . . ck−1 J [ck J [U ]] . . .] | c1 J [. . . ck−1 J [ck J [P1] | P2] . . . | P3] | P ′)
∼

(νã) (c2 J [. . . ck−1 J [ck J [U ]] . . .] | c1 J [. . . ck−1 J [ck J [P1] | P2] . . . | P3] | P ′)
∼
...
∼

(νã) (ck−1 J [ck J [U ]] | c1 J [. . . ck−1 J [ck J [P1] | P2] . . . | P3] | P ′)
(A.2.7.4)

By induction hypothesis we conclude that process c1 J [. . . ck−1 J [ck J [P1] | P2] . . . | P3] | P ′

(which has one less active process: U) can be rewritten in normal form, hence:

c1 J [. . . ck−1 J [ck J [P1] | P2] . . . | P3] | P ′

∼
(ν b̃) (U0 | d1 J [U1] | . . . | dk J [Uk] | e1 J [f1 J [V1]] | . . . | el J [fl J [Vl]])

(A.2.7.5)

We then have:

(νã) (ck−1 J [ck J [U ]] | c1 J [. . . ck−1 J [ck J [P1] | P2] . . . | P3] | P ′)
∼

(νã) (ck−1 J [ck J [U ]]
| (ν b̃) (U0 | d1 J [U1] | . . . | dk J [Uk] | e1 J [f1 J [V1]] | . . . | el J [fl J [Vl]]))

(A.2.7.6)
Let b̃ # fn(ck−1 J [ck J [U ]]) (otherwise b̃ can be replaced by α-conversion). Considering Theo-
rem 4.4.5(3) we then conclude:

(νã) (ck−1 J [ck J [U ]]
| (ν b̃) (U0 | d1 J [U1] | . . . | dk J [Uk] | e1 J [f1 J [V1]] | . . . | el J [fl J [Vl]]))

∼
(νã, b̃) (ck−1 J [ck J [U ]]

| U0 | d1 J [U1] | . . . | dk J [Uk] | e1 J [f1 J [V1]] | . . . | el J [fl J [Vl]])
(A.2.7.7)

We consider the two possible cases: either there is j ∈ 1, . . . , l such that ck−1 ·ck = ej ·fj or there
is no such j. In the latter case the proof is complete. In the former, i.e., there is j such that
ck−1 = ej and ck = fj , from the fact that parallel composition is commutative and associative
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under bisimilarity (Theorem 4.4.5(5) and Theorem 4.4.5(6)) we have:

(νã, b̃) (ck−1 J [ck J [U ]]
| U0 | d1 J [U1] | . . . | dk J [Uk] | e1 J [f1 J [V1]] | . . . | el J [fl J [Vl]])

∼
(νã, b̃) (U0 | d1 J [U1] | . . . | dk J [Uk]

| e1 J [f1 J [V1]] | . . . | ck−1 J [ck J [U ]] | ej J [fj J [Vj ]] | . . . | el J [fl J [Vl]])
(A.2.7.8)

and then considering Theorem 4.4.7(3) we conclude:

(νã, b̃) (U0 | d1 J [U1] | . . . | dk J [Uk]
| e1 J [f1 J [V1]] | . . . | ck−1 J [ck J [U ]] | ej J [fj J [Vj ]] | . . . | el J [fl J [Vl]])

∼
(νã, b̃) (U0 | d1 J [U1] | . . . | dk J [Uk]

| e1 J [f1 J [V1]] | . . . | ck−1 J [ck J [U ] | fj J [Vj ]] | . . . | el J [fl J [Vl]])
∼

(νã, b̃) (U0 | d1 J [U1] | . . . | dk J [Uk]
| e1 J [f1 J [V1]] | . . . | ck−1 J [ck J [U | Vj ]] | . . . | el J [fl J [Vl]])

(A.2.7.9)
which completes the proof.

Proposition 4.4.18 (Structural Congruence Included in Bisimilarity)

(repetition of the statement in page 87)

We have that ≡ ⊆ ∼.

Proof. The proof proceeds by witnessing relation

R , {(P,Q) | P ≡ Q} ∪ ∼ (A.2.8.1)

is contained in ∼ by coinduction on the definition of strong bisimulation. For each transition
of P we derive a matching transition of Q such that the arrival states are in R. We do so by
induction on the length of the derivation of P ≡ Q. We analyze all structural congruence axioms
individually, and since for each one there is a corresponding axiom for bisimilarity (Theorem 4.4.5
and Theorem 4.4.7) we immediately obtain that any transition of P is matched by a transition
of Q leading to bisimilar states. Since ∼ ⊆ R, by definition (A.2.8.1), the proof is complete.
Next we show some auxiliary results to the proof of Theorem 4.4.21.

Lemma A.2.9

Let P be a process. If P ≡ Q and Q
λ−→ Q′ then there is P ′ such that P

λ−→ P ′ and P ′ ≡ Q′.

Proof. By induction on the length of the derivation of P ≡ Q.
(Case (StructAlpha))
Immediate since we identify α-equivalent processes (Convention 4.2.11).
(Case (StructParZero))
We have P | 0 ≡ P and P

λ−→ P ′. We conclude P | 0 λ−→ P ′ | 0 and P ′ | 0 ≡ P ′.
(Case (StructParComm))
We have P | Q ≡ Q | P and Q | P

λ−→ R. The transition is either derived from (Par),
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(Close) or (Comm). In the case of (Par -l) we have Q | P
λ−→ Q′ | P derived from Q

λ−→ Q′.
Hence we conclude (by (Par -r)) P | Q

λ−→ P | Q′ and P | Q′ ≡ Q′ | P which completes the
proof for this case. In the case of (Comm) we have Q | P

λ−→ Q′ | P ′ derived from Q
λ1−→ Q′

and P
λ2−→ P ′ and λ = λ1 • λ2. Since • is commutative we have λ = λ2 • λ1 and hence

P | Q
λ−→ P ′ | Q′ and P ′ | Q′ ≡ Q′ | P ′ which completes the proof for this case. Case (Close)

follows similar lines.
(Case (StructParAssoc))
Follows expected lines.
(Case (StructResZero))
Not applicable since (νa)0 and 0 do not exhibit transitions.
(Case (StructResComm))
Follows expected lines.
(Case (StructResPar))
We have P | (νa)Q ≡ (νa)(P | Q), where a 6∈ fn(P ). We consider the interesting case of

P | (νa)Q λ−→ R when the transition is derived through (Close-r). We have that P | (νa)Q λ−→
(ν c̃)(P ′ | Q′) derived from P

λ1−→ P ′ and (νa)Q
(νc̃)λ2−→ Q′ and λ = λ1 • λ2. We have two distinct

cases depending if name a is in c̃ or not. If a 6∈ c̃ then we have Q′ is of the form (νa)Q′′ and

Q
(νc̃)λ2−→ Q′′. We then have P | Q

λ−→ (ν c̃)(P ′ | Q′′) and thus (νa)(P | Q) λ−→ (νa)(ν c̃)(P ′ | Q′′),
which concludes the proof for this case as (νa)(ν c̃)(P ′ | Q′′) ≡ (ν c̃)(P ′ | (νa)Q′′). If a ∈ c̃

we have that Q′ is of the form Q′′ such that Q
(νc̃′)λ2−→ Q′′, where c̃ = a, c̃′. We then have

P | Q
λ−→ (ν c̃′)(P ′ | Q′′) and thus (νa)(P | Q) λ−→ (νa)(ν c̃′)(P ′ | Q′′) which completes the

proof for this case as (νa)(ν c̃′)(P ′ | Q′′) ≡ (ν c̃)(P ′ | Q′′).
(Case (StructRec) and (StructSum))
Follow expected lines.
(Case (StructCZero))
Not applicable since n J [0] and 0 do not exhibit transitions.
(Case (StructCRes))
Follows expected lines.
(Case (StructCSplit))
We have n J [P ] | n J [Q] ≡ n J [P | Q]. We consider the interesting case when n J

[P ] | n J [Q] λ−→ (νã)(n J [P ′] | n J [Q′]) derived from n J [P ]
(νã)λ1−→ n J [P ′] and n J

[Q] λ2−→ n J [Q′] and λ = λ1 • λ2. Let us consider n J [P ]
(νã)λ1−→ n J [P ′] is derived

from P
(νã)λ1−→ P ′ and n J [Q] λ2−→ n J [Q′] is derived from Q

λ2−→ Q′. We then conclude
P | Q

λ−→ (νã)(P ′ | Q′) and n J [P | Q] λ−→ n J [(νã)(P ′ | Q′)] which completes the proof for
this case as (νã)(n J [P ′] | n J [Q′]) ≡ n J [(νã)(P ′ | Q′)].

(Case (StructCNest))
Follows expected lines.
(Cases (StructOutUp) and (StructInUp))
(StructOutUp) is direct from the fact that any transition of n J

[
Σi∈I l�i !(m̃).Pi

]
is matched

by a transition of Σi∈I l�i !(m̃).n J [Pi] and the arrival states are the same exact process. For
instance, n J

[
Σi∈I l�i !(m̃).Pi

] λ−→ n J [Pj ] and Σi∈I l�i !(m̃).n J [Pi]
λ−→ n J [Pj ], for λ =

l�j !(mj). Similarly for case (StructInUp).
(Cases (StructOutHere) and (StructInHere))
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Follows similar lines to the previous case.

Lemma A.2.10

Let P be a process. If P
ld!(ã)−→ P ′ then P ≡ (ν c̃)(ld!(ã).Q + S | R), where ã# c̃, and P ′ ≡

(ν c̃)(Q | R).

Proof. By induction on the derivation of P
ld!(ã)−→ P ′.

(Cases (Out) and (Sum))
Immediate.
(Case (Res))

We have that (νb)P
ld!(ã)−→ (νb)P ′ derived from P

ld!(ã)−→ P ′ and b 6∈ na(ld!(ã)). By induction
hypothesis we obtain P ≡ (ν c̃)(ld!(ã).Q + S | R) and P ′ ≡ (ν c̃)(Q | R). We then have (νb)P ≡
(νb)(ν c̃)(ld!(ã).Q + S | R) where ã# c̃, b, and (νb)P ′ ≡ (νb)(ν c̃)(Q | R), which completes the
proof for this case.

(Case (Par -l))

We have that P1 | P2
ld!(ã)−→ P ′

1 | P2 derived from P1
ld!(ã)−→ P ′

1. By induction hypothesis we
obtain P1 ≡ (ν c̃)(ld!(ã).Q + S | R) where ã# c̃, and P ′

1 ≡ (ν c̃)(Q | R). We then have P1 | P2 ≡
(ν c̃′)(ld!(ã).Q′ + S′ | R′ | P2), where (ν c̃)(ld!(ã).Q + S | R) ≡α (ν c̃′)(ld!(ã).Q′ + S′ | R′) and
c̃′ # fn(P2) and ã# c̃′. We also have P ′

1 | P2 ≡ (ν c̃′)(Q′ | R′ | P2), which completes the proof.
(Case (Rec))
Follows immediately from induction hypothesis.
(Case (Here))

We have that n J [P ]
l�!(ã)−→ n J [P ′] derived from P

l�!(ã)−→ P ′. By induction hypothe-
sis we obtain P ≡ (ν c̃)(l�!(ã).Q + S | R) and P ′ ≡ (ν c̃)(Q | R). We conclude (from rules
(StructCRes) and (StructCSplit)) that n J [P ] ≡ n J [(ν c̃)(l�!(ã).Q + S | R)] ≡ (ν c̃)(n J
[l�!(ã).Q + S] | n J [R]). Then (from (StructOutUp)) we conclude (ν c̃)(n J [l�!(ã).Q + S] | n J

[R]) ≡ (ν c̃)(l�!(ã).n J [Q]+S′ | n J [R]). We also have that n J [P ′] ≡ (ν c̃)(n J [Q] | n J [R]),
which completes the proof for this case.

Lemma A.2.11

Let P be a process. If P
b l�!(ã)−→ P ′ then P ≡ (ν c̃)(b J [l�!(ã).Q + S] | R) and P ′ ≡ (ν c̃)(b J

[Q] | R), where ã, b # c̃.

Proof. By induction on the derivation of P
b l�!(ã)−→ P ′.

(Case (Res))

We have that (νn)P
b l�!(ã)−→ (νn)P ′ derived from P

b l�!(ã)−→ P ′ and n 6∈ na(b l�!(ã)). By in-
duction hypothesis we obtain P ≡ (ν c̃)(b J [l�!(ã).Q + S] | R) and P ′ ≡ (ν c̃)(b J [Q] | R). We
then have (νn)P ≡ (νn)(ν c̃)(b J [l�!(ã).Q + S] | R) and ã, b # c̃, n, and (νn)P ′ ≡ (νn)(ν c̃)(b J
[Q] | R) which completes the proof for this case.

(Case (Par -l))

We have that P1 | P2
b l�!(ã)−→ P ′

1 | P2 derived from P1
b l�!(ã)−→ P ′

1. By induction hypothesis
we obtain P1 ≡ (ν c̃)(b J [l�!(ã).Q + S] | R), where ã, b # c̃, and P ′

1 ≡ (ν c̃)(b J [Q] | R). We
then have P1 | P2 ≡ (ν c̃′)(b J [l�!(ã).Q′ + S′] | R′ | P2), where (ν c̃)(b J [l�!(ã).Q + S] | R) ≡α

212



(ν c̃′)(b J [l�!(ã).Q′ + S′] | R′), c̃′ # fn(P2) and ã, b # c̃′. We also have that P ′
1 | P2 ≡ (ν c̃′)(b J

[Q′] | R′ | P2) which completes the proof.
(Case (Rec))
Follows immediately from induction hypothesis.
(Case (Loc))

We have that b J [P ]
b l�!(ã)−→ b J [P ′] derived from P

l�!(ã)−→ P ′. Considering Lemma A.2.10
we obtain P ≡ (ν c̃)(l�!(ã).Q + S | R) and P ′ ≡ (ν c̃)(Q | R) (we consider b 6∈ c̃ otherwise we
would α-rename c̃). Then, considering rules (StructCRes) and (StructCSplit) we conclude that
b J [P ] ≡ b J [(ν c̃)(l�!(ã).Q + S | R)] ≡ (ν c̃)(b J [l�!(ã).Q + S] | b J [R]). Likewise we
conclude b J [P ′] ≡ (ν c̃)(b J [Q] | b J [R]) which completes the proof for this case.

(Case (Through))

We have that n J [P ]
b l�!(ã)−→ n J [P ′] derived from P

b l�!(ã)−→ P ′. By induction hypothesis we
obtain P ≡ (ν c̃)(b J [l�!(ã).Q + S] | R) and P ′ ≡ (ν c̃)(b J [Q] | R) (we consider n 6∈ c̃ otherwise
we would α-rename c̃). Then, considering rules (StructCRes) and (StructCSplit) we conclude
that n J [P ] ≡ n J [(ν c̃)(b J [l�!(ã).Q + S] | R)] ≡ (ν c̃)(n J [b J [l�!(ã).Q + S]] | n J [R]).
We then have, considering (StructOutHere) that:

(ν c̃)(n J
[
b J

[
l�!(ã).Q + S

]]
| n J [R]) ≡ (ν c̃)(b J

[
l�!(ã).n J [b J [Q]] + S′] | n J [R])

Likewise we have that n J [P ′] ≡ n J [(ν c̃)(b J [Q] | R)] ≡ (ν c̃)(n J [b J [Q]] | n J [R]). Then
from (StructCNest) we conclude n J [P ′] ≡ (ν c̃)(b J [n J [b J [Q]]] | n J [R]) which completes
the proof for this case.

Lemma A.2.12

Let P be a process. If P
ld?(ã)−→ P ′ then P ≡ (ν c̃)(ld?(x̃).Q + S | R) and P ′ ≡ (ν c̃)(Q{x̃/ã} | R),

where ã# c̃.

Proof. By induction on the derivation of P
ld?(ã)−→ P ′. Follows the lines of Lemma A.2.10 proof.

Lemma A.2.13

Let P be a process. If P
b l�?(ã)−→ P ′ then P ≡ (ν c̃)(b J [l�?(x̃).Q + S] | R) and P ′ ≡ (ν c̃)(b J

[Q{x̃/ã}] | R), where ã, b # c̃.

Proof. By induction on the derivation of P
b l�?(ã)−→ P ′. Proof analogous to that of Lemma A.2.11.

Lemma A.2.14

Let P be a process. If P
(νc̃)ld!(ã)−→ P ′ then P ≡ (ν b̃)(ld!(ã).Q + S | R) and P ′ ≡ (ν b̃′)(Q | R),

where ã ∩ b̃ = c̃ and b̃′ = b̃ \ c̃.

Proof. By induction on the derivation of P
(νc̃)ld!(ã)−→ P ′.

(Cases (Out) and (Sum))
Immediate.
(Case (Open))

213



We have that (νn)P
(νn,c̃)ld!(ã)−→ P ′ derived from P

(νc̃)ld!(ã)−→ P ′ and n ∈ out((νc̃)ld!(ã)). By
induction hypothesis we obtain P ≡ (ν b̃)(ld!(ã).Q + S | R), and P ′ ≡ (ν b̃′)(Q | R), where
c̃ = ã ∩ b̃ and b̃′ = b̃ \ c̃. We then have (νn)P ≡ (νn)(ν b̃)(ld!(ã).Q + S | R), and n, c̃ = ã ∩ n, b̃

and b̃′ = n, b̃ \ n, c̃ which completes the proof for this case.
(Case (Res))

We have that (νn)P
(νc̃)ld!(ã)−→ (νn)P ′ derived from P

(νc̃)ld!(ã)−→ P ′ and n 6∈ na((νc̃)ld!(ã)). By
induction hypothesis we obtain P ≡ (ν b̃)(ld!(ã).Q+S | R) and P ′ ≡ (ν b̃′)(Q | R), where ã∩b̃ = c̃

and b̃′ = b̃\ c̃. We then have (νn)P ≡ (νn)(ν b̃)(ld!(ã).Q+S | R) and (νn)P ′ ≡ (νn)(ν b̃′)(Q | R)
where ã ∩ b̃, n = c̃ and n, b̃′ = n, b̃ \ c̃, which completes the proof for this case.

(Case (Par -l))

We have that P1 | P2
(νc̃)ld!(ã)−→ P ′

1 | P2 derived from P1
(νc̃)ld!(ã)−→ P ′

1 and c̃# fn(P2). By
induction hypothesis we obtain P1 ≡ (ν b̃)(ld!(ã).Q + S | R) and P ′

1 ≡ (ν b̃′)(Q | R), where
ã ∩ b̃ = c̃ and b̃′ = b̃ \ c̃. We then have P1 | P2 ≡ (ν b̃′′)(ld!(ã).Q′ + S′ | R′ | P2), and P ′

1 | P2 ≡
(ν b̃′′′)(Q′ | R′ | P2), where (ν b̃)(ld!(ã).Q+S | R) ≡α (ν b̃′′)(ld!(ã).Q′+S′ | R′) and (ν b̃′)(Q | R) ≡α

(ν b̃′′′)(Q′ | R′) and b̃′′ # fn(P2) and ã ∩ b̃′′ = c̃ and b̃′′′ = b̃′′ \ c̃, which completes the proof.
(Case (Rec))
Follows immediately from induction hypothesis.
(Case (Here))

We have that n J [P ]
(νc̃)l�!(ã)−→ n J [P ′] derived from P

(νc̃)l�!(ã)−→ P ′ and n 6∈ c̃. By induction
hypothesis we obtain P ≡ (ν b̃)(l�!(ã).Q + S | R) and ã ∩ b̃ = c̃ and P ′ ≡ (ν b̃′)(Q | R), where
ã∩b̃ = c̃ and b̃′ = b̃\c̃. We conclude (from rules (StructCRes) and (StructCSplit)) that n J [P ] ≡
n J

[
(ν b̃)(l�!(ã).Q + S | R)

]
≡ (ν b̃)(n J [l�!(ã).Q + S] | n J [R]). Then (from (StructOutUp))

we conclude (ν b̃)(n J [l�!(ã).Q + S] | n J [R]) ≡ (ν b̃)(l�!(ã).n J [Q] + S′ | n J [R]). Likewise
we conclude n J [P ′] ≡ (ν b̃′)(n J [Q] | n J [R]) which completes the proof for this case.

Lemma A.2.15

Let P be a process. If P
(νc̃)n l�!(ã)−→ P ′ then P ≡ (ν b̃)(n J [l�!(ã).Q + S] | R) and P ′ ≡ (ν b̃′)(n J

[Q] | R), where ã ∩ b̃ = c̃ and n 6∈ b̃ and b̃′ = b̃ \ c̃.

Proof. By induction on the derivation of P
(νc̃)n l�!(ã)−→ P ′. Follows the lines of the proofs of

Lemma A.2.11 and Lemma A.2.14.

Lemma A.2.16

Let P be a process. If P
this��
−→ P ′ then P ≡ (ν b̃)(ld1 !(ã).Q1 + S1 | ld2?(x̃).Q2 + S2 | R) and

P ′ ≡ (ν b̃)(Q1 | Q2{x̃/ã} | R) for d1, d2 such that di = � and dj = � (i, j ∈ {1, 2}).

Proof. By induction on the derivation of P
this��
−→ P ′.

(Case (Res))

We have (νc)P this��
−→ (νc)P ′ derived from P

this��
−→ P ′. By induction hypothesis we obtain

P ≡ (ν b̃)(ld1 !(ã).Q1 +S1 | ld2?(x̃).Q2 +S2 | R) and P ′ ≡ (ν b̃)(Q1 | Q2{x̃/ã} | R). We then have
(νc)P ≡ (νc, b̃)(ld1 !(ã).Q1 + S1 | ld2?(x̃).Q2 + S2 | R) and (νc)P ′ ≡ (νc, b̃)(Q1 | Q2{x̃/ã} | R)
which completes the proof for this case.

(Case (Par -l))

214



We have P1 | P2
this��
−→ P ′

1 | P2 derived from P1
this��
−→ P ′

1. By induction hypothesis we obtain
P1 ≡ (ν b̃)(ld1 !(ã).Q1+S1 | ld2?(x̃).Q2+S2 | R) and P ′

1 ≡ (ν b̃)(Q1 | Q2{x̃/ã} | R). We then have
P1 | P2 ≡ (ν b̃)(ld1 !(ã).Q1+S1 | ld2?(x̃).Q2+S2 | R | P2) and P ′

1 | P2 ≡ (ν b̃)(Q1 | Q2{x̃/ã} | R | P2)
(we assume b̃ # fn(P2), and otherwise α-rename b̃), which completes the proof.

(Case (Comm))

We have P1 | P2
this��
−→ P ′

1 | P ′
2 derived from P1

λ1−→ P ′
1 and P2

λ2−→ P ′
2 and this�� = λ1 • λ2.

From the definition of the synchronization algebra we have that λ1 and λ2 are such that: one
is an input and the other an output; one is defined on the � direction and the other is defined
on the � direction. We show the case λ1 = l�!(ã) and λ2 = l�?(ã) and omit remaining cases as

their proofs follow similar lines. From P1
l�!(ã)−→ P ′

1 and considering Lemma A.2.10 we conclude

P1 ≡ (ν c̃)(l�!(ã).Q1 + S1 | R1) and P ′
1 ≡ (ν c̃)(Q1 | R1). From P2

l�?(ã)−→ P ′
2 and considering

Lemma A.2.12 we conclude P2 ≡ (ν b̃)(l�?(x̃).Q2 + S2 | R2) and P2 ≡ (ν b̃)(Q2{x̃/ã} | R2). We
then have:

P1 | P2 ≡ (ν c̃)(l�!(ã).Q1 + S1 | R1) | (ν b̃)(l�?(x̃).Q2 + S2 | R2)

and thus, considering the necessary α-renaming:

P1 | P2 ≡ (ν c̃′)(ν b̃′)(l�!(ã).Q′
1 + S′

1 | l�?(x̃).Q′
2 + S′

2 | R′
2 | R′

1)

Likewise we conclude

P ′
1 | P ′

2 ≡ (ν c̃′)(ν b̃′)(Q′
1 | Q′

2{x̃/ã} | R′
2 | R′

1)

which completes the proof for this case.
(Case (Close))
Follows lines similar to the case of rule (Comm).
(Case (Rec))
Follows directly from the induction hypothesis.

Lemma A.2.17

Let P be a process. If P
c thisd

−→ P ′ then we have that either P ≡ (ν b̃)(this(x).Q + S | R) and
P ′ ≡ (ν b̃)(Q{x/c} | R); or P ≡ (ν b̃)(α1.Q1 +S1 | c J [α2.Q2 + S2] | R) and P ′ ≡ (ν b̃)(Q′

1 | c J

[Q′
2] | R) and either: α1 = ld?(x̃) and α2 = l�!(ã) in which case Q′

1 = Q1{x̃/ã} and Q′
2 = Q2;

or α1 = ld!(ã) and α2 = l�?(x̃) in which case Q′
1 = Q1 and Q′

2 = Q2{x̃/ã}.

Proof. By induction on the length of the derivation of P
c thisd

−→ P ′.
(Case (This) and (Sum))
Immediate.
(Case (Res))

We have (νa)P c thisd

−→ (νa)P ′ derived from P
c thisd

−→ P ′ and c 6= a. By induction hypoth-
esis we obtain that either P ≡ (ν b̃)(this(x).Q + S | R) and P ′ ≡ (ν b̃)(Q{x/c} | R); or P ≡
(ν b̃)(α1.Q1 +S1 | c J [α2.Q2 + S2] | R)and P ≡ (ν b̃)(Q′

1 | c J [Q′
2] | R), and either α1 = ld?(x̃)

and α2 = l�!(m̃); or α1 = ld!(m̃) and α2 = l�?(x̃). If P ≡ (ν b̃)(this(x).Q + S | R) then we have
(νa)P ≡ (νa, b̃)(this(x).Q + S | R) and (νa)P ′ ≡ (νa, b̃)(Q{x/c} | R). If P ≡ (ν b̃)(α1.Q1 +
S1 | c J [α2.Q2 + S2] | R) then we have (νa)P ≡ (νa, b̃)(α1.Q1 +S1 | c J [α2.Q2 + S2] | R) and
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(νa)P ′ ≡ (νa, b̃)(Q′
1 | c J [Q′

2] | R) which completes the proof for this case.
(Case (Par -l))

We have P1 | P2
c thisd

−→ P ′
1 | P2 derived from P1

c thisd

−→ P ′
1. By induction hypothesis we obtain

that either P1 ≡ (ν b̃)(this(x).Q + S | R) and P ′
1 ≡ (ν b̃)(Q{x/c} | R); or P1 ≡ (ν b̃)(α1.Q1 +

S1 | c J [α2.Q2 + S2] | R) and P ′
1 ≡ (ν b̃)(Q′

1 | c J [Q′
2] | R), and either α1 = ld?(x̃) and α2 =

l�!(ã); or α1 = ld!(ã) and α2 = l�?(x̃). If P1 ≡ (ν b̃)(this(x).Q + S | R) then we have P1 | P2 ≡
(ν b̃)(this(x).Q+S | R | P2) and P ′

1 | P2 ≡ (ν b̃)(Q{x/c} | R | P2). If P1 ≡ (ν b̃)(α1.Q1 +S1 | c J

[α2.Q2 + S2] | R) then we have P1 | P2 ≡ (νc, b̃)(α1.Q1 + S1 | c J [α2.Q2 + S2] | R | P2) and
P ′

1 | P2 ≡ (νc, b̃)(Q′
1 | c J [Q′

2] | R | P2) (we assume b̃ # fn(P2), and otherwise α-rename b̃),
which completes the proof.

(Case (Comm))

We have P1 | P2
c thisd

−→ P ′
1 | P ′

2 derived from P1
λ1−→ P ′

1 and P2
λ2−→ P ′

2 and c thisd = λ1 • λ2.
From the definition of the synchronization algebra we have that λ1 and λ2 are such that: one
is an input and the other an output; one is a � located label (at c) and the other is defined
on the d direction. We show the case λ1 = ld!(ã) and λ2 = c l�?(ã) and omit remaining

cases as their proofs follow similar lines. From P1
ld!(ã)−→ P ′

1 and considering Lemma A.2.10 we

conclude P1 ≡ (ν b̃)(ld!(ã).Q1 + S1 | R1) and P ′
1 ≡ (ν b̃)(Q1 | R1). From P2

c l�?(ã)−→ P ′
2 and con-

sidering Lemma A.2.13 we conclude P2 ≡ (ν b̃′)(c J [l�?(x̃).Q2 + S2] | R2) and P ′
2 ≡ (ν b̃′)(c J

[Q2{x̃/ã}] | R2). We then have:

P1 | P2 ≡ (ν b̃)(ld!(ã).Q1 + S1 | R1) | (ν b̃′)(c J
[
l�?(x̃).Q2 + S2

]
| R2)

and thus, considering the necessary α-renaming:

P1 | P2 ≡ (ν b̃′′)(ν b̃′′′)(ld!(ã).Q′
1 + S′

1 | c J
[
l�?(x̃).Q′

2 + S′
2

]
| R′

2 | R′
1)

Likewise we obtain:

P ′
1 | P ′

2 ≡ (ν b̃′′)(ν b̃′′′)(Q′
1 | c J

[
Q′

2{x̃/ã}
]

| R′
2 | R′

1)

which completes the proof for this case.
(Case (Close))
Follows lines similar to the case of rule (Comm).
(Case (Rec))
Follows directly from the induction hypothesis.
(Case (Here))

We have a J [P ] c this�
−→ a J [P ′] derived from P

c this�
−→ P ′. By induction hypothesis we obtain

that either P ≡ (ν b̃)(this(x).Q+S | R) and P ′ ≡ (ν b̃)(Q{x/c} | R); or P ≡ (ν b̃)(α1.Q1+S1 | c J

[α2.Q2 + S2] | R) and P ′ ≡ (ν b̃)(Q′
1 | c J [Q′

2] | R), and either α1 = ld?(x̃) and α2 = l�!(m̃); or
α1 = ld!(m̃) and α2 = l�?(x̃). Since the c this� label is � directed we have that it must be the
case that P ≡ (ν b̃)(α1.Q1 + S1 | c J [α2.Q2 + S2] | R) and α1 is defined on the � direction. We
show the case α1 is the input and α2 is the output. We have that:

a J [P ] ≡ a J
[
(ν b̃)(l�?(x̃).Q1 + S1 | c J

[
l�!(m̃).Q2 + S2

]
| R)

]
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We then have, up to some α-renaming, that:

a J [P ] ≡ (ν b̃′)(a J
[
l�?(x̃).Q′

1 + S′
1 | c J

[
l�!(m̃′).Q′

2 + S′
2

]
| R′

]
)

Then considering (StructCSplit) we conclude that:

a J [P ] ≡ (ν b̃′)(a J
[
l�?(x̃).Q′

1 + S′
1

]
| a J

[
c J

[
l�!(m̃′).Q′

2 + S′
2

]]
| a J

[
R′])

Then considering (StructInUp) and (StructOutHere) we have:

a J [P ] ≡ (ν b̃′)(l�?(x̃).a J
[
Q′

1

]
+ S′′

1 | c J
[
l�!(m̃′).a J

[
c J

[
Q′

2

]]
+ S′′

2

]
| a J

[
R′])

for some S′′
1 and S′′

2 . Similarly we conclude:

a J
[
P ′] ≡ (ν b̃′)(a J

[
Q′

1{x̃/m̃}
]

| c J
[
a J

[
c J

[
Q′

2

]]]
| a J

[
R′])

which completes the proof for this case.
(Case (ThisHere))

We have c J [P ] c this�
−→ c J [P ′] derived from P

this��
−→ P ′. Considering Lemma A.2.16 we

have there is d1, d2 such that di = � and dj = � for i, j ∈ {1, 2}, and P ≡ (ν b̃)(ld1 !(m̃).Q1 +
S1 | ld2?(x̃).Q2 + S2 | R) and P ′ ≡ (ν b̃)(Q1 | Q2{x̃/m̃} | R). We show the case d1 is � and d2 is
�. We have that:

c J [P ] ≡ c J
[
(ν b̃)(l�!(m̃).Q1 + S1 | l�?(x̃).Q2 + S2 | R)

]
We then have, up to some α-renaming, that:

c J [P ] ≡ (ν b̃′)c J
[
l�!(m̃′).Q′

1 + S′
1 | l�?(x̃).Q′

2 + S′
2 | R′

]
Then considering (StructCSplit) we conclude that:

c J [P ] ≡ (ν b̃′)(c J
[
l�!(m̃′).Q′

1 + S′
1

]
| c J

[
l�?(x̃).Q′

2 + S′
2

]
| c J

[
R′])

Then considering (StructInUp) we have:

c J [P ] ≡ (ν b̃′)(c J
[
l�!(m̃′).Q′

1 + S′
1

]
| l�?(x̃).c J

[
Q′

2

]
+ S′′

2 | c J
[
R′])

for some S′′
2 . Similarly we conclude:

c J
[
P ′] ≡ (ν b̃′)(c J

[
Q′

1

]
| c J

[
Q′

2{x̃/m̃′}
]

| c J
[
R′])

which completes the proof for this last case.

Theorem 4.4.21 (Reductions Match τ-Transitions)

(repetition of the statement in page 88)

Let P,Q be processes. We have that P → Q if and only if P
τ−→≡ Q.

Proof. We prove the two directions: P → Q implies P
τ−→≡ Q and P

τ−→ Q implies P → Q.
(P → Q implies P

τ−→≡ Q)
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By induction on the length of the derivation of P → Q. For the base cases of (RedComm)
and (RedThis) we immediately derive a τ -transition. (RedRes), (RedPar) and (RedPiece) follow
directly from induction hypothesis. Case (RedStruct) follows from Lemma A.2.9: We have
P → Q derived from P ≡ P ′ → Q′ ≡ Q; by induction hypothesis on P ′ → Q′ we obtain
P ′ τ−→ Q′′ and Q′′ ≡ Q′. Then from P ≡ P ′ and considering Lemma A.2.9 we conclude
P

τ−→ Q′′′ and Q′′′ ≡ Q′′, which along with Q′′ ≡ Q′ ≡ Q gives us P
τ−→≡ Q as intended.

(P τ−→ Q implies P → Q)
By induction on the length of the derivation of P

τ−→ Q.
(Cases (Res), (Par), (Rec) and (Tau))
Follow from induction hypothesis in expected lines.
(Case (Comm))
We have P1 | P2

τ−→ P ′
1 | P ′

2 derived from P1
λ1−→ P ′

1 and P2
λ2−→ P ′

2 and τ = λ1 • λ2.
From the definition of the synchronization algebra we have that λ1 and λ2 are such that: one
is an input and the other an output; either both λ1 and λ2 are � located labels or they are
both unlocated labels with matching direction. We show the case λ1 = c l�!(ã) and λ2 =

c l�?(ã) and omit remaining cases as their proofs follow similar lines. From P1
c l�!(ã)−→ P ′

1 and
considering Lemma A.2.11 we conclude P1 ≡ (ν b̃)(c J [l�!(ã).Q1 + S1] | R1) and P ′

1 ≡ (ν b̃)(c J

[Q1] | R1). From P2
c l�?(ã)−→ P ′

2 and considering Lemma A.2.13 we conclude P2 ≡ (ν b̃′)(c J
[l�?(x̃).Q2 + S2] | R2) and P ′

2 ≡ (ν b̃′)(c J [Q2{x̃/ã}] | R2). We then have:

P1 | P2 ≡ (ν b̃)(c J
[
l�!(ã).Q1 + S1

]
| R1) | (ν b̃′)(c J

[
l�?(x̃).Q2 + S2

]
| R2)

and thus, considering the necessary α-renaming:

P1 | P2 ≡ (ν b̃′′)(ν b̃′′′)(c J
[
l�!(ã).Q′

1 + S′
1

]
| c J

[
l�?(x̃).Q′

2 + S′
2

]
| R′

2 | R′
1)

Considering structural congruence rule (StructCSplit) we have:

P1 | P2 ≡ (ν b̃′′)(ν b̃′′′)(c J
[
l�!(ã).Q′

1 + S′
1 | l�?(x̃).Q′

2 + S′
2

]
| R′

2 | R′
1)

Similarly we conclude:

P ′
1 | P ′

2 ≡ (ν b̃′′)(ν b̃′′′)(c J
[
Q′

1 | (Q′
2{x̃/ã})

]
| R′

2 | R′
1)

We thus have:

P1 | P2 ≡ (ν b̃′′)(ν b̃′′′)(c J [l�!(ã).Q′
1 + S′

1 | l�?(x̃).Q′
2 + S′

2] | R′
2 | R′

1)
→ (ν b̃′′)(ν b̃′′′)(c J [Q′

1 | (Q′
2{x̃/ã})] | R′

2 | R′
1) ≡ P ′

1 | P ′
2

which completes the proof for this case.
(Case (Close))
Follows lines similar to the case of rule (Comm).
(Case (ThisLoc))

We have c J [P ] τ−→ c J [P ′] derived from P
c this�
−→ P ′. Considering Lemma A.2.17 we have

that either P ≡ (ν b̃)(this(x).Q+S | R) and P ′ ≡ (ν b̃)(Q{x/c} | R); or P ≡ (ν b̃)(α1.Q1+S1 | c J

[α2.Q2 + S2] | R) and P ′ ≡ (ν b̃)(Q′
1 | c J [Q′

2] | R) and either: α1 = ld?(x̃) and α2 = l�!(ã) in
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which case Q′
1 = Q1{x̃/ã} and Q′

2 = Q2; or α1 = ld!(ã) and α2 = l�?(x̃) in which case Q′
1 = Q1

and Q′
2 = Q2{x̃/ã}.

If P ≡ (ν b̃)(this(x).Q + S | R) then we have that c J [P ] ≡ c J
[
(ν b̃)(this(x).Q + S | R)

]
.

Then (up to some α-renaming) we have c J [P ] ≡ (ν b̃′)c J [this(x).Q′ + S′ | R′] and considering
(StructCSplit) we obtain c J [P ] ≡ (ν b̃′)(c J [this(x).Q′ + S′] | c J [R′]). Similarly we conclude
c J [P ′] ≡ (ν b̃′)(c J [Q′{x/c}] | c J [R′]). We thus have:

c J [P ] ≡ (ν b̃′)(c J [this(x).Q′ + S′] | c J [R′])
→ (ν b̃′)(c J [Q′{x/c}] | c J [R′]) ≡ c J [P ′]

which completes the proof for this case.
We now consider the case when P ≡ (ν b̃)(α1.Q1 + S1 | c J [α2.Q2 + S2] | R). Since the

c this� label is � directed we have that it must be the case that α1 is defined on the � direction.
We show the case α1 is the input and α2 is the output. We have that:

c J [P ] ≡ c J
[
(ν b̃)(l�?(x̃).Q1 + S1 | c J

[
l�!(ã).Q2 + S2

]
| R)

]
We then have, up to some α-renaming, that:

c J [P ] ≡ (ν b̃′)(c J
[
l�?(x̃).Q′

1 + S′
1 | c J

[
l�!(ã′).Q′

2 + S′
2

]
| R′

]
)

Then considering (StructCSplit) we conclude that:

c J [P ] ≡ (ν b̃′)(c J
[
l�?(x̃).Q′

1 + S′
1

]
| c J

[
c J

[
l�!(ã′).Q′

2 + S′
2

]]
| c J

[
R′])

We now consider (StructOutHere) and obtain:

c J [P ] ≡ (ν b̃′)(c J
[
l�?(x̃).Q′

1 + S′
1

]
| c J

[
l�!(ã′).c J

[
c J

[
Q′

2

]]
+ S′′

2

]
| c J

[
R′])

for some S′′
2 . Then, again through (StructCSplit) we obtain:

c J [P ] ≡ (ν b̃′)(c J
[
l�?(x̃).Q′

1 + S′
1 | l�!(ã′).c J

[
c J

[
Q′

2

]]
+ S′′

2

]
| c J

[
R′]) (A.2.18.1)

We also have that:
c J

[
P ′] ≡ c J

[
(ν b̃)(Q1{x̃/ã} | c J [Q2] | R)

]
As before, up to some α-renaming, we obtain:

c J
[
P ′] ≡ (ν b̃′)(c J

[
Q′

1{x̃/ã′} | c J
[
Q′

2

]
| R′

]
)

And considering (StructCSplit) we obtain:

c J
[
P ′] ≡ (ν b̃′)(c J

[
Q′

1{x̃/ã′}
]

| c J
[
c J

[
Q′

2

]]
| c J

[
R′])

We now consider (StructCNest) and obtain:

c J
[
P ′] ≡ (ν b̃′)(c J

[
Q′

1{x̃/ã′}
]

| c J
[
c J

[
c J

[
Q′

2

]]]
| c J

[
R′])
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Then, again through (StructCSplit) we have:

c J
[
P ′] ≡ (ν b̃′)(c J

[
Q′

1{x̃/ã′} | c J
[
c J

[
Q′

2

]]]
| c J

[
R′]) (A.2.18.2)

(A.2.18.1) and (A.2.18.2) allow us to state our intended result:

c J [P ] ≡ (ν b̃′)(c J
[
l�?(x̃).Q′

1 + S′
1 | l�!(ã′).c J [c J [Q′

2]] + S′′
2

]
| c J [R′])

→ (ν b̃′)(c J
[
Q′

1{x̃/ã′} | c J [c J [Q′
2]]

]
| c J [R′]) ≡ c J [P ′]

thus completing the proof for this case.

A.3 Chapter 5

Proposition 5.2.19 (Behavioral Type Merge Relation Properties)

(repetition of the statement in page 115)

The behavioral types merge relation is commutative and associative:

(1 ). If B = B1 ./ B2 then B = B2 ./ B1.

(2 ). If B′ = B1 ./ B2 and B = B′ ./ B3 then there is B′′ such that B′′ = B2 ./ B3 and
B = B1 ./ B′′.

Proof.

(1 ). Follows immediately from the definition.

(2 ). By induction on the derivation of B′ = B1 ./ B2 and B = B′ ./ B3. We show the case
when B′ = B1 ./ B2 is derived using rule (Plain-r) and B = B′ ./ B3 is derived using rule
(Shuffle-l), hence B1 ≡ ! l(C).Ba and B2 ≡ ? l(C).Bb. We have:

τ l(C).B′ | B′′ = τ l(C).(Ba ./ Bb) ./ B3 (A.3.1.1)

derived from:
B′ | B′′ ≡ (Ba ./ Bb) ./ B3 (A.3.1.2)

and τ l(C) # B3, τ l(C) # B′′ and I(B′) ⊆ I(Ba ./ Bb) and I(B′′) ⊆ I(B3). We also have
that:

τ l(C).(Ba ./ Bb) = ! l(C).Ba ./ ? l(C).Bb (A.3.1.3)

We intend to prove: τ l(C).B′ | B′′ = ! l(C).Ba ./ (? l(C).Bb ./ B3). By induction hy-
pothesis on (A.3.1.2) we have:

B′ | B′′ ≡ Ba ./ (Bb ./ B3) (A.3.1.4)

From (A.3.1.4) and τ l(C) # B3 we have that there is Bc, Bd such that:

? l(C).Bc | Bd = ? l(C).Bb ./ B3 (A.3.1.5)

derived from:
Bc | Bd ≡ Bb ./ B3 (A.3.1.6)
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and ? l(C) # Bd and I(Bc) ⊆ I(Bb) and I(Bd) ⊆ I(B3). We then derive (using rule
(ShufflePar -r)):

(! l(C).Ba ./ ? l(C).Bc) ./ Bd = ! l(C).Ba ./ ? l(C).Bc | Bd (A.3.1.7)

and then by rule (Plain-r) we derive:

τ l(C).(Ba ./ Bc) ./ Bd = (! l(C).Ba ./ ? l(C).Bc) ./ Bd (A.3.1.8)

We then have, by rule (Shuffle-l):

τ l(C).Be | Bf = τ l(C).(Ba ./ Bc) ./ Bd (A.3.1.9)

derived from:
Be | Bf ≡ (Ba ./ Bc) ./ Bd (A.3.1.10)

and τ l(C) # Bf and I(Be) ⊆ I(Ba ./ Bc) and I(Bf ) ⊆ I(Bd). By induction hypothesis
on (A.3.1.10) we conclude:

(Ba ./ Bc) ./ Bd ≡ Ba ./ (Bc ./ Bd) (A.3.1.11)

From (A.3.1.6) we have that Bc and Bd are apart, hence:

Ba ./ (Bc ./ Bd) ≡ Ba ./ (Bc | Bd) (A.3.1.12)

Also from (A.3.1.6) we conclude:

Ba ./ (Bc | Bd) ≡ Ba ./ (Bb ./ B3) (A.3.1.13)

From (A.3.1.13), (A.3.1.12), (A.3.1.11) and (A.3.1.10) we conclude:

Be | Bf ≡ Ba ./ (Bb ./ B3) (A.3.1.14)

From (A.3.1.14) and (A.3.1.4) we conclude:

Be | Bf ≡ B′ | B′′ (A.3.1.15)

From I(Bf ) ⊆ I(Bd) ⊆ I(B3) and I(B′′) ⊆ {B̃} we have Be ≡ B′ and Bf ≡ B′′, from
which we conclude — rule (Shuffle-l):

τ l(C).B′ | B′′ = τ l(C).(Ba ./ Bc) ./ Bd (A.3.1.16)

which completes the proof.

Proposition 5.3.3 (Weakening)

(repetition of the statement in page 121)

Let P be a well-typed process such that P :: T . If exponential output located type ?L! is such that
T and ?L! are apart, hence T # ? L!, then P :: T | ? L!.
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Proof. By induction on the length of the derivation of P :: T . The exponential output located
typed is introduced at the level of the axioms (Stop) and (RecVar), for which we directly have:

0 : ?L!
1 | ? L!

and:

X : ?L!
1 | ? L! | X

The proof of the remaining rules follows directly from induction hypothesis, where some care
needs to be taken (baring in mind that α-equivalent processes are identified) when considering
the bound identifiers in rule (Res) and (Input). We show the cases for rules (Par) and (Piece).

(Rule (Par))
We have:

P1 | P2 :: T (A.3.2.1)

derived from:
P1 :: T1 and P2 :: T2 and T = T1 ./ T2 (A.3.2.2)

Let us consider ?L! such that T # ? L!. Considering (A.3.2.2), we then have:

T1 # ? L! and T2 # ? L! (A.3.2.3)

By induction hypothesis on (A.3.2.2) and (A.3.2.3) we have:

P1 :: T1 | ? L! (A.3.2.4)

From (A.3.2.2) and (A.3.2.3) we conclude:

T | ? L! = (T1 | ? L!) ./ T2 (A.3.2.5)

and thus:
P1 | P2 :: T | ? L! (A.3.2.6)

which completes the proof for this case.
(Rule (Piece))
We have:

n J [P ] :: T (A.3.2.7)

derived from:
P :: L | B and T = (L ./ n : [�B]) | loc(�B) (A.3.2.8)

Let us consider ?L! such that T # ? L!. We then have that L# ? L! and thus L | B # ? L!. By
induction hypothesis we conclude:

P :: L | B | ? L! (A.3.2.9)

Since T # ? L! we have that n : [�B] # ? L!:

T | ? L! = ((L | ? L!) ./ n : [�B]) | loc(�B) (A.3.2.10)
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which gives us our intended result:

n J [P ] :: T | ? L! (A.3.2.11)

and completes the proof.

Lemma 5.3.4 (Substitution Lemma)

(repetition of the statement in page 121)

Let P be a well typed process such that P :: T | x : C and x 6∈ dom(T ). If there is T ′ such that
T ′ = T ./ a : C then P{x/a} :: T ′.

Proof. By induction on the length of the derivation of P :: T | x : C. We show the cases of rule
(Piece), when P of the form x J [Q], and rule (Output), when P is of the form ld!(x).P .

(Rule (Piece)) We have:
x J [Q] :: T | x : C (A.3.3.1)

where x 6∈ dom(T ). Since (A.3.3.1) is a conclusion of rule (Piece) we have that:

T | x : C ≡ (L ./ x : [�B]) | loc(�B) (A.3.3.2)

for some L,B such that:
Q :: L | B (A.3.3.3)

In order to apply the induction hypothesis we first characterize types L, C and T . We separate
L into two parts L′ and x : C ′ such that L′ does not mention x (i.e., x 6∈ dom(L′)):

L ≡ L′ | x : C ′ (A.3.3.4)

From (A.3.3.2) we have that x : C is the result of the merge of x : [�B] and the type that L

specifies for x (which we identify in (A.3.3.4) as x : C ′), hence:

x : C = x : C ′ ./ x : [�B] (A.3.3.5)

Also, since L′ does not mention x we have that (L′ | x : C ′) ./ x : [�B] yields the same type as
L′ | (x : C ′ ./ x : [�B]), hence from (A.3.3.2) we have that T is such that:

T ≡ L′ | loc(�B) (A.3.3.6)

We now assume the hypothesis in the statement of the Lemma: there is type T ′ such that:

T ′ = T ./ a : C (A.3.3.7)

Since L′ is a part of T (A.3.3.6) and C ′ is a partial view of C (A.3.3.5), from (A.3.3.7) we
conclude there is type T ′′ such that T ′′ = L′ ./ a : C ′ and hence:

T ′′ | B = (L′ | B) ./ a : C ′ (A.3.3.8)
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We rewrite (A.3.3.3) considering (A.3.3.4), using the subsumption rule, and obtain:

Q :: L′ | B | x : C ′ (A.3.3.9)

By induction hypothesis on (A.3.3.9) and (A.3.3.8) we conclude Q{x/a} :: (L′ | B) ./ a : C ′,
from which we obtain:

Q{x/a} :: (L′ ./ a : C ′) | B (A.3.3.10)

From (A.3.3.7), considering L′ is a part of T (A.3.3.6) and separating C in the partial views
given by (A.3.3.5) we obtain there is type T ′′′ such that:

T ′′′ = L′ ./ (a : C ′ ./ a : [� B]) (A.3.3.11)

From (A.3.3.10) and (A.3.3.11) and considering rule (Piece) we derive:

a J [(Q{x/a})] :: ((L′ ./ a : C ′) ./ a : [� B]) | loc(� B) (A.3.3.12)

from which we conclude:

a J [(Q{x/a})] :: (L′ | loc(�B)) ./ (a : C ′ ./ a : [� B]) (A.3.3.13)

From (A.3.3.13), considering (A.3.3.6) and (A.3.3.5), we conclude:

a J [(Q{x/a})] :: T ./ a : C (A.3.3.14)

which completes the proof for this case.
(Rule (Output))
We have:

ld!(x).Q :: T | x : C (A.3.3.15)

where x 6∈ dom(T ). We have (A.3.3.15) is derived from:

Q :: L | B (A.3.3.16)

and:
T | x : C ≡ (L ./ x : C ′) | �{! ld(C ′).B; B̃} (A.3.3.17)

In order to apply the induction hypothesis we first characterize types L, C and T . We separate
L into two parts L′ and x : C ′′ such that L′ does not mention x (i.e., x 6∈ dom(L′)):

L ≡ L′ | x : C ′′ (A.3.3.18)

From (A.3.3.17) we have that x : C is the result of the merge of x : C ′ with the type that L

specifies for x (which we identify in (A.3.3.18) as C ′′), hence:

x : C = x : C ′′ ./ x : C ′ (A.3.3.19)

Also, since L′ does not mention x we have that (L′ | x : C ′′) ./ x : C ′ yields the same type as
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L′ | (x : C ′′ ./ x : C ′), hence from (A.3.3.17) we have:

T ≡ L′ | �{! ld(C ′).B; B̃} (A.3.3.20)

We now assume the hypothesis in the statement of the Lemma: there is type T ′ such that:

T ′ = T ./ a : C (A.3.3.21)

Since L′ is a part of T (A.3.3.20) and C ′′ is a partial view of C (A.3.3.19), from (A.3.3.21) we
conclude there is type T ′′ such that T ′′ = L′ ./ a : C ′′ and hence:

T ′′ | B = (L′ | B) ./ a : C ′′ (A.3.3.22)

We rewrite (A.3.3.16) considering (A.3.3.18), using the subsumption rule, and obtain:

Q :: L′ | B | x : C ′′ (A.3.3.23)

By induction hypothesis on (A.3.3.23) and (A.3.3.22) we conclude Q{x/a} :: (L′ | B) ./ a : C ′′,
from which we obtain:

Q{x/a} :: (L′ ./ a : C ′′) | B (A.3.3.24)

From (A.3.3.21), considering L′ is a part of T (A.3.3.20) and separating C in the partial views
given by (A.3.3.19) we obtain there is type T ′′′ such that:

T ′′′ = L′ ./ (a : C ′′ ./ a : C ′) (A.3.3.25)

From (A.3.3.24) and (A.3.3.25) and considering rule (Output) we derive:

ld!(a).(Q{x/a}) :: ((L′ ./ a : C ′′) ./ a : C ′) | �{! ld(C ′).B; B̃} (A.3.3.26)

from which we conclude:

ld!(a).(Q{x/a}) :: (L′ | �{! ld(C ′).B; B̃}) ./ (a : C ′′ ./ a : C ′) (A.3.3.27)

From (A.3.3.27), considering (A.3.3.20) and (A.3.3.19), we conclude:

ld!(a).(Q{x/a}) :: T ./ a : C (A.3.3.28)

which completes the proof for this case.

We state some auxiliary results to the proof of Theorem 5.3.5. Such auxiliary results allows us
to identify the typings that characterize processes that exhibit a determined behavior. Then,
using such type information, we may study the several kinds of internal interactions in the proof
of Theorem 5.3.5 along with the typing characterizations for such interactions. We start by
some results that identify some invariant features of types related by subtyping.

Lemma A.3.4

Let P be a well-typed process P :: T . If T ≡ T ′ | ! ld(C).B then P :: T ′ | �i∈I{!ld(C).B; B̃}
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where B̃ = ! ld1(C1).B1; . . . ; ! ldk(Ck).Bk. Likewise if T ≡ T ′ | c : [! ld(C).B] then P :: T ′ | c :
[�i∈I{!ld(C).B; B̃}] where B̃ = ! ld1(C1).B1; . . . ; ! ldk(Ck).Bk.

Proof. Follows by induction on the derivation of P :: T | ! ld(C).B in expected lines. Notice
that in rule (Output) we may introduce the choice type instead of the message prefix type.

Lemma A.3.5

Let T1 be a type such that T1 ≡ T ′
1 | �i∈I{Mi.Bi}. If there is T2 such that T1 <: T2 then there

is T ′
2 and B and B′

i (for each i ∈ I) such that T2 ≡ T ′
2 | B | �i∈I{Mi.B

′
i} and T ′

1 <: T ′
2 and

�i∈I{Mi.Bi} <: B | �i∈I{Mi.B
′
i}. Furthermore if j ∈ I and P :: T | Bj then P :: T | B | B′

j.

Proof. By induction on the length of the derivation of T1 <: T2. The proof of the first part
of the lemma follows expected lines. We prove that given �i∈I{Mi.Bi} <: B | �i∈I{Mi.B

′
i} if

j ∈ I and P :: T | Bj then P :: T | B | B′
j , considering the cases of rules (SubParPref ) and

(SubProject).
(Rule (SubParPref ))
We have that �i∈I{Mi.Bi} <: B | �i∈I{Mi.B

′
i} derived using M.(B1 | B2) <: M.B1 | B2.

This means that �i∈I{Mi.Bi} ≡ M.(B1 | B2) and B | �i∈I{Mi.B
′
i} ≡ B2 | M.B1, and thus the

result is direct since P :: T | B1 | B2 directly gives us that P :: T | B2 | B1.
(Rule (SubProject))
We have that �i∈I{Mi.Bi} <: B | �i∈I{Mi.B

′
i} derived using B <: � B | � B. Let us assume

that the Mi messages are defined on the � direction (the proof for the � case is analogous).
We then have that B ≡ � (�i∈I{Mi.Bi}) and �i∈I{Mi.B

′
i} ≡ � (�i∈I{Mi.Bi}). From the

definition of direction projection (Definition 5.2.2) we have that B ≡ �i∈I{M ′
i .B

′′
i } where �

(Bi) = M ′
i .B

′′
i for each i ∈ I. Let us now consider that P :: T | Bj . Since Bj <: M ′

j .B
′′
j | B′

j

(rule (SubProject)) we have that P :: T | M ′
j .B

′′
j | B′

j . Then considering Lemma A.3.4 we have
that P :: T | �i∈I{M ′

i .B
′′
i } | B′

j which concludes the proof for this case.

Lemma A.3.6

Let T1 be a type such that T1 ≡ T ′
1 | Ni∈I{Mi.Bi}. If there is T2 such that T1 <: T2 then there

is T ′
2 and B and B′

i (for each i ∈ I) such that T2 ≡ T ′
2 | B | Ni∈I{Mi.B

′
i} and T ′

1 <: T ′
2 and

Ni∈I{Mi.Bi} <: B | Ni∈I{Mi.B
′
i}. Furthermore if j ∈ I and P :: T | Bj then P :: T | B | B′

j.

Proof. Follows by induction on the length of the derivation of T1 <: T2, analogously to the proof
of Lemma A.3.5.

Lemma A.3.7

Let process P be such that P :: T . If P
ld?(a)−→ Q then there are T ′, C, B, B̃ such that ei-

ther T ≡ T ′ | N{? ld(C).B; B̃} or T ≡ T ′ | B and τ ld(C) ∈ Msg(B). Furthermore if T ≡
T ′ | N{? ld(C).B; B̃} and there is T ′′ = (T ′ | B) ./ a : C then Q :: T ′′.

Proof. By induction on the derivation of the transition P
ld?(a)−→ Q. We show the cases when the

transition results from a input summation, and from within a conversation piece, and from one
component of a parallel composition.

(Case Σi∈I ldi ?(xi).Pi

ldj ?(a)
−→ Pj{xj/a})
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We have that:

Σi∈I ldi ?(xi).Pi :: T and Σi∈I ldi ?(xi).Pi

ldj ?(a)
−→ Pj{xj/a} (A.3.7.1)

From (A.3.7.1) and considering rule (Input) we have there is L,Cj , Bj , B̃ such that:

L | N{? ldj (Cj).Bj ; B̃} <: T (A.3.7.2)

and:

Σi∈I ldi ?(xi).Pi :: L | N{? ldj (Cj).Bj ; B̃} and Pj :: L | Bj | xj : Cj (A.3.7.3)

From (A.3.7.2) and considering Lemma A.3.6 we conclude there are T ′, B′, B′
j , B̃

′ such that:

T ≡ T ′ | B′ | N{? ldj (Cj).B′
j ; B̃

′} (A.3.7.4)

and:
L <: T ′ and N{? ldj (Cj).Bj ; B̃} <: B′ | N{? ldj (Cj).B′

j ; B̃
′} (A.3.7.5)

Let us now consider there is T ′′ such that:

T ′′ ≡ (T ′ | B′ | B′
j) ./ a : Cj (A.3.7.6)

Since L <: T ′ from (A.3.7.6) we directly have that there is L′ such that

L′ | Bj ≡ (L | Bj) ./ a : Cj (A.3.7.7)

Considering Lemma 5.3.4 we then have:

Pj{xj/a} :: (L | Bj) ./ a : Cj (A.3.7.8)

And considering Lemma A.3.6 we have:

Pj{xj/a} :: (L | B′ | B′
j) ./ a : Cj (A.3.7.9)

From L <: T ′ we conclude:

Pj{xj/a} :: (T ′ | B′ | B′
j) ./ a : Cj (A.3.7.10)

which completes the proof for this case.

(Case c J [P ′]
l�?(a)−→ c J [Q′])

We have that:
c J

[
P ′] :: T and c J

[
P ′] l�?(a)−→ c J

[
Q′] (A.3.7.11)

From (A.3.7.11) and considering rule (Piece) we have there is L,B such that:

(L ./ c : [� B]) | loc(� B) <: T (A.3.7.12)
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and:
c J

[
P ′] :: (L ./ c : [� B]) | loc(� B) and P ′ :: L | B (A.3.7.13)

We also have that (A.3.7.11) is derived from:

P ′ l�?(a)−→ Q′ (A.3.7.14)

By induction hypothesis on (A.3.7.14) and (A.3.7.13) we have there is T ′, C, B′, B̃ such that:

L | B ≡ T ′ | N{? l�(C).B′; B̃} (A.3.7.15)

or:
τ ld(C) ∈ Msg(B) (A.3.7.16)

In case of (A.3.7.15) we have that there is B1 such that:

B ≡ B1 | N{? l�(C).B′; B̃} (A.3.7.17)

and there is L′ such that T ′ ≡ L′ | B1 and L ≡ L′. We then have:

loc(� B) ≡ loc(� B1) | N{? l�(C).loc(� B′); loc(� B̃)} (A.3.7.18)

From (A.3.7.12), (A.3.7.15) and (A.3.7.18) we conclude:

(L′ ./ c : [� B1 | � (N{? l�(C).B′; B̃})]) | loc(� B1) | N{? l�(C).loc(� B′); loc(� B̃)} <: T

(A.3.7.19)
From (A.3.7.19) and considering Lemma A.3.6 we have that there is T ′

1, B
′
1, B

′′, B̃′ such that:

T ≡ T ′
1 | B′

1 | N{? l�(C).B′′; B̃′} (A.3.7.20)

where:
(L′ ./ c : [� B1 | � (N{? l�(C).B′; B̃})]) <: T ′

1 (A.3.7.21)

and:
loc(� B1) | N{? l�(C).loc(� B′); loc(� B̃)} <: B′

1 | N{? l�(C).B′′; B̃′} (A.3.7.22)

In case of (A.3.7.16) proof that T ≡ T ′ | B′ and τ ld(C) ∈ Msg(B′), from τ ld(C) ∈ Msg(B) and
(A.3.7.12) follows expect lines.

Let us now consider (A.3.7.20) and that there is T2 such that:

T2 ≡ (T ′
1 | B′

1 | B′′) ./ a : C (A.3.7.23)

From (A.3.7.23), (A.3.7.21) and (A.3.7.15) we conclude there is T ′′ such that:

T ′′ ≡ (T ′ | B′) ./ a : C (A.3.7.24)

By induction hypothesis we then have:

Q′ :: (T ′ | B′) ./ a : C (A.3.7.25)

228



and thus:
Q′ :: (L′ | B1 | B′) ./ a : C (A.3.7.26)

From (A.3.7.26) we derive:

c J
[
Q′] :: ((L′ ./ a : C) ./ c : [� B1 | � B′]) | loc(� (B1 | B′)) (A.3.7.27)

From (A.3.7.21) and (A.3.7.22) and considering Lemma A.3.6 we conclude:

c J
[
Q′] :: (T ′

1 | B′
1 | B′′) ./ a : C (A.3.7.28)

which completes the proof for this case.

(Case P ′ | R
ld?(a)−→ Q′ | R)

We have that:
P ′ | R :: T and P ′ | R

ld?(a)−→ Q′ | R (A.3.7.29)

which is derived from:
P ′ ld?(a)−→ Q′ (A.3.7.30)

Considering (A.3.7.29) and rule (Par) we have that there is T1, T2 such that T1 ./ T2 <: T and:

P ′ | R :: T1 ./ T2 and P ′ :: T1 and R :: T2 (A.3.7.31)

By induction hypothesis on (A.3.7.30) and (A.3.7.31) we have that there is T ′, C, B, B̃ such that:

T1 ≡ T ′ | N{? ld(C).B; B̃} (A.3.7.32)

or:
T1 ≡ T ′ | B and τ ld(C) ∈ Msg(B) (A.3.7.33)

In case of (A.3.7.32), from T1 ./ T2 <: T we conclude there is T ′′ such that either:

T ≡ T ′′ | N{? ld(C).B; B̃} (A.3.7.34)

or:
T ≡ T ′′ | B′′ and τ ld(C) ∈ Msg(B′′) (A.3.7.35)

In case of (A.3.7.33), from T1 ./ T2 <: T we directly have that T ≡ T ′′ | B′′ where τ ld(C) ∈
Msg(B′′). Let us now consider (A.3.7.34) and that there is T3 such that:

T3 ≡ (T ′′ | B) ./ a : C (A.3.7.36)

From (A.3.7.36), (A.3.7.34) and T1 ./ T2 <: T we have that there is (T ′ | B) ./ a : C, and thus
by induction hypothesis we conclude:

Q′ :: (T ′ | B) ./ a : C (A.3.7.37)

From (A.3.7.37) and (A.3.7.31) we derive:

Q′ | R :: ((T ′ | B) ./ a : C) ./ T2 (A.3.7.38)
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From (A.3.7.38), (A.3.7.34), (A.3.7.32) and T <: T1 ./ T2 we conclude:

Q′ | R :: (T ′′ | B) ./ a : C (A.3.7.39)

which completes the proof for this case.

Lemma A.3.8

Let T1 be a type such that T1 ≡ T ′
1 | c : [�i∈I{Mi.Bi}]. If there is T2 such that T1 <: T2

then there is T ′
2 and B and B′

i (for each i ∈ I) such that T2 ≡ T ′
2 | c : [B | �i∈I{Mi.B

′
i}] and

T ′
1 <: T ′

2 and �i∈I{Mi.Bi} <: B | �i∈I{Mi.B
′
i}. Furthermore if j ∈ I and P :: T | c : [Bj ] then

P :: T | c : [B | B′
j ].

Proof. By induction on the length of the derivation of T1 <: T2, following the lines of the proof
of Lemma A.3.5.

Lemma A.3.9

Let T1 be a type such that T1 ≡ T ′
1 | c : [Ni∈I{Mi.Bi}]. If there is T2 such that T1 <: T2

then there is T ′
2 and B and B′

i (for each i ∈ I) such that T2 ≡ T ′
2 | c : [B | Ni∈I{Mi.B

′
i}] and

T ′
1 <: T ′

2 and Ni∈I{Mi.Bi} <: B | Ni∈I{Mi.B
′
i}. Furthermore if j ∈ I and P :: T | c : [Bj ] then

P :: T | c : [B | B′
j ].

Proof. By induction on the length of the derivation of T1 <: T2, following the lines of the proof
of Lemma A.3.5.

Lemma A.3.10

Let P be a process such that P :: T . If P
c l�?(a)−→ Q then there are T ′, C, B, B̃ such that T ≡

T ′ | c : [N{? l�(C).B; B̃}] or T ≡ T ′ | c : [B] and τ l�(C) ∈ Msg(B). Furthermore if T ≡ T ′ | c :
[N{? l�(C).B; B̃}] and there is T ′′ = (T ′ | c : [B]) ./ a : C then Q :: T ′′.

Proof. By induction on the length of the derivation of the transition P
c l�?(a)−→ Q, similarly to the

proof of Lemma A.3.7. We show the case of l�?(a) transition originating from a context piece.

(Case c J [P ′]
c l�?(a)−→ c J [Q′])

We have that:

c J
[
P ′] :: T and c J

[
P ′] c l�?(a)−→ c J

[
Q′] (A.3.10.1)

From (A.3.10.1) and considering rule (Piece) we have there is L,B such that:

(L ./ c : [� B]) | loc(� B) <: T (A.3.10.2)

and:
c J

[
P ′] :: (L ./ c : [� B]) | loc(� B) and P ′ :: L | B (A.3.10.3)

We also have that (A.3.10.1) is derived from:

P ′ l�?(a)−→ Q′ (A.3.10.4)
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Considering Lemma A.3.7, from (A.3.10.4) and (A.3.10.3) we have there is T ′, C, B′, B̃ such that
either:

L | B ≡ T ′ | N{? l�(C).B′; B̃} (A.3.10.5)

or:
τ l�(C) ∈ Msg(B) (A.3.10.6)

In case of (A.3.10.5) we have that there is B1 such that:

B ≡ B1 | N{? l�(C).B′; B̃} (A.3.10.7)

and there is L′ such that T ′ ≡ L′ | B1 and L ≡ L′. We then have:

� B ≡� B1 | N{? l�(C). � B′; � B̃} (A.3.10.8)

From (A.3.10.2), (A.3.10.5) and (A.3.10.8) we conclude:

(L′ ./ c : [� B1 | N{? l�(C). � B′; � B̃}]) | loc(� B1) | loc(� (N{? l�(C).B′; B̃}) <: T (A.3.10.9)

From (A.3.10.9) we have that either:

(L′ ./ c : [� B1 | N{? l�(C). � B′; � B̃}]) | loc(� B1) | loc(� (N{? l�(C).B′; B̃})
≡ L′′ | c : [N{? l�(C).B′′; B̃′}] | loc(� B1) | loc(� (N{? l�(C).B′; B̃})

(A.3.10.10)

or:

(L′ ./ c : [� B1 | N{? l�(C). � B′; � B̃}]) | loc(� B1) | loc(� (N{? l�(C).B′; B̃})
≡ L′′ | c : [�{τ l�(C).B′′; B̃′}] | loc(� B1) | loc(� (N{? l�(C).B′; B̃})

(A.3.10.11)

Then considering Lemma A.3.9 we have that there is T ′
1, B

′
1, B

′′′, B̃′′ such that either:

T ≡ T ′
1 | c : [B′

1 | N{? l�(C).B′′′; B̃′′}] (A.3.10.12)

where:
L′′ | loc(� B1) | loc(� (N{? l�(C).B′; B̃})) <: T ′

1 (A.3.10.13)

and:
c : [N{? l�(C).B′′; B̃′}] <: c : [B′

1 | N{? l�(C).B′′′; B̃′′}] (A.3.10.14)

or:
T ≡ T ′

1 | c : [B′
1 | N{? l�(C).B′′′; B̃′′}] (A.3.10.15)

In case of (A.3.10.6) proof that T ≡ T ′ | c : [B′] and τ l�(C) ∈ Msg(B′) from τ l�(C) ∈ Msg(B)
follows expected lines.

Let us now consider (A.3.10.12) and that there is T2 such that:

T2 ≡ (T ′
1 | c : [B′

1 | B′′′]) ./ a : C (A.3.10.16)
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From (A.3.10.16), (A.3.10.13) and (A.3.10.5) we conclude there is T ′′ such that:

T ′′ ≡ (T ′ | B′) ./ a : C (A.3.10.17)

From Lemma A.3.7 we then have:

Q′ :: (T ′ | B′) ./ a : C (A.3.10.18)

and thus:
Q′ :: (L′ | B1 | B′) ./ a : C (A.3.10.19)

From (A.3.10.19) we derive:

c J
[
Q′] :: ((L′ ./ a : C) ./ c : [� B1 | � B′]) | loc(� (B1 | B′)) (A.3.10.20)

From (A.3.10.10), (A.3.10.13) and (A.3.10.14), and considering Lemma A.3.9 we conclude:

c J
[
Q′] :: (T ′

1 | c : [B′
1 | B′′′]) ./ a : C (A.3.10.21)

which completes the proof for this case.

Lemma A.3.11

Let P be a process such that P :: T . If P
ld!(a)−→ Q then there are T ′, C, B, B̃ such that ei-

ther T ≡ T ′ | �{! ld(C).B; B̃} or T ≡ T ′ | B and τ ld(C) ∈ Msg(B). Furthermore if T ≡
T ′ | �{! ld(C).B; B̃} or l ∈ L? then there is T ′′ such that T ′ = T ′′ ./ a : C and Q :: T ′′ | B.

Proof. By induction on the length of the derivation of the transition P
ld!(a)−→ Q. We show the

cases when the transition results from a output prefix and from within a conversation piece.

(Case ld!(a).P ′ ld!(a)−→ P ′)
We have that:

ld!(a).P ′ :: T and ld!(a).P ′ ld!(a)−→ P ′ (A.3.11.1)

From (A.3.11.1) and considering rule (Output) we have there is L,C,B, B̃ such that:

(L ./ a : C) | �{! ld(C).B; B̃} <: T (A.3.11.2)

and:
ld!(a).P ′ :: (L ./ a : C) | �{! ld(C).B; B̃} and P ′ :: L | B (A.3.11.3)

From (A.3.11.2) and considering Lemma A.3.5 we have there is T ′, B′, B′′, B̃′ such that:

T ≡ T ′ | B′ | �{! ld(C).B′′; B̃′} (A.3.11.4)

where:
L ./ a : C <: T ′ (A.3.11.5)

and:
�{! ld(C).B; B̃} <: B′ | �{! ld(C).B′′; B̃′} (A.3.11.6)
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From (A.3.11.5) we have that there is T ′′ such that L <: T ′′ and:

T ′ ≡ T ′′ ./ a : C (A.3.11.7)

From (A.3.11.3) and (A.3.11.6) and considering Lemma A.3.5 we conclude:

P ′ :: L | B′ | B′′ (A.3.11.8)

From L <: T ′′ we then have:
P ′ :: T ′′ | B′ | B′′ (A.3.11.9)

which completes the proof for this case.

(Case c J [P ′]
l�!(a)−→ c J [Q′])

We have that:
c J

[
P ′] :: T and c J

[
P ′] l�!(a)−→ c J

[
Q′] (A.3.11.10)

From (A.3.11.10) and considering rule (Piece) we have there is L,B such that:

(L ./ c : [� B]) | loc(� B) <: T (A.3.11.11)

and:
c J

[
P ′] :: (L ./ c : [� B]) | loc(� B) and P ′ :: L | B (A.3.11.12)

We also have that (A.3.11.10) is derived from:

P ′ l�!(a)−→ Q′ (A.3.11.13)

By induction hypothesis on (A.3.11.13) and (A.3.11.12) we have there is T ′, C, B′, B̃ such that:

L | B ≡ T ′ | �{! l�(C).B′; B̃} (A.3.11.14)

or:
τ l�(C) ∈ Msg(B) (A.3.11.15)

We show the case of (A.3.11.14). We have that there is B1 such that:

B ≡ B1 | �{! l�(C).B′; B̃} (A.3.11.16)

and there is L′ such that T ′ ≡ L′ | B1 and L ≡ L′. From (A.3.11.16) we have that:

loc(� B) ≡ loc(� B1) | �{! l�(C).loc(� B′); loc(� B̃)} (A.3.11.17)

and:
� B ≡ � B1 | � (�{! l�(C).B′; B̃}) (A.3.11.18)

From (A.3.11.11) and (A.3.11.17) and (A.3.11.18) and considering Lemma A.3.5 we conclude
there are T ′

1, B
′′, B′′′, B̃′ such that:

T ≡ T ′
1 | B′′ | �{! l�(C).B′′′; B̃′} (A.3.11.19)
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where:
(L ./ c : [� B1 | � (�{! l�(C).B′; B̃})]) | loc(� B1) <: T ′

1 (A.3.11.20)

and:
�{! l�(C).loc(� B′); loc(� B̃)} <: B′′ | �{! l�(C).B′′′; B̃′} (A.3.11.21)

Let us now consider (A.3.11.19) (proof when l ∈ L? follows similar lines). We then have
(A.3.11.14) and by induction hypothesis we conclude there is T ′′ such that:

T ′ ≡ T ′′ ./ a : C and Q′ :: T ′′ | B′ (A.3.11.22)

From (A.3.11.22) and T ′ ≡ L′ | B1 we have that there is L′′ such that:

T ′′ ≡ L′′ | B1 and L′ ≡ L′′ ./ a : C (A.3.11.23)

From (A.3.11.20), (A.3.11.22) and (A.3.11.14) we conclude there is T ′′
1 such that:

T ′
1 ≡ T ′′

1 ./ a : C (A.3.11.24)

and:
(L′′ ./ c : [� B1 | � (�{! l�(C).B′; B̃})]) | loc(� B1) <: T ′′

1 (A.3.11.25)

From (A.3.11.22) and (A.3.11.23) we conclude:

Q′ :: L′′ | B1 | B′ (A.3.11.26)

from which we derive:

c J
[
Q′] :: (L′′ ./ c : [� (B1 | B′)]) | loc(� B1) | loc(� B′) (A.3.11.27)

Then, considering (A.3.11.25) and Lemma A.3.4 we have:

c J
[
Q′] :: T ′′

1 | loc(� B′) (A.3.11.28)

which together with (A.3.11.21) and considering Lemma A.3.5 leads to:

c J
[
Q′] :: T ′′

1 | B′′ | B′′′ (A.3.11.29)

which completes the proof for this case.

Lemma A.3.12

Let P be a process such that P :: T . If P
c l�!(a)−→ Q then there are T ′, C, B, B̃ such that T ≡

T ′ | c : [�{! l�(C).B; B̃}] or T ≡ T ′ | c : [B] and τ l�(C) ∈ Msg(B). Furthermore if T ≡ T ′ | c :
[�{! l�(C).B; B̃}] or l ∈ L? then there are T ′′ such that T ′ ≡ T ′′ ./ a : C and Q :: T ′′ | c : [B].

Proof. By induction on the length of the derivation of the transition P
c l�!(a)−→ Q, following

similar lines of the proof of Lemma A.3.11 and of Lemma A.3.10. We show the case when the
transition originates from within a conversation piece.

(Case c J [P ′]
c l�!(a)−→ c J [Q′])
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We have that:

c J
[
P ′] :: T and c J

[
P ′] c l�!(a)−→ c J

[
Q′] (A.3.12.1)

From (A.3.12.1) and considering rule (Piece) we have there is L,B such that:

(L ./ c : [� B]) | loc(� B) <: T (A.3.12.2)

and:
c J

[
P ′] :: (L ./ c : [� B]) | loc(� B) and P ′ :: L | B (A.3.12.3)

We also have that (A.3.12.1) is derived from:

P ′ l�!(a)−→ Q′ (A.3.12.4)

By induction hypothesis on (A.3.12.4) and (A.3.12.3) we have there is T ′, C, B′, B̃ such that:

L | B ≡ T ′ | �{! l�(C).B′; B̃} (A.3.12.5)

or:
τ l�(C) ∈ Msg(B) (A.3.12.6)

We show the case of (A.3.12.5). We have that there is B1 such that:

B ≡ B1 | �{! l�(C).B′; B̃} (A.3.12.7)

and there is L′ such that T ′ ≡ L′ | B1 and L ≡ L′. From (A.3.12.7) we have that:

loc(� B) ≡ loc(� B1) | loc(� �{! l�(C).B′; B̃}) (A.3.12.8)

and:
� B ≡ � B1 | �{! l�(C).(� B′); (� B̃)} (A.3.12.9)

From (A.3.12.2) and (A.3.12.8) and (A.3.12.9) we have:

(L ./ c : [� B1 | �{! l�(C).(� B′); (� B̃)}]) | loc(� B1) | loc(� �{! l�(C).B′; B̃}) <: T

(A.3.12.10)
From (A.3.12.10) we conclude that either:

(L ./ c : [� B1 | �{! l�(C).(� B′); (� B̃)}]) | loc(� B1) | loc(� �{! l�(C).B′; B̃})
≡
L′′ | c : [�{! l�(C).B′′; B̃′}] | loc(� B1) | loc(� �{! l�(C).B′; B̃})

(A.3.12.11)

or:

(L ./ c : [� B1 | �{! l�(C).(� B′); (� B̃)}]) | loc(� B1) | loc(� �{! l�(C).B′; B̃})
≡
L′′ | c : [�{τ l�(C).B′′; B̃′}] | loc(� B1) | loc(� �{! l�(C).B′; B̃})

(A.3.12.12)

235



Then considering Lemma A.3.8 we conclude there are T ′
1, B2, B

′
2, B̃

′′ such that either:

T ≡ T ′
1 | c : [B′

2 | �{! l�(C).B2; B̃′′}] (A.3.12.13)

where:
L′′ | loc(� B1) | loc(� �{! l�(C).B′; B̃}) <: T ′

1 (A.3.12.14)

and:
�{! l�(C).B′′; B̃′} <: B′

2 | �{! l�(C).B2; B̃′} (A.3.12.15)

or:
T ≡ T ′

1 | c : [B′
2 | �{τ l�(C).B2; B̃′′}] (A.3.12.16)

where:
L′′ | loc(� B1) | loc(� �{! l�(C).B′; B̃}) <: T ′

1 (A.3.12.17)

and:
�{τ l�(C).B′′; B̃′} <: B′

2 | �{τ l�(C).B2; B̃′} (A.3.12.18)

Let us now consider (A.3.12.16) and that l ∈ L?. We then have (A.3.12.5) and by induction
hypothesis we conclude there is T ′′ such that:

T ′ ≡ T ′′ ./ a : C and Q′ :: T ′′ | B′ (A.3.12.19)

From (A.3.12.19) and T ′ ≡ L′ | B1 we have that there is L′′′ such that:

T ′′ ≡ L′′′ | B1 and L′ ≡ L′′′ ./ a : C (A.3.12.20)

From (A.3.12.17), (A.3.12.19) and (A.3.12.5) we conclude there is T ′′
1 such that:

T ′
1 ≡ T ′′

1 ./ a : C (A.3.12.21)

and:
L′′′ | loc(� B1) | loc(� �{! l�(C).B′; B̃}) <: T ′′

1 (A.3.12.22)

From (A.3.12.19) and (A.3.12.20) we conclude:

Q′ :: L′′′ | B1 | B′ (A.3.12.23)

From (A.3.12.12) we have:

L ./ c : [� B1 | �{! l�(C).(� B′); (� B̃)}] ≡ L′′ | c : [�{τ l�(C).B′′; B̃′}] (A.3.12.24)

Since l ∈ L? we have that there is L1 such that:

L ≡ L1 | c : [?? l�(C)] (A.3.12.25)
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and:

(L1 ./ c : [� B1]) ./ (c : [�{! l�(C).(� B′); (� B̃)} ./ ?? l�(C)]) ≡ L′′ | c : [�{τ l�(C).B′′; B̃′}]
(A.3.12.26)

which gives us that there is L ./ c : [� B′], since either B′′ = (� B′){! l�(C)/τ l�(C)} or B′′ is
the result of applying rule (Shuffle) with some behavior specified in L1 ./ c : [� B1]. We then
have, from (A.3.12.23) and (A.3.12.20) that:

c J
[
Q′] :: (L′′′ ./ c : [� (B1 | B′)]) | loc(� B1) | loc(� B′) (A.3.12.27)

which gives us there is L2 such that L′′ ≡ L2 ./ a : C and:

c J
[
Q′] :: L2 | c : [B′′] | loc(� B1) | loc(� B′) (A.3.12.28)

From (A.3.12.17) and (A.3.12.21) and considering Lemma A.3.4 we conclude:

c J
[
Q′] :: T ′′

1 | c : [B′′] (A.3.12.29)

which together with (A.3.12.18) and considering Lemma A.3.8 leads to:

c J
[
Q′] :: T ′′

1 | c : [B′
2 | B2] (A.3.12.30)

which completes the proof for this case.

Lemma A.3.13

Let P be a process such that P :: T . If P
(νa)ld!(a)−→ Q then there are T ′, C, B, B̃ such that T ≡

T ′ | �{! ld(C).B; B̃} or T ≡ T ′ | B and τ ld(C) ∈ Msg(B). Also if T ≡ T ′ | �{! ld(C).B; B̃} or
l ∈ L? then there are B′, C ′ such that closed(B′), a : [B′] = a : C ′ ./ a : C and Q :: T ′ | B | a : C ′.

Proof. By induction on the length of the derivation of the transition P
(νa)ld!(a)−→ Q. The proof

follows similar lines to that of Lemma A.3.11. We show the case of (Open) (Figure 4.2).

(Case (νa)P ′ (νa)ld!(a)−→ Q′)
We have that:

(νa)P ′ :: T and (νa)P ′ (νa)ld!(a)−→ Q′ (A.3.13.1)

which is derived from:
P ′ ld!(a)−→ Q′ (A.3.13.2)

From (A.3.13.1) and considering rule (Res) we have that there is T ′, B such that:

T ′ <: T and (νa)P ′ :: T ′ and P ′ :: T ′ | a : [B] (A.3.13.3)

and closed(B). Considering Lemma A.3.11 and (A.3.13.2) and (A.3.13.3) we have that there
are T1, C, B′, B̃ such that either:

T ′ | a : [B] ≡ T1 | �{! ld(C).B′; B̃} (A.3.13.4)
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or:
T ′ | a : [B] ≡ T1 | B′ and τ ld(C) ∈ Msg(B′) (A.3.13.5)

We show the case of (A.3.13.4). We have that there is T ′
1 such that T1 ≡ T ′

1 | a : [B] and:

T ′ ≡ T ′
1 | �{! ld(C).B′; B̃} (A.3.13.6)

From (A.3.13.6) and T ′ <: T and considering Lemma A.3.5 we conclude there is T ′′, B′′, B′′′, B̃′

such that:
T ≡ T ′′ | B′′ | �{! ld(C).B′′′; B̃′} (A.3.13.7)

where:
T ′

1 <: T ′′ (A.3.13.8)

and:
�{! ld(C).B′; B̃} <: B′′ | �{! ld(C).B′′′; B̃′} (A.3.13.9)

Let us now consider (A.3.13.6) (proof when l ∈ L? follows similar lines). We then have that
must be the case of (A.3.13.4), hence, from Lemma A.3.11 we conclude:

T1 ≡ T ′′
1 ./ a : C and Q′ :: T ′′

1 | B′ (A.3.13.10)

From T1 ≡ T ′
1 | a : [B] we then have:

T ′
1 | a : [B] ≡ T ′′

1 ./ a : C (A.3.13.11)

From (A.3.13.11) we conclude there are T2, C
′ such that T2 ≡ T ′

1:

T ′′
1 ≡ T2 | a : C ′ and a : [B] = a : C ′ ./ a : C (A.3.13.12)

From (A.3.13.10) and (A.3.13.12) and T2 ≡ T ′
1 we have:

Q′ :: T ′
1 | a : C ′ | B′ (A.3.13.13)

From (A.3.13.13) and T ′
1 <: T ′′ — (A.3.13.8) — we then have:

Q′ :: T ′′ | a : C ′ | B′ (A.3.13.14)

Finally, from (A.3.13.14) and (A.3.13.9) and Lemma A.3.5 we conclude:

Q′ :: T ′′ | a : C ′ | B′′ | B′′′ (A.3.13.15)

which completes the proof for this case.

Lemma A.3.14

Let P be a process such that P :: T . If P
(νa)c l�!(a)−→ Q then there are T ′, C, B, B̃ such that

T ≡ T ′ | c : [�{! l�(C).B; B̃}] or T ≡ T ′ | c : [B] and τ l�(C).B ∈ Msg(B). Furthermore
if T ≡ T ′ | c : [�{! l�(C).B; B̃}] or l ∈ L? then there are B′, C ′ such that closed(B′) and
a : [B′] = a : C ′ ./ a : C and Q :: (T ′ ./ c : [B]) | a : C ′.
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Proof. By induction on the length of the derivation of the transition P
(νa)c l�!(a)−→ Q. We show

the case of a transition originating from within a context piece.

(Case c J [P ′]
(νa)c l�!(a)−→ c J [Q′])

We have that:

c J
[
P ′] :: T and c J

[
P ′] (νa)c l�!(a)−→ c J

[
Q′] (A.3.14.1)

From (A.3.14.1) and considering rule (Piece) we have there is L,B such that:

(L ./ c : [� B]) | loc(� B) <: T (A.3.14.2)

and:
c J

[
P ′] :: (L ./ c : [� B]) | loc(� B) and P ′ :: L | B (A.3.14.3)

We also have that (A.3.14.1) is derived from:

P ′ (νa)l�!(a)−→ Q′ (A.3.14.4)

Considering Lemma A.3.13, from (A.3.14.4) and (A.3.14.3) we have there is T ′, C, B′, B̃ such
that either:

L | B ≡ T ′ | �{! l�(C).B′; B̃} (A.3.14.5)

or:
τ l�(C) ∈ Msg(B) (A.3.14.6)

We show the case of (A.3.14.5). We have that there is B1 such that:

B ≡ B1 | �{! l�(C).B′; B̃} (A.3.14.7)

and there is L′ such that T ′ ≡ L′ | B1 and L ≡ L′. From (A.3.14.7) we have that:

loc(� B) ≡ loc(� B1) | loc(� (�{! l�(C).B′; B̃})) (A.3.14.8)

and:
� B ≡ � B1 | �{! l�(C).(� B′); � B̃} (A.3.14.9)

From (A.3.14.2), (A.3.14.8) and (A.3.14.9) we conclude:

(L′ ./ c : [� B1 | �{! l�(C).(� B′); � B̃}) | loc(� B1) | loc(� (�{! l�(C).B′; B̃})) <: T

(A.3.14.10)
From (A.3.14.10) we have that either:

(L′ ./ c : [� B1 | �{! l�(C).(� B′); � B̃}) | loc(� B1) | loc(� (�{! l�(C).B′; B̃}))
≡ L′′ | c : [�{! l�(C).B′′; B̃′}) | loc(� B1) | loc(� (�{! l�(C).B′; B̃}))

(A.3.14.11)

or:

(L′ ./ c : [� B1 | �{! l�(C).(� B′); � B̃}) | loc(� B1) | loc(� (�{! l�(C).B′; B̃}))
≡ L′′ | c : [�{τ l�(C).B′′; B̃′}) | loc(� B1) | loc(� (�{! l�(C).B′; B̃}))

(A.3.14.12)
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Then considering Lemma A.3.8 we conclude there are T ′
1, B

′
1, B

′′′, B̃′′ such that either:

T ≡ T ′
1 | c : [B′

1 | �{! l�(C).B′′′; B̃′′})] (A.3.14.13)

where:
L′′ | loc(� B1) | loc(� (�{! l�(C).B′; B̃})) <: T ′

1 (A.3.14.14)

and:
c : [�{! l�(C).B′′; B̃′}) <: c : [B′

1 | �{! l�(C).B′′′; B̃′′})] (A.3.14.15)

or:
T ≡ T ′

1 | c : [B′
1 | �{τ l�(C).B′′′; B̃′′})] (A.3.14.16)

Let us now consider that (A.3.14.13) (proof when l ∈ L? follows similar lines). We then have
(A.3.14.5) and by Lemma A.3.13 we conclude there are B′′, C ′′ such that closed(B′′) and:

a :
[
B′′] = a : C ′ ./ a : C and Q′ :: T ′ | B′ | a : C ′ (A.3.14.17)

From T ′ ≡ L | B1 we then have:

Q′ :: L | B1 | B′ | a : C ′ (A.3.14.18)

We then derive:

c J
[
Q′] :: ((L | a : C ′) ./ c :

[
� (B1 | B′)

]
) | loc(� (B1 | B′)) (A.3.14.19)

From (A.3.14.19) and (A.3.14.11), we conclude:

c J
[
Q′] :: (L′′ | c :

[
B′′] | a : C ′) | loc(� (B1 | B′)) (A.3.14.20)

Then from (A.3.14.14) and considering Lemma A.3.4 we have that:

c J
[
Q′] :: T ′

1 | c :
[
B′′] | a : C ′ (A.3.14.21)

From (A.3.14.21) and (A.3.14.15) and considering Lemma A.3.8 we conclude:

c J
[
Q′] :: T ′

1 | c :
[
B′

1 | B′′′] | a : C ′ (A.3.14.22)

which completes the proof for this case.

Lemma A.3.15

Let P be a well-typed process such that P :: T . If P
c this�
−→ Q due to a this prefix, then

there are L,B1, B2 such that T ≡ L | (B1 ./ (� B2)). Furthermore if there is T ′ such that
T ′ ≡ (L | B1) ./ (c : [� B2]) then Q :: (L | B1) ./ (c : [� B2]).

Proof. By induction on the derivation of the transition P
c this�
−→ Q. We show the case of a this

prefix transition.
(Case this(x).P ′ c this�

−→ P ′{x/c})
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We have that:

this(x).P ′ c this�
−→ P ′{x/c} and this(x).P ′ :: T (A.3.15.1)

From (A.3.15.1) and considering rule (This) we have there are L,B1, B2 such that:

L | (B1 ./ B2) <: T and P ′ :: L | B1 | x : [B2] (A.3.15.2)

We then have that there is L′, B′
1, B

′
2 such that L <: L′, B1 <: B′

1 and B2 <: B′
2 and:

T ≡ L′ | (B′
1 ./ B′

2) (A.3.15.3)

Let us consider there is T ′ such that:

T ′ = (L′ | B′
1) ./ c :

[
B′

2

]
(A.3.15.4)

which directly gives us that there is T ′′ such that:

T ′′ = (L | B1) ./ c : [B2] (A.3.15.5)

Then considering Lemma 5.3.4 we conclude:

P ′{x/c} :: (L | B1) ./ c : [B2] (A.3.15.6)

and hence:
P ′{x/c} :: (L′ | B′

1) ./ c :
[
B′

2

]
(A.3.15.7)

which completes the proof for this case.

Lemma A.3.16

Let P be a process such that P :: T . If P
this��
−→ Q then there are T ′, B, B1, B2, B̃, B̃′, C1, C2, l

such that T ≡ T ′ | {p1 l�(C1).B1; B̃} | {p2 l�(C2).B2; B̃′} where pi = ! and pj = ? for {i, j} =
{1, 2}, or T ≡ T ′ | B and p1 l�(C1) ∈ Msg(B) and p2 l�(C2) ∈ Msg(B). Furthermore if T ≡
T ′ | {p1 l�(C1).B1; B̃} | {p2 l�(C2).B2; B̃′} and pi = ! or l ∈ L? and pj = ? and C1 ≡ C2 then
we have that Q :: T ′ | B1 | B2.

Proof. By induction on the length of the derivation of the transition P
this��
−→ Q. We show the

case of a (Comm) synchronization.

(Case P1 | P2
this��
−→ Q1 | Q2)

We have that:

P1 | P2
this��
−→ Q1 | Q2 (i) and P1 | P2 :: T (ii) (A.3.16.1)

(A.3.16.1)(i) is derived from:

P1
l�!(a)−→ Q1 and P2

l�?(a)−→ Q2 (A.3.16.2)
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From (A.3.16.1)(ii) we have there are T1, T2 such that:

T1 ./ T2 <: T and P1 :: T1 and P2 :: T2 (A.3.16.3)

Considering Lemma A.3.11, (A.3.16.2) and (A.3.16.3) we have there are T ′
1, C1, B1, B̃ such that

either:
T1 ≡ T ′

1 | �{! l�(C1).B1; B̃} (A.3.16.4)

or:
T1 ≡ T ′

1 | B1 and τ l�(C1) ∈ Msg(B1) (A.3.16.5)

Considering Lemma A.3.7, (A.3.16.2) and (A.3.16.3) we have there are T ′
2, C2, B2, B̃

′ such that
either:

T2 ≡ T ′
2 | N{? l�(C2).B2; B̃′} (A.3.16.6)

or:
T2 ≡ T ′

2 | B2 and τ l�(C2) ∈ Msg(B2) (A.3.16.7)

From T1 ./ T2 <: T and (A.3.16.4), (A.3.16.5), (A.3.16.6) and (A.3.16.7) we directly have that
T ≡ T ′ | B1 such that p1 l�(C1) ∈ Msg(B1) and p2 l�(C2) ∈ Msg(B1).

Let us now consider it is the case of (A.3.16.4) and (A.3.16.6) when ! l�(C1) # T2 and
? l�(C2) # T1. Considering Lemma A.3.5 and Lemma A.3.6 we then have:

T ≡ (T ′′
1 | B′

1 | �{! l�(C1).B′′
1 ; B̃′′}) ./ (T ′′

2 | B′
2 | N{? l�(C2).B′′

2 ; B̃′′′})
≡ T ′ | �{! l�(C1).B′; (· · · )} | N{? l�(C2).B′′; (· · · )}

(A.3.16.8)

where T ′
1 <: T ′′

1 and T ′
2 <: T ′′

2 and:

�{! l�(C1).B1; B̃} <: B′
1 | �{! l�(C1).B′′

1 ; B̃′′} (A.3.16.9)

and:
N{? l�(C2).B2; B̃′} <: B′

2 | N{? l�(C2).B′′
2 ; B̃′′′} (A.3.16.10)

Let us now consider that (C ≡)C1 ≡ C2. From Lemma A.3.11 we have there is T ′′′
1 such that:

T ′
1 = T ′′′

1 ./ a : C and Q1 :: T ′′′
1 | B1 (A.3.16.11)

Then, via Lemma A.3.7, considering (A.3.16.11) and T ′
1 <: T ′′

1 and (A.3.16.8) and T ′
2 <: T ′′

2 we
conclude that there is T ′′′

2 such that:

T ′′′
2 = (T ′

2 | B2) ./ a : C and Q2 :: T ′′′
2 (A.3.16.12)

From (A.3.16.11), (A.3.16.9) and considering Lemma A.3.5 we conclude:

Q1 :: T ′′′′
1 | B′

1 | B′′
1 (A.3.16.13)

Likewise from (A.3.16.12), (A.3.16.10) and considering Lemma A.3.6 we conclude:

Q2 :: (T ′
2 ./ a : C) | B′

2 | B′′
2 (A.3.16.14)
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Then from (A.3.16.13) and (A.3.16.14) we conclude:

Q1 | Q2 :: (T ′′′
1 | B′

1 | B′′
1 ) ./ ((T ′

2 ./ a : C) | B′
2 | B′′

2 ) (A.3.16.15)

which then leads to:
Q1 | Q2 :: (T ′

1 | B′
1 | B′′

1 ) ./ (T ′
2 | B′

2 | B′′
2 ) (A.3.16.16)

Then, since T ′
1 <: T ′′

1 and T ′
2 <: T ′′

2 we derive:

Q1 | Q2 :: (T ′′
1 | B′

1 | B′′
1 ) ./ (T ′′

2 | B′
2 | B′′

2 ) (A.3.16.17)

which, along with (A.3.16.8), gives us:

Q1 | Q2 :: T ′ | B′ | B′′ (A.3.16.18)

which completes the proof for this case.

Lemma A.3.17

Let P be a process such that P :: T . If P
c this�
−→ Q then there are T ′, B1, B2, B̃, B̃′, C1, C2, l

such that T ≡ T ′ | {p1 l�(C1).B1; B̃} | c : [{p2 l�(C2).B2; B̃′}] where pi = ! and pj = ? for
{i, j} = {1, 2}, or T ≡ T ′ | B1 | c : [B2] and p1 l�(C1) ∈ Msg(B1) and p2 l�(C2) ∈ Msg(B2).
Furthermore if T ≡ T ′ | {p1 l�(C1).B1; B̃} | c : [{p2 l�(C2).B2; B̃′}] and pi = ! or l ∈ L? and
pj = ? and C1 ≡ C2 then we have that Q :: T ′ | B1 | c : [B2].

Proof. By induction on the length of the derivation of the transition P
c this�
−→ Q. We show the

case of a (Comm) synchronization.

(Case P1 | P2
c this�
−→ Q1 | Q2)

We have that:

P1 | P2
c this�
−→ Q1 | Q2 (i) and P1 | P2 :: T (ii) (A.3.17.1)

(A.3.17.1)(i) is derived from:

P1
c l�!(a)−→ Q1 and P2

l�?(a)−→ Q2 (A.3.17.2)

From (A.3.17.1)(ii) we have there are T1, T2 such that:

T1 ./ T2 <: T and P1 :: T1 and P2 :: T2 (A.3.17.3)

Considering Lemma A.3.12, (A.3.17.2) and (A.3.17.3) we have there are T ′
1, C1, B1, B̃ such that

either:
T1 ≡ T ′

1 | c : [�{! l�(C1).B1; B̃}] (A.3.17.4)

or:
T1 ≡ T ′

1 | c : [B1] and τ l�(C1) ∈ Msg(B1) (A.3.17.5)
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Considering Lemma A.3.7, (A.3.17.2) and (A.3.17.3) we have there are T ′
2, C2, B2, B̃

′ such that:

T2 ≡ T ′
2 | N{? l�(C2).B2; B̃′} (A.3.17.6)

or:
T2 ≡ T ′

2 | B2 and τ l�(C2) ∈ Msg(B2) (A.3.17.7)

From T1 ./ T2 <: T and (A.3.17.4), (A.3.17.5), (A.3.17.6) and (A.3.17.7) we directly have that
T ≡ T ′ | c : [B1] | B2 such that p1 l�(C1) ∈ Msg(B1) and p2 l�(C2) ∈ Msg(B2).

Let us now consider the case of (A.3.17.4) and (A.3.17.6 and also that ! l�(C1) # T2 and
! l�(C2) # T1. Considering Lemma A.3.8 and Lemma A.3.6 and Lemma A.3.5 we conclude:

T ≡ (T ′′
1 | c : [B′

1 | �{! l�(C1).B′′
1 ; B̃′′}]) ./ (T ′′

2 | B′
2 | N{? l�(C2).B′′

2 ; B̃′′′})
≡ T ′ | c : [�{! l�(C1).B′; (· · · )}] | N{? l�(C2).B′′; (· · · )}

(A.3.17.8)

where T ′
1 <: T ′′

1 and T ′
2 <: T ′′

2 and:

�{! l�(C1).B1; B̃} <: B′
1 | �{! l�(C1).B′′

1 ; B̃′′} (A.3.17.9)

and:
N{? l�(C2).B2; B̃′} <: B′

2 | N{? l�(C2).B′′
2 ; B̃′′′} (A.3.17.10)

Let us now consider (C ≡)C1 ≡ C2. Considering Lemma A.3.12 we have there is T ′′′
1 such that:

T ′
1 ≡ T ′′′

1 ./ a : C and Q1 :: T ′′′
1 | c : [B1] (A.3.17.11)

Then, via Lemma A.3.7, considering (A.3.17.11) and T ′
1 <: T ′′

1 and (A.3.17.8) and T ′
2 <: T ′′

2 we
conclude that there is T ′′′

2 such that:

T ′′′
2 = (T ′

2 | B2) ./ a : C and Q2 :: T ′′′
2 (A.3.17.12)

From (A.3.17.11), (A.3.17.9) and considering Lemma A.3.8 we conclude:

Q1 :: T ′′′
1 | c : [B′

1 | B′′
1 ] (A.3.17.13)

Likewise from (A.3.17.12), (A.3.17.10) and considering Lemma A.3.6 we conclude:

Q2 :: (T ′
2 | a : C) | B′

2 | B′′
2 (A.3.17.14)

Then from (A.3.17.13) and (A.3.17.14) we conclude:

Q1 | Q2 :: (T ′′′
1 | c : [B′

1 | B′′
1 ]) ./ ((T ′

2 ./ a : C) | B′
2 | B′′

2 ) (A.3.17.15)

which, considering (A.3.17.11) leads to:

Q1 | Q2 :: (T ′
1 | c : [B′

1 | B′′
1 ]) ./ (T ′

2 | B′
2 | B′′

2 ) (A.3.17.16)
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Since T ′
1 <: T ′′

1 and T ′
2 <: T ′′

2 we derive:

Q1 | Q2 :: (T ′′
1 | c : [B′

1 | B′′
1 ]) ./ (T ′′

2 | B′
2 | B′′

2 ) (A.3.17.17)

which, along with (A.3.17.8), gives us:

Q1 | Q2 :: T ′ | c : [B′] | B′′ (A.3.17.18)

which completes the proof for this case.

Lemma A.3.18

Let P be a process such that P :: T . If P
c this�
−→ Q then there are T ′, B1, B2, B̃, B̃′, C1, C2, l

such that T ≡ T ′ | {p1 l�(C1).B1; B̃} | c : [{p2 l�(C2).B2; B̃′}] and pi = ! and pj = ? where
{i, j} = {1, 2}, or T ≡ T ′ | B1 | c : [B2] and p1 l�(C1) ∈ Msg(B1) and p2 l�(C2) ∈ Msg(B2).
Furthermore if T ≡ T ′ | {p1 l�(C1).B1; B̃} | c : [{p2 l�(C2).B2; B̃′}] and pi = ! or l ∈ L? and
pj = ? and C1 ≡ C2 then we have Q :: T ′ | B1 | c : [B2].

Proof. By induction on the length of the derivation of the transition P
c this�
−→ Q. We show the

case of transitions this�� and c this� originating from within a conversation piece.
(Case n J [P ′] c this�

−→ n J [Q′])
We have that:

n J [P ′] c this�
−→ n J [Q′] (i) and n J [P ′] :: T (ii) (A.3.18.1)

(A.3.18.1)(ii) gives us there is L,B such that

(L ./ n : [� B]) | loc(� B) <: T and P :: L | B (A.3.18.2)

(A.3.18.1)(i) is either derived from:

P ′ this��
−→ Q′ (A.3.18.3)

or:
P ′ c this�

−→ Q′ (A.3.18.4)

(Case P ′ this��
−→ Q′) We have that n = c. Also, from (A.3.18.2) and considering Lemma A.3.16

we then have that there are T ′, B1, B2, B̃, B̃′, C1, C2, l such that:

L | B ≡ T ′ | {p1 l�(C1).B1; B̃} | {p2 l�(C2).B2; B̃′} (A.3.18.5)

and pi = ! and pj = ?, or:
L | B ≡ T ′ | B′ (A.3.18.6)

and p1 l�(C1) ∈ Msg(B′) and p2 l�(C2) ∈ Msg(B′). Proof that T ≡ T ′′ | B1 | c : [B2] and
p1 l�(C1) ∈ Msg(B1) and p2 l�(C2) ∈ Msg(B2) follows expected lines.

Let us consider that L | B ≡ T ′ | �{! l�(C1).B1; B̃} | N{? l�(C2).B2; B̃′} and also that c :
[? l�(C2)]# T ′. We have there is B′ such that:

B ≡ B′ | �{! l�(C1).B1; B̃} | N{? l�(C2).B2; B̃′} (A.3.18.7)
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and T ′ ≡ L | B′. From (A.3.18.7) we conclude that:

� B ≡ � B′ | � (�{! l�(C1).B1; B̃}) | N{? l�(C2).(� B2); � B̃} (A.3.18.8)

and also that:

loc(� B) ≡ loc(� B′) | �{! l�(C1).loc(� B1); loc(� B̃)} | loc(� (N{? l�(C2).B2; B̃′})) (A.3.18.9)

From (A.3.18.2) and (A.3.18.8) and (A.3.18.9) we then have:

(L ./ c : [� B′ | | � (�{! l�(C1).B1; B̃}) | N{? l�(C2).(� B2); � B̃}])
| loc(� B′) | �{! l�(C1).loc(� B1); loc(� B̃)} | loc(� (N{? l�(C2).B2; B̃′}))
≡ T ′ | c : [N{? l�(C2).B′′; B̃′′}] | �{! l�(C1).B′′′; B̃′′′} <: T

(A.3.18.10)

and thus:

T ≡ T ′′ | c : [B′
3 | N{? l�(C2).B′′

3 ; (· · · )}] | B′
4 | �{! l�(C1).B′′

4 ; (· · · )} (A.3.18.11)

where T ′ <: T ′′ and:

N{? l�(C2).B′′; B̃′′} <: B′
3 | N{? l�(C2).B′′

3 ; (· · · )} (A.3.18.12)

and:
�{! l�(C1).B′′′; B̃′′′} <: B′

4 | �{! l�(C1).B′′
4 ; (· · · )} (A.3.18.13)

Let us now consider that (C ≡)C1 ≡ C2. From Lemma A.3.16 we conclude:

Q′ :: T ′ | B1 | B2 (A.3.18.14)

We then have that:
Q′ :: L | B′ | B1 | B2 (A.3.18.15)

From (A.3.18.15) we derive:

c J
[
Q′] :: (L ./ c : [� (B′ | B1 | B2)]) | loc(� (B′ | B1 | B2)) (A.3.18.16)

From (A.3.18.16) and (A.3.18.10) and considering Lemma A.3.4 we have:

c J
[
Q′] :: T ′ | c : [B′′] | B′′′ (A.3.18.17)

From (A.3.18.17) and T ′ <: T ′′ and (A.3.18.12) and (A.3.18.13) and considering Lemma A.3.9
and Lemma A.3.5 we conclude:

c J
[
Q′] :: T ′′ | c : [B′

3 | B′′
3 ] | B′

4 | B′′
4 (A.3.18.18)

which completes the proof for this case.
(Case P ′ c this�

−→ Q′) From (A.3.18.2) and considering Lemma A.3.17 we then have that there are
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T ′, B1, B2, B̃, B̃′, C1, C2, l such that:

L | B ≡ T ′ | {p1 l�(C1).B1; B̃} | c : [{p2 l�(C2).B2; B̃′}] (A.3.18.19)

and pi = ! and pj = ?, or:
L | B ≡ T ′ | B1 | c : [B2] (A.3.18.20)

and p1 l�(C1) ∈ Msg(B1) and p2 l�(C2) ∈ Msg(B2). Proof that T ≡ T ′′ | B′
1 | c : [B′

2] and
p1 l�(C1) ∈ Msg(B′

1) and p2 l�(C2) ∈ Msg(B′
2) follows expected lines.

Let us consider the case when L | B ≡ T ′ | �{! l�(C1).B1; B̃} | c : [N{? l�(C2).B2; B̃′}]. We
then have there is B′ such that:

B ≡ B′ | �{! l�(C1).B1; B̃} (A.3.18.21)

and T ′ ≡ L′ | B′ and L ≡ L′ | c : [N{? l�(C2).B2; B̃′}]. From (A.3.18.21) we conclude that:

� B ≡ � B′ | � (�{! l�(C1).B1; B̃}) (A.3.18.22)

and also that:

loc(� B) ≡ loc(� B′) | �{! l�(C1).loc(� B1); loc(� B̃)} (A.3.18.23)

From (A.3.18.2) and (A.3.18.22) and (A.3.18.23) we then have:

((L′ | c : [N{? l�(C2).B2; B̃′}]) ./ n : [� B′ | | � (�{! l�(C1).B1; B̃})])
| loc(� B′) | �{! l�(C1).loc(� B1); loc(� B̃)}
≡ T ′ | c : [N{? l�(C2).B′′; B̃′′}] | �{! l�(C1).B′′′; B̃′′′} <: T

(A.3.18.24)

and thus:

T ≡ T ′′ | c : [B′
3 | N{? l�(C2).B′′

3 ; (· · · )}] | B′
4 | �{! l�(C1).B′′

4 ; (· · · )} (A.3.18.25)

where T ′ <: T ′′ and:

N{? l�(C2).B′′; B̃′′} <: B′
3 | N{? l�(C2).B′′

3 ; (· · · )} (A.3.18.26)

and:
�{! l�(C1).B′′′; B̃′′′} <: B′

4 | �{! l�(C1).B′′
4 ; (· · · )} (A.3.18.27)

Let us now consider that (C ≡)C1 ≡ C2. From Lemma A.3.17 we conclude:

Q′ :: T ′ | B1 | c : [B2] (A.3.18.28)

We then have that:
Q′ :: L′ | B′ | B1 | c : [B2] (A.3.18.29)

From (A.3.18.29) we derive:

c J
[
Q′] :: ((L′ | c : [B2]) ./ n : [� (B′ | B1)]) | loc(� (B′ | B1)) (A.3.18.30)
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From (A.3.18.30) and (A.3.18.24) and considering Lemma A.3.4 we have:

c J
[
Q′] :: T ′ | c : [B′′] | B′′′ (A.3.18.31)

From (A.3.18.31) and T ′ <: T ′′ and (A.3.18.26) and (A.3.18.27) and considering Lemma A.3.8
(if p2 = ! or Lemma A.3.9 if p2 = ?) and Lemma A.3.6 (if p1 = ? or Lemma A.3.5 if p1 = !)
we conclude:

c J
[
Q′] :: T ′′ | c : [B′

3 | B′′
3 ] | B′

4 | B′′
4 (A.3.18.32)

which completes the proof for this case.

Lemma A.3.19

Let types T1, T
′
1, T

′
2 be such that T ′

1 <: T1 and T ′
1 → T ′

2. Then we have that there is type T2 such
that T1 and P :: T ′

2 implies P :: T2.

Proof. By induction on the derivation of T ′
1 <: T1, following expected lines.

Theorem 5.3.5 (Subject Reduction)

(repetition of the statement in page 122)

Let P be a well-typed process such that P :: T . If P → Q then there is T → T ′ such that Q :: T ′.

Proof. By induction on the derivation of the reduction P → Q. We show the case of a reduction
derived from a synchronization on an unlocated — at the level of the current conversation —
message, distinguishing between when the message is defined on a plain label and on a shared
label, and the case of a τ derived from a c this� transition originating from a conversation piece.

(Case unlocated message synchronization)
We have:

P1 | P2
τ−→ Q1 | Q2 (A.3.20.1)

derived from:
P1

l�!(a)−→ Q1 (i) and P2
l�?(a)−→ Q2 (ii) (A.3.20.2)

Since P1 | P2 is a well-typed process, we have P1 | P2 :: T for some T such that T ′ <: T and:

P1 | P2 :: T ′ (A.3.20.3)

where (A.3.20.3) is derived from (rule (Par)):

P1 :: T1 (i) and P2 :: T2 (ii) and T ′ = T1 ./ T2 (iii) (A.3.20.4)

From (A.3.20.2)(i) and (A.3.20.4)(i) and considering Lemma A.3.11 we conclude that there are
T ′

1, C1, B1, B̃ such that either:

T1 ≡ T ′
1 | �{! l�(C1).B1; B̃} (A.3.20.5)

or:
T1 ≡ T ′

1 | B and τ l�(C1) ∈ Msg(B1) (A.3.20.6)
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From (A.3.20.2)(ii) and (A.3.20.4)(ii), considering Lemma A.3.7, we conclude that there are
T ′

2, C2, B2, B̃
′ such that either:

T2 ≡ T ′
2 | N{? l�(C2).B2; B̃′} (A.3.20.7)

or:
T2 ≡ T ′

2 | B and τ l�(C2) ∈ Msg(B2) (A.3.20.8)

We consider the two possible cases: either the label is plain (l ∈ Lp) or it is shared (l ∈ L?).
(Plain label) If l is a plain label, from (A.3.20.4)(iii) we have that it must be the case that

in T ′ there is a τ introduced by rule (Plain) for this synchronization which is only possible if
(A.3.20.5) and (A.3.20.7) and also that C1 ≡ C2, otherwise the merge T1 ./ T2 (A.3.20.4)(iii)
would not be defined. We use C such that C ≡ C1 ≡ C2. We then have, from Lemma A.3.11
that there is T ′′ such that:

T ′
1 = T ′′

1 ./ a : C (i) and Q1 :: T ′′
1 | B1 (ii) (A.3.20.9)

From the merge in (A.3.20.4)(iii), considering (A.3.20.5), (A.3.20.9)(i) and (A.3.20.7) we con-
clude:

T ′ = ((T ′′
1 ./ a : C) | �{! l�(C).B1; B̃}) ./ (T ′

2 | N{? l�(C).B2; B̃′}) (A.3.20.10)

From (A.3.20.10) we have that there is T ′′ such that: T ′′ = (T ′
2 | B2) ./ a : C, hence from

Lemma A.3.7 we conclude:
Q2 :: (T ′

2 | B2) ./ a : C (A.3.20.11)

From (A.3.20.10) we also have that there is T ′′′ such that T ′′′ = (T ′′
1 ./ B1) ./ ((T ′

2 ./ B2) ./ a :
C), hence from (A.3.20.9)(ii) and (A.3.20.11) we conclude:

Q1 | Q2 :: (T ′′
1 | B1) ./ ((T ′

2 | B2) ./ a : C) (A.3.20.12)

The merge of plain label message types necessarily yields a τ message type. We can thus derive
a reduction for type T ′ as follows:

((T ′′
1 ./ a : C) | �{! l�(C).B1; B̃}) ./ (T ′

2 | N{? l�(C).B2; B̃′})
≡
((T ′′

1 ./ a : C) ./ T ′
2) ./ �{τ l�(C).(B1 ./ B2); (· · · )}

→
((T ′′

1 ./ a : C) ./ T ′
2) ./ (B1 ./ B2)

≡
(T ′′

1 | B1) ./ ((T ′
2 | B2) ./ a : C)

Since T ′ <: T and considering Lemma A.3.19 we have that there is T ′′ such that T → T ′′ and
Q1 | Q2 :: T ′′ which completes the proof for this case.

(Shared label) If l is a shared label then by conformance we have that C1 ≡ C2(≡ C). From
the definition of merge and (A.3.20.4)(iii) we conclude it must be the case of (A.3.20.7) and
furthermore we have that N{? ld(C).B2; B̃′} ≡ ?? ld(C). Also, considering Lemma A.3.11, from
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either (A.3.20.5) or (A.3.20.6), since l ∈ L?, we have there is T ′′ such that:

T ′
1 = T ′′

1 ./ a : C1 (i) and Q1 :: T ′′
1 | B1 (ii) (A.3.20.13)

We show only the proof for (A.3.20.5), as the proof for (A.3.20.6) follows similar lines. From
the merge in (A.3.20.4)(iii), and (A.3.20.13)(i) and (A.3.20.7) we conclude:

T ′ = ((T ′′
1 ./ a : C) | �{? l�(C).B1; B̃}) ./ (T ′

2 | ? ? ld(C)) (A.3.20.14)

which leads to:

((T ′′
1 ./ a : C) ./ T ′

2) ./ (�{? l�(C).B1; B̃} ./ ?? ld(C))
≡
((T ′′

1 ./ a : C) ./ T ′
2) ./ (�{τ l�(C).(B1{! l�(C)/τ l�(C)}); (B̃{! l�(C)/τ l�(C)})} | ? ? ld(C))

(A.3.20.15)
From (A.3.20.15) we conclude:

(T ′
2 | ? ? ld(C)) ./ a : C (A.3.20.16)

Then from Lemma A.3.7 and (A.3.20.16) we have:

Q2 :: (T ′
2 | ? ? ld(C)) ./ a : C (A.3.20.17)

From (A.3.20.13)(ii), (A.3.20.17) and (A.3.20.15) we derive:

Q1 | Q2 :: (T ′′
1 | B1) ./ ((T ′

2 | ? ? ld(C)) ./ a : C) (A.3.20.18)

From (A.3.20.15) we have:

((T ′′
1 ./ a : C) ./ T ′

2) ./ (�{τ l�(C).(B1{! l�(C)/τ l�(C)}); (B̃{! l�(C)/τ l�(C)})} | ? ? ld(C))
→ ((T ′′

1 ./ a : C) ./ T ′
2) ./ (B1{! l�(C)/τ l�(C)}) | ? ? ld(C))

≡ (T ′′
1 | B1) ./ ((T ′

2 | ? ? ld(C)) ./ a : C)
(A.3.20.19)

Considering Lemma A.3.19 and T ′ <: T , (A.3.20.14), (A.3.20.15) and (A.3.20.19) we then have
that there is T ′′ such that T → T ′′ and Q1 | Q2 :: T ′′ which completes the proof for this case.

(Case c this�)
We have:

c J [P ] τ−→ c J [Q] (A.3.20.20)

derived from:
P

c this�
−→ Q (A.3.20.21)

We have that c J [P ] :: T . Also we have that there is T ′ such that T ′ <: T and:

c J [P ] :: T ′ (A.3.20.22)

where (A.3.20.22) is derived from (rule (Piece)):

P :: L | B (i) and T ′ = (L ./ c : [�B]) | loc(�B) (ii) (A.3.20.23)
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We must consider the two distinct cases: either the transition originates from a this prefix or
from a message synchronization.

(this prefix) We have that the transition originates in a this prefix. Considering Lemma A.3.15
and (A.3.20.23)(i) and (A.3.20.21) conclude there are L′, B1, B2 such that:

L | B ≡ (L′ | B1) ./ (� B2) (A.3.20.24)

and also, considering (A.3.20.23)(ii), we have:

Q :: (L′ | B1) ./ (c : [� B2]) (A.3.20.25)

From (A.3.20.25) we derive:

c J [Q] :: ((L′ ./ c : [� B2]) ./ c : [� B1]) | loc(� B1) (A.3.20.26)

From (A.3.20.24) we conclude that L ≡ L′ and:

� B = � B1 ./ � B2 (A.3.20.27)

and:
� B ≡ � B1 (A.3.20.28)

From (A.3.20.26), (A.3.20.27), (A.3.20.28) we have:

c J [Q] :: (L ./ c : [� B]) | loc(� B) (A.3.20.29)

From (A.3.20.29) and (A.3.20.23)(ii) and T ′ <: T we then have:

c J [Q] :: T (A.3.20.30)

which completes the proof for this case since T → T .
(Message synchronization) We have that the transition originates in a message synchroniza-

tion. Considering Lemma A.3.18 and from (A.3.20.23)(i) and (A.3.20.21) we conclude that there
exist T ′′, B1, B2, B̃, B̃′, C1, C2, l such that:

L | B ≡ T ′′ | {p1 l�(C1).B1; B̃} | c : [{p2 l�(C2).B2; B̃′}] (A.3.20.31)

and pi = ! and pj = ?, or:
L | B ≡ T ′′ | B1 | c : [B2] (A.3.20.32)

and p1 l�(C1) ∈ Msg(B1) and p2 l�(C2) ∈ Msg(B2). From (L ./ c : [�B]) | loc(�B) we directly
have that it must be the case of (A.3.20.31) otherwise the merge would be undefined. We show
the case when i = 1 and j = 2 and l is a plain label (the proofs for the other cases follow similar
lines). From (A.3.20.31) we conclude there exist L1, B3 such that T ′′ ≡ L1 | B3 and:

L ≡ L1 | c : [N{? l�(C2).B2; B̃′}] (A.3.20.33)
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and:
B ≡ B3 | �{! l�(C1).B1; B̃} (A.3.20.34)

From (A.3.20.34) we have that:

� B ≡ � B3 | �{! l�(C1).(� B1); (� B̃)} (A.3.20.35)

and:
loc(� B) ≡ loc(� B3) | loc(� �{! l�(C1).B1; B̃}) (A.3.20.36)

From (A.3.20.23)(ii), (A.3.20.33) and (A.3.20.35) and (A.3.20.36) we have:

T ′ = ((L1 | c : [N{? l�(C2).B2; B̃′}]) ./ c : [� B3 | �{! l�(C1).(� B1); (� B̃)}])
| loc(� B3) | loc(� �{! l�(C1).B1; B̃})

(A.3.20.37)

We also have that C1 ≡ C2 (≡ C), otherwise the merge is undefined. From Lemma A.3.18 we
then have:

Q :: T ′′ | B1 | c : [B2] (A.3.20.38)

which, since T ′′ ≡ L1 | B3 gives us:

Q :: L1 | B3 | B1 | c : [B2] (A.3.20.39)

From (A.3.20.39) we derive:

c J [Q] :: ((L1 | c : [B2]) ./ c : [� (B3 | B1)]) | loc(� (B3 | B1)) (A.3.20.40)

Considering Lemma A.3.4 we conclude:

c J [Q] :: ((L1 | c : [B2]) ./ c : [� (B3 | B1)]) | loc(� B3) | loc(� {p1 l�(C1).B1; B̃}) (A.3.20.41)

We may then derive the following type reduction:

((L1 | c : [N{? l�(C2).B2; B̃′}]) ./ c : [� B3 | �{! l�(C1).(� B1); (� B̃)}])
| loc(� B3) | loc(� �{! l�(C1).B1; B̃})
≡
((L1 ./ c : [� B3]) ./ c : [�{τ l�(C).((� B1) ./ B2); B̃′′′}]) | loc(� B3) | loc(� �{! l�(C1).B1; B̃})
→
((L1 ./ c : [� B3]) ./ c : [(� B1) ./ B2]) | loc(� B3) | loc(� �{! l�(C1).B1; B̃})
≡
((L1 | c : [B2]) ./ c : [� (B3 | B1)]) | loc(� B3) | loc(� �{! l�(C1).B1; B̃})

(A.3.20.42)
From (A.3.20.37) and T ′ <: T and considering Lemma A.3.19 we conclude there is T ′′ such that
T → T ′′ and c J [Q] :: T ′′ which completes the proof for this case.

Proposition 5.3.9 (Error Freeness)

(repetition of the statement in page 122)

If P is a well-typed process then P is not an error process.
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Proof. The result follows from the definition of merge ./. A parallel composition is well typed if
the types of the parallel branches can be merged. Since it is not possible to synchronize message
types defined on plain labels with the same polarity (which is the case for competing messages)
and such types are not apart # (the label sets are not disjoint) it is not possible to merge them.
Hence the composition of processes that exhibit competing plain messages is not typable, hence
error processes are not typable.

From the definition of error process we there are C, C′, Q,R, d, l, flag such that l ∈ Lp and
P = C [Q | R] and:

C[Q | C′[ld−.flag�!()]] → C[Q′ | C′[flag�!()]]
and

C[R | C′[ld−.flag�!()]] → C[R′ | C′[flag�!()]]

Let us consider the case when ld−= l�?(x) and C′[l�?(x).flag�!()] = c J [l�?(x).flag�!()] and
C[Q | R] = Q | R. We then have that there is a such that either:

Q
(νa)c l�!(a)−→ Q′ (A.3.21.1)

or:
Q

c l�!(a)−→ Q′ (A.3.21.2)

and b such that either:
R

(νb)c l�!(b)−→ R′ (A.3.21.3)

or:
R

c l�!(b)−→ R′ (A.3.21.4)

We consider the case (A.3.21.1) and (A.3.21.4), and elide the proof for the remaining combina-
tions as their proofs follow similar lines. Let us assume that there are T1, T2 such that:

Q :: T1 (A.3.21.5)

and:
R :: T2 (A.3.21.6)

From (A.3.21.1) and (A.3.21.5) and Lemma A.3.14 we conclude there is T ′
1, B1, C1, B̃ such that:

T1 ≡ T ′
1 | c : [�{! l�(C1).B1; B̃}] (A.3.21.7)

or:
T1 ≡ T ′

1 | c : [�{τ l�(C1).B1; B̃}] (A.3.21.8)

and from (A.3.21.5) and (A.3.21.6) and Lemma A.3.12 we conclude there is T ′
2, B2, C2, B̃

′ such
that:

T2 ≡ T ′
2 | c : [�{! l�(C2).B2; B̃′}] (A.3.21.9)

or:
T2 ≡ T ′

2 | c : [�{τ l�(C2).B2; B̃′}] (A.3.21.10)

In any of such cases, by definition of merge, it is not possible to synchronize such choice types.
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Furthermore they are not apart as both types specify message l� in conversation c. Thus there
is no type T ′ such that T ′ = T1 ./ T2 and therefore Q | R is untypable.

Lemma A.3.22

If T1 <: T2 and T2 <: T3 then T1 <: T3.

Proof. By induction on the derivation of T1 <: T2 and T2 <: T3. We show two interesting cases.
(Case (SubExpRec) and (SubExpUnfold))
We have that:

recX .(?M !
1 | . . . | ? M !

k | B〈X 〉) <: ?M !
1 | . . . | ? M !

k | recX .B〈X 〉 (A.3.22.1)

and:

?M !
1 | . . . | ? M !

k | recX .B〈X 〉 <: ?M !
1 | . . . | ? M !

k | B〈recX .B〈X 〉〉 (A.3.22.2)

We derive that:

recX .(?M !
1 | . . . | ? M !

k | B〈X 〉) <: ?M !
1 | . . . | ? M !

k | B〈recX .(?M !
1 | . . . | ? M !

k | B〈X 〉)〉
(A.3.22.3)

and:
?M !

1 | . . . | ? M !
k | B〈recX .(?M !

1 | . . . | ? M !
k | B〈X 〉)〉

<:
?M !

1 | . . . | ? M !
k | B〈?M !

1 | . . . | ? M !
k | recX .(B〈X 〉)〉

(A.3.22.4)

and also:

?M !
1 | . . . | ? M !

k | B〈?M !
1 | . . . | ? M !

k | recX .(B〈X 〉)〉
<:

?M !
1 | . . . | ? M !

k | ? M !
1 | . . . | ? M !

k | B〈recX .B〈X 〉〉
(A.3.22.5)

and:

?M !
1 | . . . | ? M !

k | ? M !
1 | . . . | ? M !

k | B〈recX .B〈X 〉〉 <: ?M !
1 | . . . | ? M !

k | B〈recX .B〈X 〉〉
(A.3.22.6)

which completes the proof for this case.
(Case (SubProject) and (SubParPref ))
We have that:

M.(B1 | B2) <: �(B1 | B2) | M. �(B1 | B2) (A.3.22.7)

and:
�(B1 | B2) | M. �(B1 | B2) <:�(B1 | B2) | M.(�B1) | �B2 (A.3.22.8)

We derive that:
M.(B1 | B2) <: M.B1 | B2 (A.3.22.9)

and:
M.B1 | B2 <: �B1 | �B2 | M.(�B1) | �B2 (A.3.22.10)
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which completes the proof for this case.

A.4 Chapter 6

Proposition 6.3.5 (Event Ordering Weakening)

(repetition of the statement in page 146)

Let P be a process such that Γ;∆ `` P . If wf (Γ′,∆′) and Γ ⊆ Γ′ and for all X such that
X ∈ dom(Γ) it is the case that ∆(X ) ⊆ ∆′(X ) then Γ′;∆′ `` P .

Proof. By induction on the length of the derivation of Γ;∆ `` P . Intuitively if Γ; ∆ already
prove that events are well ordered in P then Γ′;∆′ describe extra events that do not pertain to
P , and hence do not interfere in verifying the event ordering of P . We show the case when P

is of the form ld!(n).P ′, of the form Σi∈I ldi ?(xi).Pi, of the form (νa)P ′, of the form rec X .P , of
the form X , and of the form rect X .P .

(Case ld!(n).P ′)
We have that:

Γ;∆ `` ld!(n).P ′ (A.4.1.1)

derived from (rule (Output)):

(`(d).l.(x)Γ′⊥Γ);∆ `` P ′ (i) and Γ′{x/n} ⊆ (`(d).l.(y)Γ′⊥Γ) (ii) (A.4.1.2)

and wf (Γ,∆). Let us consider Γ′′ and ∆′ such that wf (Γ′′,∆′) and Γ ⊆ Γ′′ and for all X such
that X ∈ dom(Γ) it is the case that ∆(X ) ⊆ ∆′(X ). Then (`(d).l.(x)Γ′⊥Γ′′) is an event ordering.
By induction hypothesis on (A.4.1.2)(i) we conclude:

(`(d).l.(x)Γ′⊥Γ′′);∆′ `` P ′ (A.4.1.3)

We immediately have that (`(d).l.(x)Γ′⊥Γ) ⊆ (`(d).l.(x)Γ′⊥Γ′′), which together with (A.4.1.2)(ii)
gives us:

Γ′{x/n} ⊆ (`(d).l.(x)Γ′⊥Γ′′) (A.4.1.4)

From (A.4.1.3) and (A.4.1.4) and wf (Γ′′,∆′) we derive

Γ′′;∆′ `` ld!(n).P ′ (A.4.1.5)

which completes the proof.
(Case Σi∈I ldi !(xi).Pi)
We have that:

Γ;∆ `` Σi∈I ldi !(xi).Pi (A.4.1.6)

derived from (rule (Input)):

∀i∈I((`(d).li.(yi)Γ′
i⊥Γ) ∪ Γ′

i{yi/xi};∆ `` Pi Γ′
i \ yi ⊆ (`(d).li.(yi)Γ′

i⊥Γ)) (A.4.1.7)

and wf (Γ,∆). Let us consider Γ′′ and ∆′ such that wf (Γ′′,∆′) and Γ ⊆ Γ′′ and for all X such
that X ∈ dom(Γ) it is the case that ∆(X ) ⊆ ∆′(X ). From Γ′

i \ yi ⊆ (`(d).li.(yi)Γ′
i⊥Γ) we
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directly have that:
Γ′

i \ yi ⊆ (`(d).li.(yi)Γ′
i⊥Γ′′) (A.4.1.8)

for all i ∈ I. Also, from the fact that Γ′′ is an event ordering we have that (`(d).li.(yi)Γ′
i⊥Γ′′)

is an event ordering. Let us consider that e(xi) 6∈ dom(Γ′′) (otherwise we α-convert xi). Then,
considering (A.4.1.8) we have that (`(d).li.(yi)Γ′

i⊥Γ′′) ∪ Γ′
i{yi/xi} is an event ordering. By

induction hypothesis on (A.4.1.7) we conclude:

(`(d).li.(yi)Γ′
i⊥Γ′′) ∪ Γ′

i{yi/xi};∆′ `` Pi (A.4.1.9)

From (A.4.1.9) and (A.4.1.8) and wf (Γ′′,∆′) we derive

Γ′′;∆′ `` Σi∈I ldi !(xi).Pi (A.4.1.10)

which completes the proof.
(Case (νa)P ′)
We have that:

Γ;∆ `` (νa)P ′ (A.4.1.11)

derived from (rule (Res)):

Γ′;∆′ `` P ′ (i) and Γ = Γ′ \ a (ii) and ∆ = ∆′ \ a (iii) (A.4.1.12)

Let us consider Γ′′ and ∆′′ such that wf (Γ′′,∆′′) and Γ ⊆ Γ′′ and for all X such that X ∈ dom(Γ)
it is the case that ∆(X ) ⊆ ∆′′(X ). Then considering e(a) 6∈ dom(Γ′′) and that for all X we
have that e(a) 6∈ dom(∆′′(X )) (otherwise we α-convert a) we have that wf (Γ′ ∪ Γ′′,∆′′′) where
∆′′′(X ) = ∆(X )′ ∪∆′′(X ). By induction hypothesis on (A.4.1.12)(i) we conclude:

Γ′ ∪ Γ′′;∆′′′ `` P ′ (A.4.1.13)

We then have that Γ′′ = (Γ′ ∪ Γ′′) \ a and ∆′′ = (∆′′′) \ a and hence:

Γ′′;∆′′ `` (νa)P ′ (A.4.1.14)

which completes the proof for this case.
(Case rec X .P ′)
We have that:

Γ;∆ `` rec X .P ′ (A.4.1.15)

derived from (rule (Rec)):
Γ; (∆,X →Γ) `` P ′ (A.4.1.16)

Let us consider Γ′ and ∆′ such that wf (Γ′,∆′) and Γ ⊆ Γ′ and for all X such that X ∈ dom(Γ)
it is the case that ∆(X ) ⊆ ∆′(X ). By induction hypothesis on (A.4.1.16) we conclude:

Γ′;∆′, (X →Γ′) `` P ′ (A.4.1.17)

from which we derive:
Γ′;∆′ `` rec X .P ′ (A.4.1.18)
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which completes the proof.
(Case X )
We have that:

Γ;∆ `` X (A.4.1.19)

derived from (rule (RecVar)):

X ∈ dom(∆) (i) wf (Γ,∆) (ii) (A.4.1.20)

Let us consider Γ′ and ∆′ such that wf (Γ′,∆′) and Γ ⊆ Γ′ and for all X such that X ∈ dom(Γ)
it is the case that ∆(X ) ⊆ ∆′(X ). Then we immediately have:

Γ′;∆′ `` X (A.4.1.21)

which completes the proof.
(Case rect X .P ′)
We have that:

Γ;∆ `` rect X .P ′ (A.4.1.22)

derived from (rule (RecTerm)):
∆(X );∆ `` P ′ (A.4.1.23)

and wf (Γ,∆). Let us consider Γ′ and ∆′ such that wf (Γ′,∆′) and Γ ⊆ Γ′ and for all X such
that X ∈ dom(Γ) it is the case that ∆(X ) ⊆ ∆′(X ). By induction hypothesis on (A.4.1.16) we
conclude:

∆′(X );∆′ `` P ′ (A.4.1.24)

from which, considering wf (Γ′,∆′), we derive:

Γ′;∆′ `` rect X .P ′ (A.4.1.25)

which completes the proof.

Lemma A.4.2

Let P be a process such that Γ;∆ `` P . If n 6∈ fn(P ) ∪ fv(P ) then Γ \ n;∆ \ n `` P .

Proof. By induction on the length of the derivation of Γ;∆ `` P , following expected lines.

Lemma 6.3.6 (Substitution)

(repetition of the statement in page 147)

Let P be such that Γ;∆ `` P . If Γ{x/n} ⊆ Γ \ x then Γ \ x;∆ \ x ``{x/n} P{x/n}.

Proof. By induction on the length of the derivation of Γ;∆ `` P .
(Case x J [P ])
We have that:

Γ;∆ `` x J [P ] (i) and Γ{x/n} ⊆ Γ \ x (ii) (A.4.3.1)
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(A.4.3.1)(i) is derived from:
Γ;∆ `(`(�),x) P (A.4.3.2)

By induction hypothesis on (A.4.3.2) and (A.4.3.1)(ii) we have:

Γ \ x;∆ \ x `(`(�){x/n},n) P{x/n} (A.4.3.3)

From (A.4.3.3) we derive:
Γ \ x;∆ \ x ``{x/n} n J [P{x/n}] (A.4.3.4)

which completes the proof for this case.
(Cases n J [P ] and m J [P ])
Follow expected lines.
(Case (νa)P )
We have that:

Γ;∆ `` (νa)P (i) and Γ{x/n} ⊆ Γ \ x (ii) (A.4.3.5)

(A.4.3.5)(i) is derived from:
Γ′;∆′ `` P (A.4.3.6)

where Γ = Γ′ \ a and ∆ = ∆′ \ a. From (A.4.3.5)(ii) and n 6= a (otherwise we α-convert a) we
have Γ′{x/n} ⊆ Γ′ \ x and Γ \ x = (Γ′ \ x) \ a. Then by induction hypothesis on (A.4.3.6) we
have:

Γ′ \ x;∆′ \ x ``{x/n} P{x/n} (A.4.3.7)

From (A.4.3.7) we derive:
Γ \ x;∆ \ x ``{x/n} (νa)(P{x/n}) (A.4.3.8)

which completes the proof for this case.
(Case ld!(x).P )
We have that:

Γ;∆ `` ld!(x).P (i) and Γ{x/n} ⊆ Γ \ x (ii) (A.4.3.9)

(A.4.3.9)(i) is derived from (rule (Output)):

(`(d).l.(y)Γ′′⊥Γ);∆ `` P (i) and Γ′′{y/x} ⊆ (`(d).l.(y)Γ′′⊥Γ) (ii) (A.4.3.10)

and wf (Γ,∆). From (A.4.3.10)(i), considering Lemma 6.3.5, we conclude Γ; ∆ `` P . Let us take
`′ = `{x/n}. Then by induction hypothesis we have:

Γ \ x;∆ \ x ``′ P{x/n} (A.4.3.11)

We have that `(d).l.(y)Γ′′ ∈ dom(Γ) and since Γ{x/n} ⊆ Γ \ x we conclude:

`′(d).l.((y)Γ′′{x/n}) ∈ dom(Γ \ x) (A.4.3.12)

Also from (A.4.3.10)(i) we have that events in P are of greater order with respect to event
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`(d).l.(y)Γ′′, so events in P{x/n} are of greater order with respect to `′(d).l.(y)(Γ′′{x/n}):

(`′(d).l.((y)Γ′′{x/n})⊥(Γ \ x));∆ \ x ``′ P{x/n} (A.4.3.13)

From (A.4.3.10)(ii) we conclude:

(Γ′′{y/x}){x/n} ⊆ (`(d).l.(y)Γ′′⊥Γ){x/n} ⊆ (`′(d).l.((y)Γ′′{x/n})⊥(Γ \ x)) (A.4.3.14)

and hence Γ′′{y/n} ⊆ (`′(d).l.((y)Γ′′{x/n})⊥(Γ \ x)). Then, considering also (A.4.3.13), we
have:

Γ \ x;∆ \ x ``′ ld!(n).(P{x/n}) (A.4.3.15)

which completes the proof for this case.
(Cases ld!(n).P and ld!(m).P )
Follow similar lines to the previous case.
(Case Σi∈I ldi ?(zi).Pi)
We have that:

Γ;∆ `` Σi∈I ldi ?(zi).Pi (i) and Γ{x/n} ⊆ Γ \ x (ii) (A.4.3.16)

(A.4.3.16)(i) is derived from:

∀i∈I((`(d).li.(yi)Γ′
i⊥Γ) ∪ Γ′

i{yi/zi};∆ `` Pi Γ′
i \ yi ⊆ (`(d).li.(yi)Γ′

i⊥Γ)) (A.4.3.17)

and wf (Γ,∆). From (A.4.3.17)(i), considering Proposition 6.3.5, we conclude Γ∪Γ′
i{yi/zi};∆ ``

P . Also since yi 6= x 6= zi (otherwise we α-convert yi or zi) and Γ{x/n} ⊆ Γ \ x and Γ′
i \ yi ⊆ Γ

we have that (Γ ∪ Γ′
i{yi/zi}){x/n} ⊆ (Γ ∪ Γ′

i{x/n}{yi/zi}) \ x. Let us take `′ = `{x/n}. Then
by induction hypothesis we have:

(Γ ∪ Γ′
i{x/n}{yi/zi}) \ x;∆ \ x ``′ Pi{x/n} (A.4.3.18)

We have that `(d).li.(yi)Γ′
i ∈ dom(Γ) and since Γ{x/n} ⊆ Γ \ x we conclude:

`′(d).li.((yi)Γ′
i{x/n}) ∈ dom(Γ \ x) (A.4.3.19)

Then from (A.4.3.17) and (A.4.3.18) we have that:

(`′(d).li.((yi)Γ′
i{x/n})⊥(Γ \ x)) ∪ (Γ′

i{x/n}{yi/zi});∆ \ x ``′ Pi{x/n} (A.4.3.20)

and:
(Γ′

i{x/n}) \ yi ⊆ (`′(d).li.((yi)Γ′
i{x/n})⊥(Γ \ x)) (A.4.3.21)

From (A.4.3.20) and (A.4.3.21) we conclude:

Γ \ x;∆ \ x ``′ Σi∈I ldi !(zi).(Pi{x/n}) (A.4.3.22)

which completes the proof for this case.
(Case this(y).P )
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We have that:

Γ;∆ `` this(y).P (i) and Γ{x/n} ⊆ Γ \ x (ii) (A.4.3.23)

(A.4.3.23)(i) is derived from:

Γ ∪ {(e1 ≺ e2) | (e1{y/`(�)} ≺Γ e2{y/`(�)})};∆ `` P (A.4.3.24)

and (`(�) 6= here). From (A.4.3.23)(ii) and x 6= y (otherwise we α-convert y) we have:

(Γ ∪ {(e1 ≺ e2) | (e1{y/`(�)} ≺Γ e2{y/`(�)})}){x/n}
⊆
(Γ ∪ {(e1 ≺ e2) | (e1{y/`(�)} ≺Γ e2{y/`(�)})}) \ x

(A.4.3.25)

Then by induction hypothesis on (A.4.3.24) we have:

(Γ ∪ {(e1 ≺ e2) | (e1{y/`(�)} ≺Γ e2{y/`(�)})}) \ x;∆ \ x ``{x/n} P{x/n} (A.4.3.26)

We have that `′(�) 6= here for `′ = `{x/n}. Then from (A.4.3.26) we derive:

Γ \ x;∆ \ x ``{x/n} this(y).(P{x/n}) (A.4.3.27)

which completes the proof for this case.
(Case P | Q)
Follows directly from induction hypothesis.
(Case 0)
Direct.
(Case X )
We have that:

Γ;∆ `` X (i) and Γ{x/n} ⊆ Γ \ x (ii) (A.4.3.28)

(A.4.3.28)(i) is derived from:

X ∈ dom(∆) and wf (Γ,∆) (A.4.3.29)

We directly have that X ∈ dom(∆ \ x) and wf (Γ \ x,∆ \ x) and hence:

Γ \ x;∆ \ x ``{x/n} X (A.4.3.30)

which completes the proof for this case.
(Case rec X .P )
We have that:

Γ;∆ `` rec X .P (i) and Γ{x/n} ⊆ Γ \ x (ii) (A.4.3.31)

(A.4.3.31)(i) is derived from:
Γ; (∆,X →Γ) `` P (A.4.3.32)
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By induction hypothesis we have that:

Γ \ x; (∆ \ x,X →Γ \ x) `` P (A.4.3.33)

from which we derive:
Γ \ x;∆ \ x ``{x/n} rec X .P (A.4.3.34)

which completes the proof for this case.
(Case rect X .P )
We have that:

Γ;∆ `` rect X .P (i) and Γ{x/n} ⊆ Γ \ x (ii) (A.4.3.35)

(A.4.3.35)(i) is derived from:
∆(X );∆ `` P (A.4.3.36)

and where wf (Γ,∆) and fv(∆(X )) = ∅. From fv(∆(X )) = ∅ we have that:

∆(X ){x/n} = ∆(X ) \ x = ∆(X ) (A.4.3.37)

By induction hypothesis we then have that:

∆(X ) \ x;∆ \ x `` P (A.4.3.38)

From wf (Γ,∆) we directly have that wf (Γ \ x,∆ \ x) and hence:

Γ \ x;∆ \ x ``{x/n} rect X .P (A.4.3.39)

which completes the proof for this case.

Lemma A.4.4

If Γ;∆ `` P then wf (Γ,∆).

Proof. By induction on the length of the derivation of Γ; ∆ `` P , following expected lines. Notice
that each rule in the proof system that introduces a new ordering in the conclusion has a premise
that verifies the well-foundedness condition on the event ordering plus recursion environment.

Lemma A.4.5

Let Q be a well-formed process. If Γ;∆,X →Γ′ `` Q and Γ′;∆,X →Γ′ `` P and fv(Γ′) = ∅ then
Γ;∆,X →Γ′ ` Q{X/rect X .P}.

Proof. By induction on the length of the derivation of Γ;∆,X →Γ′ `` Q.
(Cases (Par), (Res) and (Stop))
Direct from induction hypothesis.
(Case (Rec))
We have that:

Γ;∆,X →Γ′ `` rec Y.Q (A.4.5.1)
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and Γ′;∆,X →Γ′ `` P . (A.4.5.1) is derived from:

Γ;∆,X →Γ′,Y→Γ `` Q (A.4.5.2)

Considering Proposition 6.3.5 we have that Γ′;∆,X → Γ′,Y → Γ `` P . Then, by induction
hypothesis we conclude:

Γ;∆,X →Γ′,Y→Γ `` Q{X/rect X .P} (A.4.5.3)

from which we derive:
Γ;∆,X →Γ′ `` rec Y.(Q{X/rect X .P}) (A.4.5.4)

which completes the proof for this case.
(Case (RecTerm))
We have that:

Γ;∆,X →Γ′ `` rect Y.Q (A.4.5.5)

and Γ′;∆,X →Γ′ `` P . (A.4.5.5) is derived from:

∆(Y);∆,X →Γ′ `` Q (A.4.5.6)

and wf (Γ,∆,X →Γ′). By induction hypothesis we conclude:

∆(Y);∆,X →Γ′ `` Q{X/rect X .P} (A.4.5.7)

from which we derive:
Γ;∆,X →Γ′ `` rect Y.(Q{X/rect X .P}) (A.4.5.8)

which completes the proof for this case.
(Case (RecVar))
We have that:

Γ;∆,X →Γ′ `` Y (A.4.5.9)

and Γ′;∆,X →Γ′ `` P . (A.4.5.9) is derived from Y ∈ dom(∆,X →Γ′) and wf (Γ,∆,X →Γ′). If
X 6= Y we directly have that:

Γ;∆,X →Γ′ `` Y (A.4.5.10)

We have that Γ′;∆,X →Γ′ `` P . and hence if X = Y we have:

Γ;∆,X →Γ′ `` rect X .P (A.4.5.11)

which completes the proof for this case.
(Case (Piece))
Since Q is well-formed we have that (n J [Q]){X/rect X .P} = n J [Q] hence the result is

direct.
(Cases (Input), (Output) and (This))
Follow from induction hypothesis in expected lines.
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Lemma A.4.6

Let P be a well-formed process such that Γ;∆ `` P . If P
ld?(a)−→ Q and (`(d).l.(x)Γ′) ∈ dom(Γ) and

Γ′{x/a} ⊆ (`(d).l.(x)Γ′)⊥Γ then there are Γ′′,∆′ such that Γ′′;∆,∆′ `` Q and Γ′′ ∪
⋃

(∆,∆′) ⊆
Γ ∪

⋃
∆.

Proof. By induction on the derivation of the transition P
ld?(a)−→ Q. We show the case when P is

an input summation, when P is a recursive process and when P is a terminal recursive process.

(Case Σi∈I ldi ?(xi).Pi

ldj ?(a)
−→ Pj{xj/a})

We have that:

Γ;∆ `` Σi∈I ldi ?(xi).Pi and Σi∈I ldi ?(xi).Pi

ldj ?(a)
−→ Pj{xj/a} (A.4.6.1)

and:
(`(d).li.(yj)Γ′

j) ∈ dom(Γ) and Γ′
j{yj/a} ⊆ (`(d).li.(yj)Γ′

j⊥Γ) (A.4.6.2)

We have that (A.4.6.1) is derived from:

∀i∈I((`(d).li.(yi)Γ′
i⊥Γ) ∪ Γ′

i{yi/xi};∆ `` Pi) (A.4.6.3)

in particular for j we have:

(`(d).lj .(yj)Γ′
j⊥Γ) ∪ Γ′

j{yj/xj};∆ `` Pj (A.4.6.4)

From Lemma 6.3.6 considering (A.4.6.4) and (A.4.6.2) we then have (where `{xj/a} = `):

(`(d).lj .(yj)Γ′
j⊥Γ);∆ \ x `` Pj{xj/a} (A.4.6.5)

From (A.4.6.5) and considering Proposition 6.3.5 we have:

Γ;∆ `` Pj{xj/a} (A.4.6.6)

which along with Γ ∪
⋃

∆ ⊆ Γ ∪
⋃

∆ completes the proof for this case.

(Case rec X .P
ld?(a)−→ Q)

We have that:

Γ;∆ `` rec X .P (i) and rec X .P
ld?(a)−→ Q (ii) (A.4.6.7)

and:
(`(d).l.(x)Γ′) ∈ dom(Γ) and Γ′{x/a} ⊆ (`(d).l.(x)Γ′⊥Γ) (A.4.6.8)

We have that (A.4.6.7)(i) is derived from:

Γ; (∆,X →Γ) `` P (A.4.6.9)

which assuming fv(Γ) = ∅ (otherwise, since fv(P ) = ∅ we use Lemma A.4.2 and trim down the
ordering in such irrelevant names) and considering Lemma A.4.5 gives us that:

Γ; (∆,X →Γ) `` P{X/rect X .P} (A.4.6.10)
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(A.4.6.7)(ii) is derived from:

P{X/rect X .P} ld?(a)−→ Q (A.4.6.11)

By induction hypothesis we conclude:

Γ; (∆,X →Γ) `` Q (A.4.6.12)

and Γ ∪
⋃

(∆,X →Γ) ⊆ Γ ∪
⋃

∆ which completes the proof for this case.

(Case rect X .P
ld?(a)−→ Q)

We have that:

Γ;∆ `` rect X .P (i) and rect X .P
ld?(a)−→ Q (ii) (A.4.6.13)

and:
(`(d).l.(x)Γ′) ∈ dom(Γ) and Γ′{x/a} ⊆ (`(d).l.(x)Γ′⊥Γ) (A.4.6.14)

We have that (A.4.6.13)(i) is derived from:

∆(X );∆ `` P (A.4.6.15)

and fv(∆(X )) = ∅ and wf (Γ,∆). Then considering Lemma A.4.5 we conclude:

∆(X );∆ `` P{X/rect X .P} (A.4.6.16)

from which, considering Proposition 6.3.5, we derive:

Γ ∪∆(X );∆ `` P{X/rect X .P} (A.4.6.17)

(A.4.6.13)(ii) is derived from:

P{X/rect X .P} ld?(a)−→ Q (A.4.6.18)

By induction hypothesis we conclude:

Γ ∪∆(X );∆ `` Q (A.4.6.19)

and Γ ∪∆(X ) ∪
⋃

∆ ⊆ Γ ∪
⋃

∆ which completes the proof for this case.

Lemma A.4.7

Let P be a well-formed process such that Γ;∆ `` P . If P
c l�?(a)−→ Q and (c.l.(x)Γ′) ∈ dom(Γ) and

Γ′{x/a} ⊆ (c.l.(x)Γ′)⊥Γ then there are Γ′′,∆′ such that Γ′′;∆,∆′ `` Q and Γ′′ ∪
⋃

(∆,∆′) ⊆
Γ ∪

⋃
∆.

Proof. By induction on the derivation of the transition P
c l�?(a)−→ Q. We show the base case.

(Case c J [P ′]
c l�?(a)−→ c J [Q′])

We have that:
Γ;∆ `` c J

[
P ′] (A.4.7.1)
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Let us consider:

c J
[
P ′] c l�?(a)−→ c J

[
Q′] and (c.l.(x)Γ′) ∈ dom(Γ) and Γ′{x/a} ⊆ (c.l.(x)Γ′⊥Γ)

(A.4.7.2)
We have that (A.4.7.1) is derived from:

Γ;∆ `(`(�),c) P ′ (A.4.7.3)

and (A.4.7.2) is derived from:

P ′ l�?(a)−→ Q′ (A.4.7.4)

From Lemma A.4.6 considering (A.4.7.4), (A.4.7.3) and (A.4.7.2) we have:

Γ′′;∆,∆′ `(`(�),c) Q′ (A.4.7.5)

and Γ′′ ∪
⋃

(∆,∆′) ⊆ Γ ∪
⋃

∆. From (A.4.7.5) we derive:

Γ′′;∆,∆′ `` c J
[
Q′] (A.4.7.6)

which completes the proof for this case.

Lemma A.4.8

Let P be a well-formed process such that Γ;∆ `` P . If P
ld!(a)−→ Q then there are Γ′′,∆′ such

that Γ′′;∆,∆′ `` Q and Γ′′ ∪
⋃

(∆,∆′) ⊆ Γ ∪
⋃

∆ and (`(d).l.(x)Γ′) ∈ dom(Γ′′) and Γ′{x/a} ⊆
(`(d).l.(x)Γ′)⊥Γ′′.

Proof. By induction on length of the derivation of the transition P
ld!(a)−→ Q. We show the case

when P is an output prefix, a recursion and a terminal recursion.

(Case ld!(a).P ′ ld!(a)−→ P ′)
We have that:

Γ;∆ `` ld!(a).P ′ (i) and ld!(a).P ′ ld!(a)−→ P ′ (ii) (A.4.8.1)

We have that (A.4.8.1)(i) is derived from:

(`(d).l.(x)Γ′⊥Γ);∆ `` P ′ and Γ′{x/a} ⊆ (`(d).l.(x)Γ′⊥Γ) (A.4.8.2)

and wf (Γ,∆). From (A.4.8.2) and considering Proposition 6.3.5 we have:

Γ;∆ `` P ′ (A.4.8.3)

and Γ ∪
⋃

∆ ⊆ Γ ∪
⋃

∆ which completes the proof for this case.

(Case rec X .P
ld?(a)−→ Q)

We have that:

Γ;∆ `` rec X .P (i) and rec X .P
ld!(a)−→ Q (ii) (A.4.8.4)
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We have that (A.4.8.4)(i) is derived from:

Γ; (∆,X →Γ) `` P (A.4.8.5)

which assuming fv(Γ) = ∅ (otherwise, since fv(P ) = ∅ we use Lemma A.4.2 and trim down the
ordering in such irrelevant names) and considering Lemma A.4.5 gives us that:

Γ; (∆,X →Γ) `` P{X/rect X .P} (A.4.8.6)

(A.4.8.4)(ii) is derived from:

P{X/rect X .P} ld!(a)−→ Q (A.4.8.7)

By induction hypothesis we conclude:

Γ; (∆,X →Γ) `` Q (A.4.8.8)

and:
(`(d).l.(x)Γ′) ∈ dom(Γ) and Γ′{x/a} ⊆ (`(d).l.(x)Γ′⊥Γ) (A.4.8.9)

and Γ ∪
⋃

(∆,X →Γ) ⊆ Γ ∪
⋃

∆ which completes the proof for this case.

(Case rect X .P
ld?(a)−→ Q)

We have that:

Γ;∆ `` rect X .P (i) and rect X .P
ld!(a)−→ Q (ii) (A.4.8.10)

We have that (A.4.8.10)(i) is derived from:

∆(X );∆ `` P (A.4.8.11)

and fv(∆(X )) = ∅ and wf (Γ,∆). Then considering Lemma A.4.5 we conclude:

∆(X );∆ `` P{X/rect X .P} (A.4.8.12)

(A.4.8.10)(ii) is derived from:

P{X/rect X .P} ld?(a)−→ Q (A.4.8.13)

By induction hypothesis we conclude:

∆(X );∆ `` Q (A.4.8.14)

and:

(`(d).l.(x)Γ′) ∈ dom(∆(X )) and Γ′{x/a} ⊆ (`(d).l.(x)Γ′⊥∆(X )) (A.4.8.15)

and ∆(X ) ∪
⋃

∆ ⊆ Γ ∪
⋃

∆ which completes the proof for this case.

Lemma A.4.9

Let P be a well-formed process such that Γ;∆ `` P . If P
c l�!(a)−→ Q then there are Γ′′,∆′ such
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that Γ′′;∆,∆′ `` Q and Γ′′ ∪
⋃

(∆,∆′) ⊆ Γ ∪
⋃

∆ and (c.l.(x)Γ′) ∈ dom(Γ′′) and Γ′{x/a} ⊆
(c.l.(x)Γ′)⊥Γ′′.

Proof. By induction on the derivation of the transition P
c l�!(a)−→ Q. We show the base case.

(Case c J [P ′]
c l�!(a)−→ c J [Q′])

We have that:

Γ;∆ `` c J
[
P ′] (i) and c J

[
P ′] c l�!(a)−→ c J

[
Q′] (ii) (A.4.9.1)

We have that (A.4.9.1)(i) is derived from:

Γ;∆ `(`(�),c) P ′ (A.4.9.2)

and (A.4.9.1)(ii) is derived from:

P ′ l�!(a)−→ Q′ (A.4.9.3)

From (A.4.9.2) and (A.4.9.3), considering Lemma A.4.8 we have:

Γ′′;∆,∆′ `(`(�),c) Q′ and (c.l.(x)Γ′) ∈ dom(Γ′′) and Γ′{x/a} ⊆ (c.l.(x)Γ′⊥Γ′′)
(A.4.9.4)

and Γ′′ ∪
⋃

(∆,∆′) ⊆ Γ ∪
⋃

∆. From (A.4.9.4) we conclude:

Γ′′;∆,∆′ `` c J
[
Q′] (A.4.9.5)

which completes the proof for this case.

Lemma A.4.10

Let P be a well-formed process such that Γ;∆ `` P . If P
(νa)ld!(a)−→ Q then there are Γ′′,∆′,∆′′

such that Γ′′,∆′,∆′′ `` Q and ∆ = ∆′ \ a and Γ′′ \ a ∪
⋃

(∆′ \ a,∆′′ \ a) ⊆ Γ ∪
⋃

∆ and
(`(d).l.(x)Γ′) ∈ dom(Γ′′) and Γ′{x/a} ⊆ ((`(d).l.(x)Γ′)⊥Γ′′).

Proof. By induction on the length of the derivation of the transition P
(νa)ld!(a)−→ Q. We show the

base case of restriction open (Figure 4.2 (Open)).

(Case (νa)P ′ (νa)ld!(a)−→ Q′)
We have that:

Γ;∆ `` (νa)P ′ (i) and (νa)P ′ (νa)ld!(a)−→ Q′ (ii) (A.4.10.1)

We have that (A.4.10.1)(i) is derived from:

Γ′;∆′ `` P ′ (A.4.10.2)

where Γ = Γ′ \ a and ∆ = ∆′ \ a. (A.4.10.1)(ii) is derived from:

P ′ ld!(a)−→ Q′ (A.4.10.3)
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From (A.4.10.2) and (A.4.10.3), considering Lemma A.4.8 we have:

Γ′′;∆′,∆′′ `` Q′ and (`(d).l.(x)Γ′′′) ∈ dom(Γ′′) and Γ′′′{x/a} ⊆ (`(d).l.(x)Γ′′′⊥Γ′′)
(A.4.10.4)

and Γ′′ ∪
⋃

(∆′,∆′′) ⊆ Γ′ ∪
⋃

∆′, thus, since Γ = Γ′ \ a and ∆ = ∆′ \ a we have:

Γ′′ \ a ∪
⋃

(∆′ \ a,∆′′ \ a) ⊆ Γ ∪
⋃

∆ (A.4.10.5)

which completes the proof.

Lemma A.4.11

Let P be a well-formed process such that Γ;∆ `` P . If P
(νa)c l�!(a)−→ Q then there are Γ′′,∆′,∆′′

such that Γ′′,∆′,∆′′ `` Q and ∆ = ∆′ \ a and Γ′′ \ a ∪
⋃

(∆′ \ a,∆′′ \ a) ⊆ Γ ∪
⋃

∆ and
(c.l.(x)Γ′) ∈ dom(Γ′′) and Γ′{x/a} ⊆ ((c.l.(x)Γ′)⊥Γ′′).

Proof. By induction on the derivation of the transition P
(νa)c l�!(a)−→ Q. We show the cases of

(Open) (Figure 4.2) and of a (νa)l�!(a) transition originating from a conversation piece.

(Case c J [P ′]
(νa)c l�!(a)−→ c J [Q′])

We have that:

Γ;∆ `` c J [P ′] (i) and c J [P ′]
(νa)c l�!(a)−→ c J [Q′] (ii) (A.4.11.1)

We have that (A.4.11.1)(i) is derived from:

Γ;∆ `(`(�),c) P ′ (A.4.11.2)

and (A.4.11.1)(ii) is derived from:

P ′ (νa)l�!(a)−→ Q′ (A.4.11.3)

From (A.4.11.2) and (A.4.11.3), considering Lemma A.4.10 we have that:

Γ′′,∆′,∆′′ `(`(�),c) Q′ (A.4.11.4)

and ∆ = ∆′ \ a and Γ′′ \ a ∪
⋃

(∆′ \ a,∆′′ \ a) ⊆ Γ ∪
⋃

∆ and:

(c.l.(x)Γ′ ∈ dom(Γ′′)) and Γ′{x/a} ⊆ (c.l.(x)Γ′⊥Γ′′) (A.4.11.5)

From (A.4.11.4) we conclude:
Γ′′;∆′,∆′′ `` c J

[
Q′] (A.4.11.6)

which completes the proof for this case.

(Case (νa)P ′ (νa)c ld!(a)−→ Q′)
We have that

Γ;∆ `` (νa)P ′ (i) and (νa)P ′ (νa)c l�!(a)−→ Q′ (ii) (A.4.11.7)

268



We have that (A.4.11.7)(i) is derived from:

Γ′;∆′ `` P ′ (A.4.11.8)

where Γ = Γ′ \ a and ∆ = ∆′ \ a. (A.4.11.7)(ii) is derived from:

P ′ c l�!(a)−→ Q′ (A.4.11.9)

From (A.4.11.8) and (A.4.11.9), considering Lemma A.4.9 we have that:

Γ′′,∆′,∆′′ `` Q′ and (c.l.(x)Γ′′′ ∈ dom(Γ′′)) and Γ′′′{x/a} ⊆ (c.l.(x)Γ′′′⊥Γ′′)
(A.4.11.10)

and Γ′′ ∪
⋃

(∆′,∆′′) ⊆ Γ′ ∪
⋃

∆′ from which, since Γ = Γ′ \ a and ∆ = ∆′ \ a, we conclude:

Γ′′ \ a ∪
⋃

(∆′ \ a,∆′′ \ a) ⊆ Γ ∪
⋃

∆ (A.4.11.11)

which completes the proof for this case.

Lemma A.4.12

Let P be a well-formed process such that Γ;∆ `` P . If P
this��
−→ Q and `(�) = `(�) then there are

Γ′,∆′ such that Γ′;∆,∆′ `` Q and Γ′ ∪
⋃

(∆,∆′) ⊆ Γ ∪
⋃

∆.

Proof. By induction on the length of the derivation of the transition P
this��
−→ Q. We show the

case when the synchronization is derived via rule (Comm).

(Case P1 | P2
this��
−→ Q1 | Q2)

We have that:

P1 | P2
this��
−→ Q1 | Q2 (i) and Γ;∆ `` P1 | P2 (ii) (A.4.12.1)

From (A.4.12.1)(ii) we have:

Γ;∆ `` P1 (i) and Γ;∆ `` P2 (ii) (A.4.12.2)

Let us consider (A.4.12.1)(i) is derived from:

P1
l�!(a)−→ Q1 (i) and P2

l�?(a)−→ Q2 (ii) (A.4.12.3)

From Lemma A.4.8 and (A.4.12.2)(i) and (A.4.12.3)(i) we have:

(`(�).l.(x)Γ′) ∈ dom(Γ1) (i) and Γ′{x/a} ⊆ ((`(�).l.(x)Γ′)⊥Γ1) (ii) (A.4.12.4)

and:
Γ1,∆,∆1 `` Q1 (A.4.12.5)

and Γ1 ∪
⋃

(∆,∆1) ⊆ Γ ∪
⋃

∆. Then, from (A.4.12.2)(ii) and considering Proposition 6.3.5 we
conclude:

Γ ∪ Γ1,∆,∆1 `` P2 (A.4.12.6)
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From (A.4.12.4) we directly have that:

(`(�).l.(x)Γ′) ∈ dom(Γ ∪ Γ1) and Γ′{x/a} ⊆ ((`(�).l.(x)Γ′)⊥(Γ ∪ Γ1)) (A.4.12.7)

From Lemma A.4.6 and (A.4.12.6) and (A.4.12.3)(ii) and (A.4.12.7) and since `(�) = `(�) we
have:

Γ2;∆,∆1,∆2 `` Q2 (A.4.12.8)

and Γ2∪
⋃

(∆,∆1,∆2) ⊆ Γ∪Γ1∪
⋃

(∆,∆1). Then, considering Proposition 6.3.5, from (A.4.12.8)
and (A.4.12.5) we have:

Γ ∪ Γ1 ∪ Γ2;∆,∆1,∆2 `` Q1 and Γ ∪ Γ1 ∪ Γ2;∆,∆1,∆2 `` Q2 (A.4.12.9)

and hence:
Γ ∪ Γ1 ∪ Γ2;∆,∆1,∆2 `` Q1 | Q2 (A.4.12.10)

Also from Γ2 ∪
⋃

(∆,∆1,∆2) ⊆ Γ ∪ Γ1 ∪
⋃

(∆,∆1) and Γ1 ∪
⋃

(∆,∆1) ⊆ Γ ∪
⋃

∆ we have:

Γ ∪ Γ1 ∪ Γ2

⋃
(∆,∆1,∆2) ⊆ Γ ∪

⋃
∆ (A.4.12.11)

which completes the proof for this case.

Lemma A.4.13

Let P be a well-formed process such that Γ;∆ `` P . If P
c this�
−→ Q and `(�) = c then there are

Γ′,∆′ such that Γ′;∆,∆′ `` Q and Γ′ ∪
⋃

(∆,∆′) ⊆ Γ ∪
⋃

∆.

Proof. By induction on the length of the derivation of the transition P
c this�
−→ Q. We show the

case when the synchronization is derived via rule (Comm).

(Case P1 | P2
c this�
−→ Q1 | Q2)

We have that:

P1 | P2
c this�
−→ Q1 | Q2 (i) and Γ;∆ `` P1 | P2 (ii) (A.4.13.1)

From (A.4.13.1)(ii) we have:

Γ;∆ `` P1 (i) and Γ;∆ `` P2 (ii) (A.4.13.2)

Let us consider (A.4.13.1)(i) is derived from:

P1
c l�!(a)−→ Q1 (i) and P2

l�?(a)−→ Q2 (ii) (A.4.13.3)

From Lemma A.4.9 and (A.4.13.2)(i) and (A.4.13.3)(i) we have:

(c.l.(x)Γ′) ∈ dom(Γ1) (i) and Γ′{x/a} ⊆ ((c.l.(x)Γ′)⊥Γ1) (ii) (A.4.13.4)

and:
Γ1,∆,∆1 `` Q1 (A.4.13.5)
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and Γ1 ∪
⋃

(∆,∆1) ⊆ Γ ∪
⋃

∆. Then, from (A.4.13.2)(ii) and considering Proposition 6.3.5 we
conclude:

Γ ∪ Γ1,∆,∆1 `` P2 (A.4.13.6)

From (A.4.13.4) we directly have that:

(c.l.(x)Γ′) ∈ dom(Γ ∪ Γ1) and Γ′{x/a} ⊆ ((c.l.(x)Γ′)⊥(Γ ∪ Γ1)) (A.4.13.7)

From Lemma A.4.6 and (A.4.13.6) and (A.4.13.3)(ii) and (A.4.13.7) and since `(�) = c we have:

Γ2;∆,∆1,∆2 `` Q2 (A.4.13.8)

and Γ2∪
⋃

(∆,∆1,∆2) ⊆ Γ∪Γ1∪
⋃

(∆,∆1). Then, considering Proposition 6.3.5, from (A.4.13.8)
and (A.4.13.5) we have:

Γ ∪ Γ1 ∪ Γ2;∆,∆1,∆2 `` Q1 and Γ ∪ Γ1 ∪ Γ2;∆,∆1,∆2 `` Q2 (A.4.13.9)

and hence:
Γ ∪ Γ1 ∪ Γ2;∆,∆1,∆2 `` Q1 | Q2 (A.4.13.10)

Also from Γ2 ∪
⋃

(∆,∆1,∆2) ⊆ Γ ∪ Γ1 ∪
⋃

(∆,∆1) and Γ1 ∪
⋃

(∆,∆1) ⊆ Γ ∪
⋃

∆ we have:

Γ ∪ Γ1 ∪ Γ2

⋃
(∆,∆1,∆2) ⊆ Γ ∪

⋃
∆ (A.4.13.11)

which completes the proof for this case.

Lemma A.4.14

Let P be a well-formed process such that Γ;∆ `` P . If P
c this�
−→ Q and `(�) = c then there are

Γ′,∆′ such that Γ′;∆,∆′ `` Q and Γ′ ∪
⋃

(∆,∆′) ⊆ Γ ∪
⋃

∆.

Proof. By induction on the derivation of the transition P
c this�
−→ Q. We show the base case when

P is a this prefixed process and when the transition originates in a conversation piece.
(Case this(x).P ′ c this�

−→ P ′{x/c})
We have that:

Γ;∆ `` this(x).P ′ (i) and this(x).P ′ c this�
−→ P ′{x/c} (ii) (A.4.14.1)

and `(�) = c. We have that (A.4.14.1)(i) is derived from:

Γ ∪ Γ′;∆ `` P ′ (A.4.14.2)

where Γ′{x/`(�)} ⊆ Γ, hence Γ′{x/c} ⊆ Γ. From Lemma 6.3.6 we then have:

Γ;∆ \ x `` P ′{x/c} (A.4.14.3)

and considering Proposition 6.3.5 we conclude:

Γ;∆ `` P ′{x/c} (A.4.14.4)
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which completes the proof for this case.
(Case a J [P ′] c this�

−→ a J [Q′])
We have that:

a J
[
P ′] c this�

−→ a J
[
Q′] (i) and Γ;∆ `` a J

[
P ′] (ii) (A.4.14.5)

From (A.4.14.5)(ii) we have:
Γ;∆ `(`(�),a) P ′ (A.4.14.6)

(A.4.14.5)(i) is derived from either:

P ′ c this�
−→ Q′ (A.4.14.7)

or:
P ′ this��

−→ Q′ and c = a (A.4.14.8)

(Case this��) From Lemma A.4.12 and (A.4.14.6) and (A.4.14.8), `(�) = c and a = c we have:

Γ′;∆,∆′ `(`(�),c) Q′ (A.4.14.9)

and Γ′ ∪
⋃

(∆,∆′) ⊆ Γ ∪
⋃

∆. From (A.4.14.9) we derive:

Γ′;∆,∆′ `` c J
[
Q′] (A.4.14.10)

which completes the proof for this case.
(Case c this�) From `(�) = c we have `′(�) = c for `′ = (`(�), a). Then from Lemma A.4.13 and
(A.4.14.6) and (A.4.14.7) we have:

Γ′;∆,∆′ `(`(�),a) Q′ (A.4.14.11)

and Γ′ ∪
⋃

(∆,∆′) ⊆ Γ ∪
⋃

∆. From (A.4.14.11) we derive:

Γ′;∆,∆′ `` a J
[
Q′] (A.4.14.12)

which completes the proof for this case.

Theorem 6.3.7 (Preservation of Event Ordering)

(repetition of the statement in page 147)

Let process P be well-formed and Γ;∆ `` P . If P → Q then Γ′;∆,∆′ `` Q and Γ′ ∪
⋃

(∆,∆′) ⊆
Γ ∪

⋃
∆.

Proof. By induction on the length of the derivation of the reduction P → Q. We show the case
for messages exchanged at the level of the current conversation, including when a bound name
is carried in the message. The proof for the cases of located message exchanges follow analogous
lines (notice the auxiliary lemmas for such cases are analogous). We also show the case of a
τ originating from within a conversation piece, and the cases for the recursion and terminal
recursion constructs. Remaining cases follow from induction hypothesis in expected lines.

(Case P1 | P2
τ−→ Q1 | Q2)
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We have that:

P1 | P2
τ−→ Q1 | Q2 (i) and Γ;∆ `` P1 | P2 (ii) (A.4.15.1)

From (A.4.15.1)(ii) we have:

Γ;∆ `` P1 (i) and Γ;∆ `` P2 (ii) (A.4.15.2)

Let us consider (A.4.15.1)(i) is derived from:

P1
l�!(a)−→ Q1 (i) and P2

l�?(a)−→ Q2 (ii) (A.4.15.3)

From Lemma A.4.8 and (A.4.15.2)(i) and (A.4.15.3)(i) we have:

(`(�).l.(x)Γ′) ∈ dom(Γ1) (i) and Γ′{x/a} ⊆ ((`(�).l.(x)Γ′)⊥Γ1) (ii) (A.4.15.4)

and:
Γ1,∆,∆1 `` Q1 (A.4.15.5)

and Γ1 ∪
⋃

(∆,∆1) ⊆ Γ ∪
⋃

∆. Then, from (A.4.15.2)(ii) and considering Proposition 6.3.5 we
conclude:

Γ ∪ Γ1,∆,∆1 `` P2 (A.4.15.6)

From (A.4.15.4) we directly have that:

(`(�).l.(x)Γ′) ∈ dom(Γ ∪ Γ1) and Γ′{x/a} ⊆ ((`(�).l.(x)Γ′)⊥(Γ ∪ Γ1)) (A.4.15.7)

From Lemma A.4.6 and (A.4.15.6) and (A.4.15.3)(ii) and (A.4.15.7) we have:

Γ2;∆,∆1,∆2 `` Q2 (A.4.15.8)

and Γ2∪
⋃

(∆,∆1,∆2) ⊆ Γ∪Γ1∪
⋃

(∆,∆1). Then, considering Proposition 6.3.5, from (A.4.15.8)
and (A.4.15.5) we have:

Γ ∪ Γ1 ∪ Γ2;∆,∆1,∆2 `` Q1 and Γ ∪ Γ1 ∪ Γ2;∆,∆1,∆2 `` Q2 (A.4.15.9)

and hence:
Γ ∪ Γ1 ∪ Γ2;∆,∆1,∆2 `` Q1 | Q2 (A.4.15.10)

Also from Γ2 ∪
⋃

(∆,∆1,∆2) ⊆ Γ ∪ Γ1 ∪
⋃

(∆,∆1) and Γ1 ∪
⋃

(∆,∆1) ⊆ Γ ∪
⋃

∆ we have:

Γ ∪ Γ1 ∪ Γ2

⋃
(∆,∆1,∆2) ⊆ Γ ∪

⋃
∆ (A.4.15.11)

which completes the proof for this case.
(Case P1 | P2

τ−→ (νa)(Q1 | Q2))
We have that:

P1 | P2
τ−→ (νa)(Q1 | Q2) (i) and Γ;∆ `` P1 | P2 (ii) (A.4.15.12)
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From (A.4.15.12)(ii) we have:

Γ;∆ `` P1 (i) and Γ;∆ `` P2 (ii) (A.4.15.13)

Let us consider (A.4.15.12)(i) is derived from:

P1
(νa)l�!(a)−→ Q1 (i) and P2

l�?(a)−→ Q2 (ii) (A.4.15.14)

From Lemma A.4.10 and (A.4.15.13)(i) and (A.4.15.14)(i) we have:

(`(�).l.(x)Γ′) ∈ dom(Γ1) (i) and Γ′{x/a} ⊆ ((`(�).l.(x)Γ′)⊥Γ1) (ii) (A.4.15.15)

and:
Γ1,∆′,∆1 `` Q1 (A.4.15.16)

and ∆ = ∆′ \ a and Γ1 \ a ∪
⋃

(∆′ \ a,∆1 \ a) ⊆ Γ ∪
⋃

∆. Then, from (A.4.15.13)(ii) and
considering Proposition 6.3.5 we conclude:

Γ ∪ Γ1,∆′,∆1 `` P2 (A.4.15.17)

From (A.4.15.15) we directly have that:

(`(�).l.(x)Γ′) ∈ dom(Γ ∪ Γ1) and Γ′{x/a} ⊆ ((`(�).l.(x)Γ′)⊥(Γ ∪ Γ1)) (A.4.15.18)

From Lemma A.4.6 and (A.4.15.17) and (A.4.15.14)(ii) and (A.4.15.18) we have:

Γ2;∆′,∆1,∆2 `` Q2 (A.4.15.19)

and Γ2 ∪
⋃

(∆′,∆1,∆2) ⊆ Γ ∪ Γ1 ∪
⋃

(∆′,∆1). Then, considering Proposition 6.3.5, from
(A.4.15.19) and (A.4.15.16) we have:

Γ ∪ Γ1 ∪ Γ2;∆′,∆1,∆2 `` Q1 and Γ ∪ Γ1 ∪ Γ2;∆′,∆1,∆2 `` Q2 (A.4.15.20)

and hence:
Γ ∪ Γ1 ∪ Γ2;∆′,∆1,∆2 `` Q1 | Q2 (A.4.15.21)

from which we conclude:

Γ ∪ Γ1 \ a ∪ Γ2 \ a;∆,∆1 \ a,∆2 \ a `` (νa)(Q1 | Q2) (A.4.15.22)

Also since ∆ = ∆′ \ a and Γ = Γ \ a from Γ2 ∪
⋃

(∆′,∆1,∆2) ⊆ Γ ∪ Γ1 ∪
⋃

(∆′,∆1) we have:

Γ2 \ a ∪
⋃

(∆,∆1 \ a,∆2 \ a) ⊆ Γ ∪ Γ1 \ a ∪
⋃

(∆,∆1 \ a) (A.4.15.23)

which along with Γ1 \ a ∪
⋃

(∆,∆1 \ a) ⊆ Γ ∪
⋃

∆ we have:

Γ ∪ Γ1 \ a ∪ Γ2 \ a ∪
⋃

(∆,∆1 \ a,∆2 \ a) ⊆ Γ ∪
⋃

∆ (A.4.15.24)

which completes the proof for this case.
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(Case n J [P ′] τ−→ n J [Q′])
We have that:

c J
[
P ′] τ−→ c J

[
Q′] (i) and Γ;∆ `` c J

[
P ′] (ii) (A.4.15.25)

(A.4.15.25)(ii) is derived from:
Γ;∆ `(`(�),c) P ′ (A.4.15.26)

We have that (A.4.15.25)(i) is either derived from:

P ′ c this�
−→ Q′ (A.4.15.27)

or from:
P ′ τ−→ Q′ (A.4.15.28)

In the latter case the result follows from induction hypothesis in expected lines. In the former
case we have `′(�) = c for `′ = (`(�), c). Then, considering Lemma A.4.14, from (A.4.15.26) and
(A.4.15.27) we have:

Γ′;∆,∆′ `(`(�),c) Q′ (A.4.15.29)

and Γ′ ∪
⋃

(∆,∆′) ⊆ Γ ∪
⋃

∆. From (A.4.15.29) we derive:

Γ′;∆,∆′ `` c J
[
Q′] (A.4.15.30)

which completes the proof for this case.
(Case rec X .P ′ τ−→ Q′)
We have that:

rec X .P ′ τ−→ Q′ (i) and Γ;∆ `` rec X .P ′ (ii) (A.4.15.31)

(A.4.15.31)(ii) is derived from:
Γ;∆,X →Γ `` P ′ (A.4.15.32)

From (A.4.15.32) and considering Lemma A.4.5 we conclude:

Γ;∆,X →Γ `` P ′{X/rect X .P ′} (A.4.15.33)

We have that (A.4.15.31)(i) is derived from:

P ′{X/rect X .P ′} τ−→ Q′ (A.4.15.34)

By induction hypothesis we conclude:

Γ′;∆,X →Γ,∆′ `` Q′ (A.4.15.35)

and Γ′∪
⋃

(∆,X →Γ,∆′) ⊆ Γ∪
⋃

(∆,X →Γ) ⊆ Γ∪
⋃

∆ which completes the proof for this case.
(Case rect X .P ′ τ−→ Q′)
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We have that:

rect X .P ′ τ−→ Q′ (i) and Γ;∆ `` rect X .P ′ (ii) (A.4.15.36)

(A.4.15.36)(ii) is derived from:
∆(X );∆ `` P ′ (A.4.15.37)

and wf (Γ,∆). From (A.4.15.37) and considering Lemma A.4.5 we conclude:

∆(X );∆ `` P ′{X/rect X .P ′} (A.4.15.38)

We have that (A.4.15.36)(i) is derived from:

P ′{X/rect X .P ′} τ−→ Q′ (A.4.15.39)

By induction hypothesis we conclude:

Γ′;∆,∆′ `` Q′ (A.4.15.40)

and Γ′ ∪
⋃

(∆,∆′) ⊆ ∆(X ) ∪
⋃

∆ ⊆ Γ ∪
⋃

∆ which completes the proof for this case.

We introduce some notions auxiliary to the proof of Theorem 6.3.10.

Notation A.4.16 We say Mw is an initial message type of T if T ≡ �{p ld(C).B; B̃} | T ′

and M = p ld(C) and w = d, or T ≡ N{p ld(C).B; B̃} | T ′ and M = p ld(C) and w = d, or
T ≡ c : [�{M.B; B̃}] | T ′ and w = c, or T ≡ c : [N{M.B; B̃}] | T ′ and w = c.

Notation A.4.17 We denote by p1 ld1(C1)d ≺`
Γ p2 ld

′
2 (C2)d′ that `(d).l1.(x)Γ′ ≺Γ `(d′).l2.(x)Γ′′

and by p1 ld1(C1)a ≺`
Γ p2 ld

′
2 (C2)b that a.l1.(x)Γ′ ≺Γ b.l2.(x)Γ′′.

Notation A.4.18 We denote by P
Mw

−→ P ′ a transition P
λ−→ P ′ such that either:

• λ = ld!(a) (or λ = (νa)ld!(a)) and M = ! ld(C) and w = d for some a,C

• λ = ld?(a) and M = ? ld(C) and w = d for some a,C

• λ = c l�!(a) (or λ = (νa)c l�!(a)) and M = ! l�(C) and w = c for some a,C

• λ = c l�?(a) and M = ? l�(C) and w = c for some a,C

• λ = τ and M = τ ld(C)

Notation A.4.19 We say Mw is an minimal initial message of T w.r.t. Γ, ` if Mw is an initial
message of T and there is no M ′w ′

initial message type of T such that M ′w ′
≺`

Γ Mw .

Lemma A.4.20

If Mw be an initial message type of T and T = T1 ./ T2 then Mw is an initial message type of
T1 or Mw is an initial message type of T2 or M = τ ld(C) and p ld(C)w is an initial message of
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Tk for p ∈ {?, !} and k ∈ {1, 2}.

Proof. By induction on the length of the derivation of T = T1 ./ T2. Cases (SharedInp),
(Shared), (Plain), (Rec), (Var), (Apart) and (Par) follow in expected lines. We show the cases
for rules (Shuffle) and (ShufflePar).

(Case (Shuffle))
We have that:

B′ | M ′.B′′ = B1 ./ M ′.B2 (A.4.20.1)

derived from:

M ′ # B1 B′ | B′′ ≡ B1 ./ B2 M ′ # B′ I(B′′) ⊆ I(B2) I(B′) ⊆ I(B1) (A.4.20.2)

We have that Mw is an initial message type of B′ | M ′.B′′, hence either Mw is an initial message
type of B′ or of M ′.B′′. In the latter case we directly have that M = M ′ and the proof is
complete. In the former case, by induction hypothesis we have that either Mw is an initial
message type of B1 or Mw is an initial message type of B2 or Mw = τ ld(C) and p ld(C) is an
initial message of B1 or of B2. Since I(B′) ⊆ I(B1) we conclude that Mw is an initial message
type of B1 or Mw = τ ld(C) and p ld(C) is an initial message type of B1.

(Case (ShufflePar))
We have that:

B = B1 ./ B2 | B3 (A.4.20.3)

derived from:
B1 �# B2 B′ = B1 ./ B2 B = B′ ./ B3 (A.4.20.4)

We have that Mw is an initial message type of B. By induction hypothesis on B = B′ ./ B3 we
conclude that either (1) Mw is an initial message type of B′ or (2) of B3 or (3) Mw = τ ld(C)
and p ld(C) is an initial message type of B′ or B3.

(1) We have that Mw is an initial message type of B′. By induction hypothesis on B′ =
B1 ./ B2 we conclude that either Mw is an initial message type of B1 or of B2 or Mw = τ ld(C)
and p ld(C) is an initial message type of B1 or of B2. In any case the result is immediate.

(2) Immediate.
(3) We have that Mw = τ ld(C). If p ld(C) is an initial message type of B3 then the result

is immediate. If p ld(C) is an initial message type of B′ then, by induction hypothesis and since
p ∈ {!, ?}, we have that either p ld(C) is an initial message type of B1 or of B2 which completes
the proof for this case.

Notation A.4.21 Given message type M and type T we write Mw ∈ T to denote that T ≡ n :
[B] | T ′ and M ∈ MsgL(B) if w = n, or T ≡ L | B and M ∈ MsgL(B) if w = d.

Definition A.4.22 (Type and Event Ordering Domain Consistency)

We say type T and event ordering Γ are domain consistent with respect to ` if for all p ld(C)w ∈ T

we have that n.l.(x)Γ′ ∈ dom(Γ), for n = `(d) if w = d and n = w otherwise, and x : C and Γ′

are domain consistent with respect to `.
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Notation A.4.23 We say that Md and Γ are domain consistent with respect to ` if M and Γ
are domain consistent with respect to `, and that Mn and Γ are domain consistent with respect
to ` if n : [M ] and Γ are domain consistent with respect to `.

Lemma A.4.24

Let P be a process such that P :: T and Γ;∆ `` P and for all ! ld(C)w ∈ T we have that ! ld(C)w

and Γ are domain consistent with respect to `. Then we have that T and Γ are domain consistent
with respect to `.
N.B. We assume all input message types are introduced by rule (Input).

Proof. By induction on the length of the derivation of P :: T . We show the cases for (Par),
(Output) and (Input).

(Case (Par))
We have that:

P | Q :: T1 ./ T2 (A.4.24.1)

and:
Γ;∆ `` P | Q (A.4.24.2)

and for all ! ld(C)w ∈ T1 ./ T2 we have that ! ld(C)w and Γ are domain consistent with respect
to `. (A.4.24.1) is derived from:

P :: T1 Q :: T2 (A.4.24.3)

and (A.4.24.2) is derived from:

Γ;∆ `` P Γ;∆ `` Q (A.4.24.4)

Let us assume that for all ! ld(C)w ∈ T1 we have that ! ld(C)w and Γ are domain consistent
with respect to `. Then by induction hypothesis we have that T1 and Γ are domain consistent
with respect to `. Likewise for T2.

Let us take ? ld(C)w such that:

? ld(C)w ∈ T1 ./ T2 (A.4.24.5)

We then have that either ? ld(C)w ∈ T1 or ? ld(C)w ∈ T2, from which, considering T1 (and T2)
and Γ are domain consistent w.r.t. `, gives us that ? ld(C)w and Γ are domain consistent.

Let us now take τ ld(C)w such that:

τ ld(C)w ∈ T1 ./ T2 (A.4.24.6)

We then have that either τ ld(C)w ∈ T1 or τ ld(C)w ∈ T2 or ! ld(C)w ∈ Ti and ? ld(C)w ∈ Tj ,
for {i, j} = {1, 2}. The first two cases follow from the fact that T1 (and T2) and Γ are domain
consistent w.r.t. `. For the third and last case we have that Tj (where j in {1, 2}) and Γ are
domain consistent w.r.t. `, and hence ? ld(C)w and Γ are domain consistent which directly gives
us that τ ld(C)w and Γ are domain consistent and completes the proof for this case.

(Case (Input))

278



We have that:
Σi∈I ldi ?(xi).Pi :: L | Ni∈I{? ldi (Ci).Bi} (A.4.24.7)

and:
Γ;∆ `` Σi∈I ldi ?(xi).Pi (A.4.24.8)

and for all ! ld(C)w ∈ L | Ni∈I{? ldi (Ci).Bi} we have that ! ld(C)w and Γ are domain consistent
with respect to `. (A.4.24.7) is derived from:

∀i∈I(Pi :: L | Bi | xi : Ci) (A.4.24.9)

and (A.4.24.8) is derived from:

(`(d).li.(yi)Γ′
i⊥Γ) ∪ Γ′

i{yi/xi};∆ `` Pi Γ′
i \ yi ⊆ (`(d).li.(yi)Γ′

i⊥Γ) (A.4.24.10)

Let us assume that for all ! ld(C)w ∈ L | Bi | xi : Ci we have that ! ld(C)w and (`(d).li.(yi)Γ′
i⊥Γ)∪

Γ′
i{yi/xi} are domain consistent with respect to `. Then by induction hypothesis we have that

L | Bi | xi : Ci and (`(d).li.(yi)Γ′
i⊥Γ) ∪ Γ′

i{yi/xi} are domain consistent with respect to `, from
which we have that L | Bi and (`(d).li.(yi)Γ′

i⊥Γ) are domain consistent with respect to `. We
conclude that L | Ni∈I{? ldi (Ci).Bi} and Γ are domain consistent.

(Case (Output))
We have that:

ld!(n).P :: (L ./ n : C) | �{! ld(C).B; B̃} (A.4.24.11)

and:
Γ;∆ `` ld!(n).P (A.4.24.12)

and for all ! ld(C)w ∈ (L ./ n : C) | �{! ld(C).B; B̃} we have that ! ld(C)w and Γ are domain
consistent with respect to `. (A.4.24.11) is derived from:

P :: L | B (A.4.24.13)

and (A.4.24.12) is derived from:

(`(d).l.(x)Γ′⊥Γ);∆ `` P (i) Γ′{x/n} ⊆ (`(d).l.(x)Γ′⊥Γ) (ii) (A.4.24.14)

By induction hypothesis we conclude L | B and `(d).l.(x)Γ′⊥Γ are domain consistent. Since
! ld(C)d and Γ are domain consistent we conclude that `(d).l.(x)Γ′ ∈ dom(Γ) and that x : C

and Γ′ are domain consistent. We then have that n : C and Γ′{x/n} are domain consistent, and
hence, considering (A.4.24.14)(ii), we conclude n : C and `(d).l.(x)Γ′⊥Γ are domain consistent.

Let us take ? ld(C)w such that:

? ld(C)w ∈ (L ./ n : C) | �{! ld(C).B; B̃} (A.4.24.15)

We then have that either ? ld(C)w ∈ L ./ n : C or ? ld(C)w ∈ �{! ld(C).B; B̃}. In the former
case we have that either ? ld(C)w ∈ L or ? ld(C)w ∈ n : C, which since L (and n : C) and Γ are
domain consistent, we have that ? ld(C)w and Γ are domain consistent. In the latter case we
have that ? ld(C)w ∈ �{! ld(C).B; B̃}, which, since every input type occurs in B and B and Γ
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are domain consistent gives us that ? ld(C)w and Γ are domain consistent.
Let us now take τ ld(C)w such that:

τ ld(C)w ∈ (L ./ n : C) | �{! ld(C).B; B̃} (A.4.24.16)

We then have that either τ ld(C)w ∈ L or τ ld(C)w ∈ n : C or τ ld(C)w ∈ �{! ld(C).B; B̃} or
p1 ld(C)w ∈ L and p2 ld(C)w ∈ n : C, for {p1,p2} = {?, !}. The first two cases follow from the
fact that L (and n : C) and Γ are domain consistent w.r.t. `. The third case follows from the
fact that τ ld(C)w ∈ B and B and Γ are domain consistent. For the fourth and last case we
have that Tj (where j in {1, 2}) and Γ are domain consistent w.r.t. `, and hence ? ld(C)w and
Γ are domain consistent which directly gives us that τ ld(C)w and Γ are domain consistent and
completes the proof for this case.

Definition A.4.25 (Type Precedence)

We say type T justifies the precedence between n.l1 and n.l2 w.r.t. `, noted by T I` n.l1  n.l2, if
T ≡ n : [{M.B; B̃}] | T ′ and either l�1 ∈ dLabL(M) and l�2 ∈ dLabL(B), or n : [B] I` n.l1  n.l2.
Likewise we say type T justifies the precedence between `(d).l1 and `(d′).l2 w.r.t. `, denoted by
T I` `(d).l1  `(d′).l2, if T ≡ {M.B; B̃}] | T ′ and either ld1 ∈ dLabL(M) and ld

′
2 ∈ dLabL(B),

or B I` `(d).l1  `(d′).l2.
N.B. We consider does not cross recursive type constructs and that types are maximum folded.

Definition A.4.26 (Type and Event Ordering Precedence Consistency)

We say type T and event ordering Γ are precedence consistent with respect to `, if T I` n1.l1  

n2.l2 implies n1.l1.(x)Γ1 ≺Γ n2.l2.(y)Γ2.

Lemma A.4.27

Let T be a type such that T = T1 ./ T2 and T I` n1.l1  nk.lk. Then Ti1 I` n1.l1  n2.l2 and
Ti2 I` n2.l2  n3.l3 and . . . and Tik−1

I` nk−1.lk−1  nk.lk, where i1, . . . , ik−1 ∈ {1, 2}.

Proof. By induction on the length of the derivation of T = T1 ./ T2. We show the cases for rules
(Shuffle) and (ShufflePar).

(Case (Shuffle))
We have that B′ | M.B′′ I` n1.l1  nk.lk and:

B′ | M.B′′ = B1 ./ M.B2 (A.4.27.1)

which is derived from:

M # B1 B′ | B′′ ≡ B1 ./ B2 M # B′ I(B′′) ⊆ I(B2) I(B′) ⊆ I(B1) (A.4.27.2)

We have that either (1) B′ I` n1.l1  nk.lk or (2) M.B′′ I` n1.l1  nk.lk.
(Case (1)) By induction hypothesis on B′ | B′′ ≡ B1 ./ B2 we conclude that:

B1 I` n1.l1  n2.l2 ∧ . . . ∧Bk−1 I` nk−1.lk−1  nk.lk (A.4.27.3)
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where {B1, . . . , Bk−1} = {B1, B2}, which directly gives us that:

B′
1 I` n1.l1  n2.l2 ∧ . . . ∧B′

k−1 I` nk−1.lk−1  nk.lk (A.4.27.4)

where {B′
1, . . . , B

′
k−1} = {B1,M.B2}.

(Case (2)) We have that either n1 = `(d) and M = p ld1(C) or B′′ I` n1.l1  nk.lk. The
latter case follows lines similar to (1). In the former case we have that either nk.lk is in the
initial actions of B′′ or not. If nk.lk is in the initial actions of B′′ since I(B′′) ⊆ I(B2) we have
that nk.lk is in the initial actions of B2 and hence M.B2 I` n1.l1  nk.lk. If nk.lk is not in the
initial actions of B′′ we take o.s in the initial actions of B′′ such that B′′ I` o.s  nk.lk. By
induction hypothesis on B′ | B′′ ≡ B1 ./ B2 we conclude that:

B1 I` o.s n2.l2 ∧ . . . ∧Bk−1 I` nk−1.lk−1  nk.lk (A.4.27.5)

where {B1, . . . , Bk−1} = {B1, B2}, which gives us that:

B′
1 I` o.s n2.l2 ∧ . . . ∧B′

k−1 I` nk−1.lk−1  nk.lk (A.4.27.6)

where {B′
1, . . . , B

′
k−1} = {B1,M.B2}. Since o.s is in the initial actions of B′′ and I(B′′) ⊆ I(B2)

we have that o.s is in the initial actions of B2, and hence:

M.B2 I n1.l1  o.s ∧B′
1 I` o.s n2.l2 ∧ . . . ∧B′

k−1 I` nk−1.lk−1  nk.lk (A.4.27.7)

which completes the proof for this case.
(Case (ShufflePar))
We have that B I` n1.l1  nk.lk and:

B = B1 ./ B2 | B3 (A.4.27.8)

which is derived from:

B1 �# B2 B′ = B1 ./ B2 B = B′ ./ B3 (A.4.27.9)

By induction hypothesis on B I` n1.l1  nk.lk and B = B′ ./ B3 we have that:

B1 I` n1.l1  n2.l2 ∧ . . . ∧Bk−1 I` nk−1.lk−1  nk.lk (A.4.27.10)

where {B1, . . . , Bk−1} = {B′, B3}. Let us take i ∈ 1, . . . , k− 1 such that Bi = B′. By induction
hypothesis on B′ I` ni.li  ni+1.li+1 and B′ = B1 ./ B2 we conclude:

B′
1 I` ni.li  o2.s2 ∧ . . . ∧B′

t−1 I` ot−1.st−1  ni+1.li+1 (A.4.27.11)

where {B′
1, . . . , B

′
t−1} = {B1, B2}. Since we can reproduce this reasoning for each i ∈ 1, . . . , k−1

such that Bi = B′ we have there is a path that leads from n1.l1 to nk.lk justified by either B3,
B1 or B2 and hence:

B′′
1 I` n1.l1  ni1 .li1 ∧ . . . ∧B′′

r I` nir−1 .lir−1  nk.lk (A.4.27.12)
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where {B′′
1 , . . . , B′′

r } = {B1, B2 | B3} which completes the proof for this case.

Lemma A.4.28

Let P be a process such that P :: T , Γ;∆ `` P , T and Γ are domain consistent, and for
all ! ld(C)w ∈ T and w .l .(x )Γ ′ ∈ dom(Γ ) we have that x : C I` o1.s1  o2.s2 implies
o1.s1.(x)Γ′

1 ≺Γ′ o2.s2.(x)Γ′
2. Then T and Γ are precedence consistent with respect to `.

Proof. By induction on the length of the derivation of P :: T . We show the cases for rules (Par),
(Input) and (Output).

(Case (Par))
We have that:

P | Q :: T1 ./ T2 (A.4.28.1)

and:
Γ;∆ `` P | Q (A.4.28.2)

and:
T1 ./ T2 I` n1.l1  n2.l2 (A.4.28.3)

(A.4.28.1) is derived from:
P :: T1 Q :: T2 (A.4.28.4)

and (A.4.28.2) is derived from:

Γ;∆ `` P Γ;∆ `` Q (A.4.28.5)

From (A.4.28.3) and considering Lemma A.4.27 we have that Ti1 I` n1.l1  o1.s1 and . . . and
Tik I` ok−1.sk−1  n2.l2, where i1, . . . , ik ∈ {1, 2}. By induction hypothesis on (A.4.28.4) and
(A.4.28.5), for any j ∈ 2, . . . , k − 1, we conclude that oj−1.sj−1.(x)Γj−1 ≺Γ oj .sj .(x)Γj and also
that n1.l1.(x)Γ′ ≺Γ o1.s1.(x)Γ′ and ok−1.sk−1.(x)Γk−1 ≺Γ n2.l2.(x)Γ′′, and hence we have that
n1.l1.(x)Γ′ ≺Γ n2.l2.(x)Γ′′ which completes the proof for this case.

(Case (Input))
We have that:

Σi∈I ldi (xi).Pi :: L | Ni∈I{? ldi (Ci).Bi} (A.4.28.6)

and:
Γ;∆ `` Σi∈I ldi (xi).Pi (A.4.28.7)

and:
L | Ni∈I{? ldi (Ci).Bi} I` n1.l1  n2.l2 (A.4.28.8)

(A.4.28.6) is derived from:
Pi :: L | Bi | xi : Ci (A.4.28.9)

and (A.4.28.7) is derived from:

(`(d).li.(yi)Γ′
i⊥Γ) ∪ Γ′

i{yi/xi};∆ `` Pi Γ′
i \ yi ⊆ (`(d).li.(yi)Γ′

i⊥Γ) (A.4.28.10)

From (A.4.28.8) we conclude that either L I` n1.l1  n2.l2 or Ni∈I{? ldi (Ci).Bi} I` n1.l1  
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n2.l2. We prove the latter case, as the former follows by induction hypothesis in expected lines.
We have that there is j such that either (1) Bj I` n1.l1  n2.l2, or (2) n1 = `(d) and l2 = lj .

(1) Follows by induction hypothesis in expected lines.
(2) Let us take o.s in the initial messages of Bj , for which we either have Bj I` o.s n2.l2

or o = n2 and s = l2. We prove the former case as the latter follows similar lines, using the
domain consistency hypothesis. In the former case by induction hypothesis we have that:

o.s.(x)Γ′ ≺(`(d).li.(yi)Γ′i⊥Γ)∪Γ′i{yi/xi} n2.l2.(x)Γ2 (A.4.28.11)

from which we conclude:
o.s.(x)Γ′ ≺Γ n2.l2.(x)Γ2 (A.4.28.12)

Since o.s.(x)Γ′ ∈ dom(`(d).li.(yi)Γ′
i⊥Γ) ∪ Γ′

i{yi/xi} and o 6= xi we have that o.s.(x)Γ′ ∈
dom(`(d).li.(yi)Γ′

i⊥Γ) and hence:

n1.l1.(x)Γ1 ≺Γ o.s.(x)Γ′ (A.4.28.13)

From (A.4.28.12) and (A.4.28.13) we conclude:

n1.l1.(x)Γ1 ≺Γ n2.l2.(x)Γ2 (A.4.28.14)

which completes the proof for this case.
(Case (Output))
We have that:

ld!(n).P :: (L ./ n : C) | �{! ld(C).B; B̃} (A.4.28.15)

and:
Γ;∆ `` ld!(n).P (A.4.28.16)

and:
(L ./ n : C) | �{! ld(C).B; B̃} I` n1.l1  n2.l2 (A.4.28.17)

(A.4.28.15) is derived from:
P :: L | B (A.4.28.18)

and (A.4.28.16) is derived from:

(`(d).l.(x)Γ′⊥Γ);∆ `` P Γ′{x/n} ⊆ (`(d).l.(x)Γ′⊥Γ) (A.4.28.19)

From (A.4.28.17) we have that either L ./ n : C I` n1.l1  n2.l2 or {! ld(C).B; B̃} n2.l2. We
show the proof for the first case. Considering Lemma A.4.27 we conclude that:

T1 I` n1.l1  o1.s1 ∧ . . . ∧ Tk I` ok−1.sk−1  n2.l2 (A.4.28.20)

where T1, . . . , Tk ∈ {L, n : C}. For each i we have that either Ti = L, in which case by induction
hypothesis we have:

oi−1.si−1.(x)Γ′
i−1 ≺(`(d).l.(x)Γ′⊥Γ) oi.si.(x)Γ′

i (A.4.28.21)

and hence oi−1.si−1.(x)Γ′
i−1 ≺Γ oi.si.(x)Γ′

i, or Ti = n : C, which considering ! ld(C)d ∈ T and
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`(d).l.(x)Γ′ ∈ dom(Γ) gives us that x : C I` x.si−1  x.si implies:

x.si−1.(x)Γ′
i−1 ≺Γ′ x.si.(x)Γ′

i (A.4.28.22)

from which we have that n : C I` n.si−1  n.si implies:

n.si−1.(x)Γ′
i−1 ≺Γ′{x/n} n.si.(x)Γ′

i (A.4.28.23)

and hence, since Γ′{x/n} ⊆ Γ, we have n.si−1.(x)Γ′
i−1 ≺Γ n.si.(x)Γ′

i. We then have that:

n1.l1.(x)Γ1 ≺Γ o1.s1.(x)Γ′
1 ≺Γ . . . ≺Γ ok−1.sk−1.(x)Γ′

k−1 ≺Γ n2.l2.(x)Γ2 (A.4.28.24)

and hence n1.l1.(x)Γ1 ≺Γ n2.l2.(x)Γ2 which completes the proof for this case.

Lemma A.4.29

Let P be a process such that Γ;∆ `` P . We have that there is Γ1 ⊆ Γ such that Γ1;∆ `` P and
there is no Γ2 ⊂ Γ1 such that Γ2;∆ `` P .

Proof. By induction on the length of the derivation of Γ;∆ `` P .
(Case (Par))
We have that Γ;∆ `` P | Q derived from Γ;∆ `` P and Γ;∆ `` Q. By induction hypothesis

we have that there is Γ1 such that Γ1;∆ `` P and Γ1 ⊆ Γ and there is no Γ2 such that Γ2 ⊂ Γ1

and Γ2;∆ `` P . Likewise for Q we have that there is Γ3 such that Γ3;∆ `` Q such that Γ3 ⊆ Γ
and there is no Γ4 such that Γ4 ⊂ Γ3 and Γ4;∆ `` Q. From Γ1 ⊆ Γ and Γ3 ⊆ Γ we have
that wf (Γ1 ∪ Γ3,∆). Then, considering Proposition 6.3.5 we conclude Γ1 ∪ Γ3;∆ `` P and
Γ1 ∪ Γ3;∆ `` Q and thus Γ1 ∪ Γ3;∆ `` P | Q, which completes the proof for this case.

(Cases (Stop), (RecVar) (Rec) and (RecTerm))
Follow expected lines.
(Case (Res))
We have that Γ; ∆ `` (νa)P derived from Γ1;∆′ `` P where Γ = Γ1 \ a and ∆ = ∆′ \ a.

By induction hypothesis we have that there is Γ2 such that Γ2;∆′ `` P such that Γ2 ⊆ Γ1 and
there is no Γ3 such that Γ3 ⊂ Γ2 and Γ3;∆′ `` P . We then have that Γ2 \ a;∆ `` (νa)P .

(Case (Piece))
Follows directly from induction hypothesis.
(Case (Output))
We have that Γ;∆ `` ld!(n).P which is derived from (`(d).l.(x)Γ′⊥Γ);∆ `` P and Γ′{x/n} ⊆

(`(d).l.(x)Γ′⊥Γ). By induction hypothesis we have there is Γ1 such that Γ1;∆ `` P and
Γ1 ⊆ (`(d).l.(x)Γ′⊥Γ) and there is no Γ2 such that Γ2 ⊂ Γ1 and Γ2;∆ `` P . Considering
Γ1 ⊆ (`(d).l.(x)Γ′⊥Γ) and Γ′{x/n} ⊆ (`(d).l.(x)Γ′⊥Γ) and Proposition 6.3.5 we have that Γ1 ∪
Γ′{x/n};∆ `` P . Let us now take Γ2 = Γ1∪Γ′{x/n}∪{(`(d).l.(x)Γ′ ≺ e′) | (`(d).l.(x)Γ′ ≺Γ e′)},
for which we have Γ2 ⊆ Γ and Γ2;∆ `` ld!(n).P . which completes the proof.

(Case (Input))
Follows lines similar to the case for rule (Output).
(Case (This))
Follows expected lines.
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Notation A.4.30 We denote by min(Γ) the set of minimal events in ordering Γ.

Definition A.4.31 (Safe Unfolding)

The safe unfolding of process P with respect to Γ and ∆, noted su(Γ,∆)(P ), is defined as follows:

su(Γ,∆)(0) , 0

su(Γ,∆)(P | Q) , su(Γ,∆)(P ) | su(Γ,∆)(Q)
su(Γ,∆)((νa)P ) , (νa)(su(Γ,∆)(P ))
su(Γ,∆)(rec X .P ) , P{X/rectX .P}
su(Γ,∆)(rectX .P ) , P{X/rectX .P} (if min(Γ) ⊆ min(Γ ∪∆(X ))
su(Γ,∆)(rectX .P ) , rectX .P (if min(Γ) 6⊆ min(Γ ∪∆(X ))
su(Γ,∆)(X ) , X
su(Γ,∆)(n J [P ]) , n J [su(Γ,∆)(P )]
su(Γ,∆)(ld!(n).P ) , ld!(n).P
su(Γ,∆)(Σi∈I l

d
i ?(xi).Pi) , Σi∈I l

d
i ?(xi).Pi

su(Γ,∆)(this(x).P ) , this(x).P

Lemma A.4.32

Let P,Q be such that Γ;∆ `` P and Q = su(Γ,∆)(P ). Then there is Γ′,∆′ such that Γ′;∆,∆′ `` Q

and Γ′ ∪
⋃

(∆,∆′) ⊆ Γ ∪
⋃

∆.

Proof. By induction on the length of the derivation of Γ;∆ `` P . Cases (This), (Input),
(Output), (RecVar) and (Stop) are direct, and cases (Par), (Res) and (Piece) follow directly
from induction hypothesis. We show the cases for (Rec) and (RecTerm).

(Case (Rec))
We have that P{X/rectX .P} = su(Γ,∆)(P ) and:

Γ;∆ `` rec X .P (A.4.32.1)

which is derived from:
Γ; (∆,X →Γ) `` P (A.4.32.2)

From (A.4.32.2) and Lemma A.4.5 we have that:

Γ; (∆,X →Γ) `` P{X/rectX .P} (A.4.32.3)

which completes the proof for this case.
(Case (RecTerm))
We have that:

Γ;∆ `` rectX .P (A.4.32.4)

which is derived from:
∆(X );∆ `` P (A.4.32.5)

We consider the two distinct cases: either min(Γ) ⊆ min(Γ ∪ ∆(X )) or min(Γ) 6⊆ min(Γ ∪
∆(X )). In the latter case we have that rectX .P = su(Γ,∆)(rectX .P ) and the proof is complete.
In the former case we have that P{X/rectX .P} = su(Γ,∆)(rectX .P ). From (A.4.32.5) and
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Lemma A.4.5 we conclude:
∆(X );∆ `` P{X/rectX .P} (A.4.32.6)

which completes the proof for this case.

Notation A.4.33 We denote by Π a non-empty sequence of communication prefixes α1. . . . .αk.

Lemma A.4.34

Let P be a process such that Γ;∆ `` P and if e ∈ dom(Γ) we have that P is not of the form
C[Π.rectX .R] where there is a prefix relative to e in R and none in Π. If Q = su(Γ,∆)(P ) and
Γ′;∆′ `` Q then for all e ∈ Γ′ we have that Q is not of the form C[Π.rectX .R] where there is a
prefix relative to e in R and none in Π.

Proof. By contradiction. Let us assume there is e ∈ dom(Γ′) such that Q is of the form
C[Π.rectX .R] where there is a prefix relative to e in R and none in Π. We consider two distinct
cases: either e ∈ dom(Γ) or e 6∈ dom(Γ).

If e ∈ dom(Γ) then we have that P is not of the form C′[Π′.rectX .R′] where there is a
prefix relative to e in R′ and none in Π′. We conclude that P is of the form C[P ′] where
Π.rectX .R = su(Γ,∆)(P ) from which we have our intended contradiction as there is a prefix in
Π relative to e.

If e 6∈ dom(Γ) either P is of the form C[Π.rectX .R] where there is a prefix relative to e in R

and none in Π, or not. In the latter case case the proof follows the same lines as the case when
e ∈ dom(Γ). In the former case we have that that either the initial action of Π is relative to
an event e′ which is lesser than e, in which case Π holds a prefix relative to e and we have our
intended contradiction, or the initial action of Π is relative to an event e′ greater than e: we
have that e ≺Γ′ e′ and, by definition of safe unfolding, that min(Γ) ⊆ min(Γ′); if e′ is in the set
of minimal events of Γ then we have our contradiction as e′ is not is the set of minimal events of
Γ′; if e′ is not in the set of minimal events of Γ then there is e′′ minimal in Γ such that e′′ ≺Γ e′

and since e is not in the domain of Γ we have e ≺Γ′ e′′ which contradicts min(Γ) ⊆ min(Γ′) and
completes the proof.

Definition A.4.35 (Event Ordering Unfolding Bound)

We say a process P is unfolding bound by Γ if P is the result of a safe unfolding and for all
e ∈ dom(Γ) we have that P is not of the form C[Π.rectX .R] where there is a prefix relative to e

in R and none in Π.

Lemma A.4.36

Let P be a process such that P :: T and there is T ′ such that closed(T ./ T ′) and Γ `` P and
Mw

1 and Mw ′
2 initial messages of T . If Mw

1 ≺Γ
` Mw ′

2 and M1 = ? ld1(C1) and l1 ∈ L? and
M2 = τ ld2(C2) then there is τ ld1(C1) initial of T .

Proof. By induction on the length of the derivation of P :: T following expected lines. Notice
that shared inputs expose a shared message interface (outputs on shared labels) and hence any
greater τ initial message type is introduced by an output that matches the shared input, which
type is initial and minimal since the shared input is initial and minimal.

286



Notation A.4.37 We say process P is final if it has no active this prefixes, hence if there is
no C and Q such that P = C[this(x).P ].

Lemma A.4.38

Let P be a final process such that P :: T and Γ `` P and P is unfolding bound by Γ and T and
Γ are precedence consistent. We have that either there is P → P ′ or for all Mw minimal initial
messages of T there is P

Mw

−→ P ′.

Proof. By induction on the length of the derivation of P :: T . We show the cases when the last
rule applied is (Par), (Res) and (Output).

(Case (Par))
We have that:

P1 | P2 :: T1 ./ T2 (i) and Γ `` P1 | P2 (ii) (A.4.38.1)

and that Mw is a minimal initial message of T1 ./ T2. (A.4.38.1)(i) is derived from:

P1 :: T1 (i) and P2 :: T2 (ii) (A.4.38.2)

(A.4.38.1)(ii) is derived from:

Γ `` P1 (i) and Γ `` P2 (ii) (A.4.38.3)

Let us take Mw such that Mw is a minimal initial message of T1 ./ T2, from which we have
that Mw is a initial message type of T1 ./ T2. Considering Lemma A.4.20 we conclude that
either: (1) Mw is an initial type of T1; (2) Mw is an initial type of T2; or (3) M = τ ld(C) and
p ld(C)w is an initial message type of Tk, for p ∈ {!, ?} and k ∈ {1, 2}.

(Case (1)) We have that Mw is an initial type of T1 and we prove that Mw is a minimal
initial message of T1 by contradiction. Let us thus assume that Mw is not a minimal initial
message of T1. We have that there is M ′w ′

initial message type of T1 such that M ′w ′ ≺`
Γ Mw .

We also have that M ′w ′
is not an initial message of T , otherwise Mw would not be a minimal

initial message of T , from which we have that either: (a) there is M ′′w ′′
initial message of T

such that T IM ′′w ′′
 M ′w ′

or (b) M ′w ′
is guarded by a rec in T .

(Case (a)) Since T and Γ are precedence consistent we conclude that M ′′w ′′ ≺`
Γ M ′w ′

and
hence M ′′w ′′ ≺`

Γ M ′w ′ ≺`
Γ Mw . Since we have that M ′′w ′′

is an initial message of T and is
less than Mw , we conclude Mw is not a minimal initial message which gives us our intended
contradiction, and hence Mw is a minimal initial message of T1.

(Case (b)) From the fact that M ′w ′
is guarded by a rec in T we conclude that M ′w ′

is
guarded by a rec in T1, and we also have that M ′w ′

is initial to T1. We may show that M ′w ′

is either guarded by a rec or by a rect in P1 by inspecting the typing derivation and the merge
relation. If M ′w ′

is guarded by a rec process which is at the top level of P1 then we have a
contradiction since P1 is safely unfolded. If M ′w ′

is guarded by a rec process which is not at
the top level of P1 then we have there is an initial action of T which is lesser than M ′w ′

and the
proof proceeds as in case (a). If M ′w ′

is guarded by a rect process then we have a contradiction
as If M ′w ′

is not in the domain of Γ, and hence Mw is a minimal initial message of T1.
We thus have that Mw is a minimal initial message of T1. By induction hypothesis on
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(A.4.38.2)(i) and (A.4.38.3)(i) we have that there is P ′
1 such that either:

P1 → P ′
1 or P1

Mw

−→ P ′
1 (A.4.38.4)

We then directly have that:

P1 | P2 → P ′
1 | P2 or P1 | P2

Mw

−→ P ′
1 | P2 (A.4.38.5)

respectively, which completes the proof for this case.
(Case (2)) Analogous to (1).
(Case (3)) The proof that ? ld(C)w is a minimal initial message of Ti and ! ld(C)w is a

minimal initial message of Tj , for {i, j} ∈ {1, 2} follows lines similar to (1). Let us consider
i = 1 and j = 2, hence, ? ld(C)w is a minimal initial message of T1 and ! ld(C)w is a minimal
initial message of T2. By induction hypothesis on (A.4.38.2)(i) and (A.4.38.3)(i) and ? ld(C)w

is a minimal initial message of T1 we conclude that either:

P1 → P ′
1 (i) or P1

? ld(C)w−→ P ′
1 (ii) (A.4.38.6)

Likewise by induction hypothesis on (A.4.38.2)(ii) and (A.4.38.3)(ii) and ! ld(C)w is a minimal
initial message of T2 we conclude that either:

P2 → P ′
2 (i) or P2

! ld(C)w−→ P ′
2 (ii) (A.4.38.7)

If either (A.4.38.6)(i) or (A.4.38.7)(i) we have that:

P1 | P2 → P ′ (A.4.38.8)

and the proof is complete. If (A.4.38.6)(ii) and (A.4.38.7)(ii) we derive:

P1 | P2 → P ′ (A.4.38.9)

and, given that Mw = τ ld(C)w , we conclude:

P1 | P2
Mw

−→ P ′ (A.4.38.10)

which completes the proof for this case.
(Case (Res))
We have that:

(νa)P :: T (i) and Γ `` (νa)P (ii) (A.4.38.11)

and that Mw is a minimal initial message of T . (A.4.38.11)(i) is derived from:

P :: T | a : [B] (A.4.38.12)

and closed(B). (A.4.38.11)(ii) is derived from:

Γ′ `` P (A.4.38.13)

288



and Γ = Γ′ \ a. Since Mw is a minimal initial message of T we have that either (1 ) Mw is a
minimal initial message of T | a : [B] (w.r.t. Γ′, `) or (2 ) there is M ′a minimal initial message of
T | a : [B] (w.r.t. Γ′, `). If (1 ) then the result follows from induction hypothesis. If (2 ) we have,
since closed(B), that M ′a = τ l�(C)a. By induction hypothesis on (A.4.38.12) and (A.4.38.13)
and (2 ) we conclude:

P → P ′ or P
M ′a
−→ P ′ (A.4.38.14)

Since M ′a = τ l�(C)a in either case we have:

P → P ′ (A.4.38.15)

and hence:
(νa)P → (νa)P ′ (A.4.38.16)

which completes the proof for this case.
mininitialtype
(Case (Output))
We have that:

ld!(n).P :: (L ./ n : C) | �i∈I{Mi.Bi} (i) and Γ `` ld!(n).P (ii) (A.4.38.17)

and there is j ∈ I such that Mj .Bj = ! ld(C).B and that Mw is a minimal initial message of
(L ./ n : C) | �i∈I{Mi.Bi}. (A.4.38.17)(i) is derived from:

P :: L | B (A.4.38.18)

(A.4.38.17)(ii) is derived from:

(`(d).l.(x)Γ′⊥Γ) `` P and Γ′{x/n} ⊆ (`(d).l.(x)Γ′⊥Γ) (A.4.38.19)

From (A.4.38.18) and (A.4.38.19) we conclude Mw = ! ld(C)d and we have that:

ld!(n).P
! ld(C)d

−→ P (A.4.38.20)

which completes the proof for this case.

Lemma A.4.39

Let P be final process such that P :: T , where closed(T ), and Γ `(z′,z) P . If P is not a finished
process then there are C, Q, T ′, l, d, C such that P = C[Q] and Q :: T ′ and τ ld(C)w is minimal
to T ′.

Proof. Follows by induction on the length of the derivation of P :: T in expected lines. Since
closed(T ) all message types in T are either of polarity τ or are of polarity ? and defined on
a shared label. If all initial message types are of the second type then the process is finished,
otherwise if there is an initial τ message type which is not minimal then Lemma A.4.36 gives us
there is a minimal initial message type.
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Lemma A.4.40

Let P be a process such that P :: T , where closed(T ) and Γ;∆ `` P . We have that T and Γ are
domain consistent and precedence consistent.

Proof. Follows directly from Lemma A.4.24 and Lemma A.4.28.

Remark A.4.41 Lemma A.4.34 characterizes the fact that if an event ordering talks only about
the events of the current recursion iteration, then also the event ordering for the safe unfolding
of the process talks only about the events of the new current recursion iteration. Furthermore,
this property is direct for processes which do not contain rect processes. We assume, without
any loss of generality, that reductions do not involve unfoldings if processes are always safely
unfolded by their minimal event ordering — in the light of Lemma A.4.29. In such a way we
are able to focus the analysis on the current recursion iteration and abstract away from further
recursion iterations. We focus on processes that are unfolding bound by their minimal ordering.

Proof of Theorem 6.3.10 (Lock Freeness)

Let P be a well-formed process such that P :: T , where closed(T ), and Γ;∆ `` P , where ` =
(up, here), then either P is a finished process or there is P → Q.
Proof. Follows directly from Lemma A.4.40, Lemma A.4.38 and Lemma A.4.39. If P is has an
active this prefix we directly have that P → P ′. Otherwise P is final and Lemma A.4.39 gives us
that there is a minimal initial τ message type and hence from Lemma A.4.40 and Lemma A.4.38,
considering Remark A.4.41, we conclude P → P ′.

A.5 Chapter 7

Theorem 7.4.3 (Congruence)

(repetition of the statement in page 162)

Strong bisimilarity is a congruence.

1. If P ∼ Q then ld!(ñ).P ∼ ld!(ñ).Q.

2. If P{x̃/ñ} ∼ Q{x̃/ñ} for all ñ then ld?(x̃).P ∼ ld?(x̃).Q.

3. If P{x/n} ∼ Q{x/n} for all n then this(x).P ∼ this(x).Q.

4. If αi.Pi ∼ α′
i.Qi, for all i ∈ I, then Σi∈I αi.Pi ∼ Σi∈I α′

i.Qi.

5. If P ∼ Q then n J [P ] ∼ n J [Q].

6. If P ∼ Q then (νa)P ∼ (νa)Q.

7. If P ∼ Q then P | R ∼ Q | R.

8. If P{X/R} ∼ Q{X/R}, for all R, then recX .P ∼ recX .Q.

9. If P ∼ Q then throw.P ∼ throw.Q.

10. If P ∼ Q then try P catch R ∼ try Q catch R.
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11. If P ∼ Q then try R catch P ∼ try R catch Q.

Proof. By coinduction on the definition of strong bisimulation. We show the proof for the axioms
involving the new constructs, that exploits the other axioms already listed in Theorem 4.4.6,
namely Theorem 4.4.6(7):

If P ∼ Q then P | R ∼ Q | R. (A.5.1.1)

(If P ∼ Q then throw.P ∼ throw.Q)
Follows by a standard coinductive argument. Notice throw is the only observation that can

be performed by throw.P and by throw.Q, leading to bisimilar processes P and Q.
(If P ∼ Q then try P catch R ∼ try Q catch R)
The proof proceeds by witnessing relation R defined as:

R , {(try P catch R, try Q catch R) | P ∼ Q} ∪ ∼ (A.5.1.2)

is contained in ∼ by coinduction on the definition of strong bisimulation. We must show for
every transition of try P catch R there is a matching transition of try Q catch R leading to
states related in R, and conversely.

Let us consider P1, λ1 such that:

try P catch R
λ1−→ P1 (A.5.1.3)

We have there are λ2, P2 such that (A.5.1.3) is derived from:

P
λ2−→ P2 (A.5.1.4)

We consider the two distinct cases: either λ2 is throw or λ2 is different from throw.
(λ2 = throw) We have that λ1 = τ and:

P1 = P2 | R (A.5.1.5)

Since P ∼ Q (A.5.1.2) we have that there is Q′ such that:

Q
λ2−→ Q′ (A.5.1.6)

and P2 ∼ Q′. From (A.5.1.6) we derive:

try Q catch R
τ−→ Q′ | R (A.5.1.7)

Considering (A.5.1.1) we have:
P2 | R ∼ Q′ | R (A.5.1.8)

which completes the proof for this case, given (P2 | R,Q′ | R) ∈ R.
(λ2 6= throw) We have that λ1 = λ2 and:

P1 = try P2 catch R (A.5.1.9)
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Since P ∼ Q (A.5.1.2) we have that there is Q′ such that:

Q
λ2−→ Q′ (A.5.1.10)

and P2 ∼ Q′. From (A.5.1.10) we derive:

try Q catch R
λ1−→ try Q′ catch R (A.5.1.11)

Since P2 ∼ Q′ we have:
(try P2 catch R, try Q′ catch R) ∈ R

which completes the proof for this case.
(If P ∼ Q then try R catch P ∼ try R catch Q)
Follows expected lines.
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