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Abstract

We develop a notion of spatial-behavioral typing suitable to discipline concurrent
interactions and resource usage in distributed object systems. Our type structure
reflects a resource sensitive model, where a parallel composition type operator ex-
presses resource independence, a sequential composition type operator expresses
resource synchronization, and a type modality expresses resource ownership. We
model the intended computational systems using a concurrent object calculus.
Soundness of our type system is established using a logical relations technique,
building on a interpretation of types as properties expressible in a spatial logic.

1 Introduction

The aim of this work is to study typing disciplines for distributed service-based
systems, with a particular concern on the key aspects of concurrency, resource
control, and compositionality. For our current purposes, we consider service-
based systems to be certain kinds of distributed object systems, but where
binding between parties is dynamic rather than static, and the fundamental
abstraction mechanism is task composition, rather than just remote method
invocation. In this paper, we approach the issue of compositional analysis of
distributed services and resources using a new notion of typing inspired by
spatial logics. Technically, we proceed by introducing a process calculus for
distributed services, where clients and servers are represented by concurrent
“objects” (aggregates of operations and state). Services are called by reference,
and references (names) to services may be passed around, as in π-calculi. New
services may also be dynamically instantiated. We then develop and study a
fairly expressive type system aimed at disciplining interactions and resource
usage in these kind of systems.

Our type structure is motivated by fundamental properties of the intended
models. We conceive a service-based system as a layered concurrent and dis-
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tributed system, where service provider objects execute tasks on behalf of
client objects, in a coordinated way. Even if the same object may act as client
and server, we do not expect intrinsic cyclic dependencies to occur in such
a system. The main coordination abstractions for assembling tasks into ser-
vices are probably parallel (independent) and sequential composition. Tasks
are independent when they never get to compete for resources; independent
tasks appear to run simultaneously, this is the default behavior of the “global
computer”. On the other hand, causality, data flow, and resource competition
introduce constraints in the control flow of computations. We will thus con-
sider tasks and resources as the basic building blocks of service based systems.

Models of concurrent programming usually introduce two kinds of entities in
their conceptual universe: processes (active) and resources (passive). While
processes are a main subject of analysis, resources are considered primitive,
further unspecified entities. An essential characteristic of resources is that may
not be shared by different processes, by definition (objects such as as files,
memory cells, are typical examples). We adopt a different view, according
to which resources and objects are not a priori modeled by different sorts of
entities (everything is an object). Our distinction criteria is observational: what
distinguishes a resource among other objects is that resources must be used
“with care” so to avoid meaningless or disrupted computations. For example,
a massively replicated service (e.g., Google) behaves pretty much as if every
client owned its own private copy of it. On the other hand, an object managing
a web-service session with a user, is certainly not supposed to be shared: if
other user gets in the middle and interferes with the session things may go
wrong! We thus consider the latter more “resource-like” than the former.

Instead of conceiving resources as entities external to the model, for which
certain usage policies are postulated (as in, e.g. [21]), we think of a resource
as any object that must be used according to a strict discipline to avoid
getting into illegal states. Our semantics realizes such illegal states concretely,
as “message not understood” errors, rather than as violations of extraneously
imposed policies, as e.g., in [17, 21, 2]. Adopting a deep model of resources
as fragile objects allows us to consider sharing constraints much more general
than the special cases (all or nothing) usually considered: e.g., at certain stage
of an usage protocol a resource might be sharable, while at other stage it may
be not. Our uniform approach also naturally supports a computational model
where resources may be passed around in transactions, buffered in pools, while
ensuring that their capabilities are used consistently, by means of typing.

Our type system, we believe, captures fundamental constraints on resource
access arising in general concurrent systems. We introduce the basic operators

U, V ::= 0 | l(U)V | U |V | U ∧ V | U ; V | U◦ | U . V

to which we add a recursion operator (and type variables).
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Superficially, the underlying structure may seem close to a behavioral alge-
bra, with parallel and sequential composition, primitive action (method call
l(U)V ), and a few extra operators. However, our aim now is not just to talk
about the behavior of systems, but also about resource distribution, and own-
ership transfer. For example, the spatial composition type U | V states that a
service may be used accordingly to U and V by independent clients, one using
it as specified by U , the other as specified by V . In particular, the tasks U and
V may be activated concurrently. For instance, an object typed by Travel

Travel , (flight | hotel); order

will be able to service the flight (we abbreviate l(0)0 by l, and so on) and
hotel tasks simultaneously and after that (and only after that), the order

task. The spatial interpretation of U | V , derived from the process decom-
position operations of spatial logics for concurrency [7, 11], implies further
consequences, namely that the (distributed) resources used by U and V do
not interfere [25] ; this property is important to ensure closure under compo-
sition of safety properties of typed systems.

Owned types, written U◦, in addition to asserting that a service is usable as
specified by U , also require such usage to be completely owned. What does
this mean? Owned types discipline the dynamic delegation (or transfer) of
resources or service references between interacting partners. For example, an
operation typed as use(V ◦)U , requests ownership of its argument of type V .
This means that a client calling use(v) must have, and will loose at the call,
ownership of v (or at least of some V ◦-typed, | -separated view, of v). So, any
object in possession of a reference of owned type may, for example, cache it
in memory, for later use, or even dispose of it. On the other hand, if V is not
an owned type, calling an operation typed as e.g., rent(V )U , will ensure that
an usage as specified by type V will be performed during the call, and that
ownership of v, after the exercise of the usage V , will be retained by the caller
(according to some continuation type) instead of being transfered to the callee.
A return type U is always implicitely considered to be an owned type, because
the callee always looses ownership of (some view of) the returned value. Thus
owner types control delegation of resources in a much finer way than the more
strict (all or nothing) disciplines provided by usual linear types.

Familiar behavioral types may also be easily expressed. For example, the usage
protocol of a file of objects of type V may be specified

File(V ) , (open; (read()V ∧ write(V ◦))?; close)?

where U? , rec α.(0 ∧ (U ; α)) expresses iteration. By combining recursion
with spatial types, we can then introduce shared types. A shared type !U
states of an object that it may be used according to an unbounded number of
independent sessions, each one conforming to the type U . By combining our

3



type operators, we may specify fine grained shared access protocols, such as
the typical “multiple readers/unique writer” access pattern for memory cells:

RW (V ) , (!read()V ; write(V ◦))?

Moreover, our types are related by a flexible subtyping relation. Finally, and
crucially, guarantee types U . V allow us to compose subsystems into larger
systems, while preserving the properties ensured by their typings.

The paper is structured as follows. In Section 2, we present our core language
and its operational semantics, and some examples. In Section 3 we introduce
our basic type system, and prove its soundness. Our proof combines syntactical
and semantical reasoning, in the spirit of the logical relations technique, where
types are interpreted as properties expressed in a spatial logic. In Section 4, we
discuss how to extend our basic system to cover more general forms of sharing.
Finally, Section 5 overviews related work and draws some conclusions.

2 A Distributed Object Calculus

In this section, we present the syntax and semantics of our distributed object
calculus. We first illustrate its main ingredients with a small example. Define

Counter , n[inc() = let x = s? in s!(x + 1) ‖ s 〈0〉 ‖ ]

The object Counter has the structure n[M ‖ s ‖ t] where M are the object
methods, s are the object state elements, and t are the object active threads.
In the example the object has a single method, a single state element (s 〈0〉),
and no running threads. Invocation of a method causes a new thread to be
spawned. For example, invocation of the inc method causes the transition

Counter
n.incc()−→ n[inc() = · · · ‖ s 〈0〉 ‖ c 〈let x = s? in (s!(x + 1); x)〉] = C1

where c is a freshly created thread identifier. After being created, a thread
starts running autonomously, so we have the reduction sequence

C1 −→ n[inc() = · · · ‖ s 〈0〉 ‖ c 〈let x = 0 in (s!(x + 1); x)〉]
−→ n[inc() = · · · ‖ s 〈0〉 ‖ c 〈s!(1); 0〉]
−→ n[inc() = · · · ‖ s 〈1〉 ‖ c 〈0〉] = C2

At this point, the expression in the thread c has reduced to a value: the thread
may now terminate after returning the result back to the caller.

C2
n.c(0)−→ n[inc() = · · · ‖ s 〈1〉 ‖ ]
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Our calculus is distributed in the sense that a method call originating at an
object site spawns a new thread in the callee site, in general a different site
from the caller site. This (quite realistic) behavior is modeled directly in our
calculus, allowing us to maintain a substantial degree of locality, which seems
necessary for the interpretation of types. In particular, any code acting on the
local state of an object is to be found “near” the object state representation
in the spatial structure of a configuration, even if it belongs to a system wide
transaction, and any method call is processed by means of a call-reply two-
message protocol. We may also easily model in the calculus manipulation of
remote object references, concurrent method invocation, and state and history
dependent computations, as will be demonstrated in forthcoming examples.

Assume given an infinite set N of names, used to identify objects (n, m, p),
threads (b, c, d), and state elements in objects (a). We also assume given an
infinite set X of variables (x, y, z), and an infinite set L of method labels
(j, k, l). We note X = N ∪ V , and let η range over X (variables and names).

Definition 2.1 (Values, Expressions, Methods) The sets V of values, E
of expressions, and M of methods are defined in Fig. 1 (top).

Notice that expressions may only syntactically occur either in the body of a
method definition, or in a thread. We use the notation ς to denote a sequence
of syntactical elements of class ς. The value nil stands for the null object
reference. The method call expression n.l(v) denotes the invocation of the
method l of object n, where the value v is passed as argument. The wait
expression n.c() denotes waiting for a reply to a previously issued method
invocation of the form n.l(v), where c is the identifier of the thread which is
serving the request remotely. The wait construct plays a key technical role in
our formulation of the dynamic and static semantics of our language, even if
it is not expected to appear in source programs. The composition construct
let x = e in f denotes the parallel evaluation of the expressions ei, followed
by the evaluation of the body f , where the result of evaluating each ei is bound
to the corresponding xi. The xi are distinct bound variables, with scope the
body f . The let construct allows us to express arbitrary parallel / sequential
control flow graphs, in which values may be propagated between parallel and
sequential subcomputations. We then use the following abbreviations (where
x1 and x2 do not occur in e1 and e2):

(e1 | e2) , let x1 = e1 , x2 = e2 in nil (e1; e2) , let x1 = e1 in e2

The a? and a!(v) constructs allow objects to manipulate their local store. The
read expression a? returns a value stored under tag a, while the write expres-
sion a!(v) stores value v in the store under tag a. The store conforms to a
resource space, where reading consumes data, and writing replaces existing
with new data elements. Evaluation of new[a; M ] results in the allocation of
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e ::= f, g, h ∈ E (Expressions)

v (Value)

| v.l(v) (Call)

| n.c() (Wait)

| a? (Read)

| a!(v) (Write)

| new [a; M ] (Instantiation)

| let x = e in e (Composition)

| rec x.e (Recursion)

v ::= r ∈ V (Values)

n (Name)

| x (Identifier)

| nil (Termination)

M ::= ∈M (Methods)

0 (Empty)

| l(x) = e (Method)

| M | M (Methods)

s ::= ∈ S (Stores)

0

| a〈v〉
| s | s

t ::= ∈ T (Threads)

0

| t | t

| c〈e〉

P ::= Q,R ∈ P (Networks)

0

| (νn)P

| P | Q

| n[M ‖ s ‖ t] (Object)

Fig. 1. Values, Expressions, Methods, Stores, Threads, Networks.

n.l(v)
n.lc(v)−→ n.c() new [a; M ]

n[a;M ]−→ n

n.c()
n.c(v)−→ v

e{x/rec x.e} α−→ e′

rec x.e
α−→ e′

a?
a?(v)−→ v

e
α−→ e′

let · · · , x = e, · · · in f
α−→ let · · · , x = e′, · · · in f

a!(v)
a!(v)−→ nil let x = v in e

τ−→ e{x/v}

Fig. 2. Evaluation (Expressions).

a new object, with set of methods M , and whose identity (a fresh name) is
returned; a declares the object local state. In the method l(x) = e the param-
eter x is bound in the scope of the method body e (for the sake of simplicity,
we just consider a single parameter). Finally, the rec construct introduces
recursion. To keep our language “small”, we refrain from introducing other
useful ingredients, such as basic data types and related operators, for instance
booleans and conditionals. It should be easy to formally extend the language
with such constructs, so we will sometimes use them (e.g., in examples).

Example 2.2 We sketch a toy scenario of service composition, where several
sites cooperate to provide a travel booking service. First, there is an object
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F implementing a service for finding and booking flights. It provides three
methods: flight to look for and reserve a flight, book to commit the booking,
and free to release a reservation. A similar service is provided by object H,
used for booking hotel rooms.

F , f [ flight() = · · · | book() = · · · | free() = · · · ‖ ‖ ]

H , h[ hotel() = · · · | book() = · · · | free() = · · · ‖ ‖ ]

G , gw[ pay(s) = if bk.debit() then s.book() else s.free() ‖ ‖ ]

B , br[ flight() = f.flight() | hotel() = h.hotel() |
order() = (gw.pay(f); gw.pay(h)) ‖ ‖ ]

We elide method implementations in F and G, but assume that the operations
must be called in good order to avoid disruption, namely that after calling
flight, a client is supposed to call either book or free. The broker B, that
implements the front-end of the whole system, is client of F and H, and also of
a payment gateway G. The gateway books items if succeeds in processing their
payment through a remote bank service named bk. Our travel booking service,
available at br , is used by first invoking the flight and hotel operations
in any order. In fact, these operations may be called concurrently, since they
trigger separate computations. Afterwards, the order operation may be invoked
to book and pay for both items, delegating access to f and h to the gateway. The
session will then terminate, and the broker becomes ready for another round.
We will see in this paper how usage patterns such as these may be specified
by typing, and how the type of a whole system may be compositionally defined
from the types of its components.

Definition 2.3 (Stores, Threads, Networks) The sets S of stores, T of
threads, and P of networks are given in Fig. 1 (bottom).

A network is a (possibly empty) composition of objects, where composition
P | Q and restriction (νn)P are introduced with their usual meaning (cf., the
π-calculus). An object n[M ‖ s ‖ t] encapsulates, under the object name n,
some methods M (passive code), a store s (that holds the object local state),
and some threads t (active, running code). A store s is a bag of pairs tag - value.
Each value is recorded in a store under an access tag (a name), represented by
a〈v〉, where a is the tag and v is the value. On the other hand, a thread c〈e〉 is
uniquely identified by its name c and holds an active code fragment, namely
the expression e. As already mentioned, threads are spawned when methods
are called, and may run concurrently with other independent threads in the
same object or network.

For any sets of names S, S ′, we write n#S (resp. S#S ′) to denote that n 6∈ S
(resp. that S and S ′ are disjoint). We use A, B, C to range over M∪S∪T ∪P
(that is, over all entities which are “composable” under | ).
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By fn(P ) (resp. fn(t), fn(s), etc.) we denote the set of free names in process P
(resp. thread t, store s, etc.), defined as expected. We also define by ft(P ) the
set of free thread names in P , by lb(P, n) the set of method labels of object n
in P , and by st(P, n) the set of store tags of object n in P :

c ∈ ft(P ) iff P ≡ (νm)(n[ ‖ ‖ c〈e〉] | Q) and c#m

l ∈ lb(P, n) iff P ≡ (νm)(n[l(x) = e ‖ ‖ ] | Q) and n#m

a ∈ st(P, n) iff P ≡ (νm)(n[ ‖ a 〈v〉 ‖ ] | Q) and n#m

Any object in a system is given a unique name, so that, for instance, the
network term n[M ‖ s ‖ t] | n[N ‖ r ‖ u] denotes the same network as the
term n[M | N ‖ s | r ‖ t | u]. Spatial identities such as this one (the Split law)
are formally captured by structural congruence, defined below. All axioms are
familiar from π-calculi, except the split law [17, 24], that allows individual
objects to be split up to the parallel composition operator | .

Definition 2.4 (Structural Congruence) Structural congruence, noted ≡,
is the least congruence relation on networks, methods, and threads, such that

A ≡ A | 0 (νn)(P | Q) ≡ P | (νn)Q if n#fn(P )

B | A ≡ A | B A | (B | C) ≡ (A | B) | C

(νn)0 ≡ 0 (νm)(νn)P ≡ (νn)(νm)P

n[M ‖ s ‖ t] | n[N ‖ r ‖ u] ≡ n[M | N ‖ s | r ‖ t | u]

We also define the partial order 5 by P 5 Q , exists R . Q ≡ R | P .

To lighten our notation, we avoid writing 0 in object slots, leaving blank the
corresponding place . E.g., n[M ‖ 0 ‖ 0] will be written simply as n[M ‖ ‖ ].

The operational semantics of networks is defined by suitable transition rela-
tions: we define a transition system specifying the evaluation of expressions
(in Fig. 2), and another transition system to specify network reduction (in
Fig. 3). Transition system are labeled: the various labels in expression transi-
tions express the various kinds of actions a running thread may perform.

Definition 2.5 Labels L are given by:

α ::= τ | n.lc(v) | n.lc(v) | n.c(v) | n.c(v) | a?(v) | a!(v) | n[a; M ]

We have internal computation (τ ), method call (n.lc(v)), wait for method
reply (n.c(v)), reading to the state (a?(v)), writing to the state (a!(v)). A
n[a; M ] labeled transition, caused by the evaluation of a new [a; M ] expression,
signals the creation of a new object.
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M ≡ l(x) = h | N e
n.lc(v)−→ e′ [c fresh]

n[M ‖ ‖ ] | m[ ‖ ‖ b〈e〉] → (νc)(n[M ‖ ‖ c〈h{x/v}〉] | m[ ‖ ‖ b〈e′〉])

e
n.c(r)−→ e′

n[ ‖ ‖ c〈r〉] | m[ ‖ ‖ b〈e〉] → m[ ‖ ‖ b〈e′〉]
e

τ−→ e′

n[ ‖ ‖ c〈e〉] → n[ ‖ ‖ c〈e′〉]

e
a?(v)−→ e′

n[ ‖ a 〈v〉 ‖ c〈e〉] → n[ ‖ a〈nil〉 ‖ c〈e′〉]
e

a!(v)−→ e′

n[ ‖ a 〈u〉 ‖ c〈e〉] → n[ ‖ a〈v〉 ‖ c〈e′〉]

e
m[a;M ]−→ e′ [m fresh]

n[ ‖ ‖ c〈e〉] → (νm)(m[M ‖ a〈nil〉 ‖ ] | n[ ‖ ‖ c 〈e′〉])

P ≡ P ′ P ′ → Q′ Q′ ≡ Q

P → Q

P → Q

(νn)P → (νn)Q

P → Q

P | R → Q | R

Fig. 3. Reduction (Networks).

We comment on the key rules in Fig. 2. A remote method call reduces to a wait
expression on a fresh thread name c. Such wait expression will reduce to the
returned value upon thread termination. The let-introduced sub-expressions
are evaluated concurrently, until each one reduces to a value; only after that
the let body is activated. The transition system in Fig. 3 specifies a reduction
relation on networks, modeling our intended remote method call protocol.
Servicing a method call causes a new thread to be spawned at the callee
object’s location, to execute the method’s body. At that point, the thread
that originated the call suspends, waiting for a reply. Such a reply will be sent
back to the caller, after the servicing thread terminates.

Definition 2.6 (Evaluation and Reduction) Evaluation, noted e
α−→ e′,

is the relation defined on expressions by the labeled transition system in Fig. 2.
Reduction, noted P → Q, is the relation defined on networks by the transition
system in Fig. 3.

We write ⇒ for the the reflexive transitive closure of →. Notice the role of
structural congruence in reduction, in particular the Split law, so that each
rule may mention just the relevant parts of objects for each interaction case.
Besides reduction, it is useful to introduce a labeled transition system for
networks, extending the reduction semantics with labels in order to capture
incoming method calls from the environment, and replies to them.

Definition 2.7 (Labeled Transition System) The labeled transition rela-
tion on networks is the least relation defined by the rules:
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P → Q

P
τ−→ Q

P ≡ P ′ P ′ α−→ Q′ Q′ ≡ Q

P
α−→ Q

[c fresh and n, u#m]

(νm)(n[l(x) = e ‖ ‖ ] | R)
n.lc(u)−→ (νm)(n[l(x) = e ‖ ‖ c〈e{x/u}〉] | R)

[c, n#m]

(νm)(n[ ‖ ‖ c〈r〉] | R)
n.c(r)−→ (νm \r)(n[ ‖ ‖ ] | R)

The first two rules incorporate reduction as silent transition, as usual. The
third rule captures an incoming method call from the environment. The last
rule captures the reply to the environment of a pending method call, upon
thread termination. Notice that the labeled transition system in Definition 2.7
formalizes the transitions presented in the counter example at the very be-
ginning of this section. We thus conclude the technical presentation of our
distributed object calculus.

Before closing the section, we discuss some details of our model, and introduce
several useful auxiliary concepts. The operational semantics we have defined
assumes and preserves certain regularity conditions on object networks. In
general, a network P is said to be well-formed if all threads occurring in P
have distinct names, all methods in the same object have distinct labels, all
state elements in the same object have distinct tags, and for any thread name
c there is at most one occurrence in P of a wait expression n.c(). We have

Lemma 2.8 (Preservation of well-formedness) If P is a well-formed net-
work and P

α−→ Q then Q is also a well-formed network.

An object may only become active as effect of an incoming method call issued
by a running thread. An object n[M ‖ s ‖ t] such that t ≡ 0, is said to be
idle, since it contains no running threads. Likewise, a network is idle if all of
its objects are idle. We define:

Definition 2.9 idle(P ) , For all Q.if P ≡ (νm)(n[; ; t] | Q) then t ≡ 0.

Even well-formed networks may get stuck if a method call is outstanding, but
the called object does not offer the requested method. An attempt to read
from or write to an undefined store element can also cause an object to get
stuck. We define:

Definition 2.10 stuck(P ) , exists m, Q, e, e′. P ≡ (νm)(p[ ‖ ‖ c 〈e〉] | Q)

and either e
n.lc(v)−→ e′ and l 6∈ lb(Q,n), or e

a−(v)−→ e′ and a 6∈ st(Q, p).

Networks, as modeled in our calculus, may easily get stuck, if not carefully de-
signed. As in more familiar untyped object oriented programming languages,
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message-not-understood errors may arise whenever an object does not imple-
ment the invoked method. However, in our present context stuck states may
also arise if method calls are not coordinated and timing errors occur. For
example, such situations may occur when clients do not respect protocols, or
when race conditions arise, e.g., during method calls to the same non-shareable
method. Moreover, the presence of state in objects creates history dependen-
cies on resource usage, and introduces a grain of resource sensitiveness in our
model, as discussed in the Introduction, and illustrated in our next example.

Example 2.11 Consider the object S defined thus

S , server [ init() = s!(nil)

open() = let r = pool .alloc() in s!(r)

use() = let r = s? in (r.use(); s!(r))

close() = let x = s? in (pool .free(x); s!(nil)) ‖ ‖ ]

The object S is a spooler that offers (some further unspecified) service by re-
lying on a remote resource pool object to fetch appropriate service providers.
All service providers (e.g., printers, seen as resources) held in the pool (by
reference, of course) are modeled also as objects. Each one of such objects
is then assumed to implement the operation of interest use. The server pro-
vides the use service repeatedly to a given client, by forwarding it through a
locally cached reference to some allocated service provider (stored in s〈−〉).
First, the server is initialized: by calling the init method the local reference
is set to nil. Afterwards, a client must open the service by calling the open

method before using it (so that the server can acquire an available resource),
and close it after use by calling the close method (so that the server may
release the resource). The server implements these operations by accessing the
pool through its alloc and free methods. The internal state of the server,
hidden to clients, will always be either of the form s〈nil〉, or s〈r〉 where r is
a reference (a name) of an allocated resource (some object). Notice how the
idiom let r = s? in (· · · ; s!(r)) is used to express retrieving the value r from
the local state, using it (in the · · · part), and storing it back again.

The key morale in this example is that the usage protocols described above
for the various objects in the scene must be strictly followed to avoid runtime
errors, in particular due to resource non-availability. This would occur, e.g.,
if the use operation is invoked right after close, an attempt to call the use

method on a nil reference will cause the system to get stuck (possibly causing
a crash or a deadlock in a real system).

A main motivation for our type system, presented in detail in forthcoming
sections of this paper, is to prevents erroneous behaviors such as the one
illustrated above, by ensuring that all services in a network conform to well-
defined concurrency and resource usage protocols.
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Fact 1 If P is well-defined and P ≡ Q | R then both Q and R are well-defined.

However, the converse property does not hold in general, since P and Q might
clash in method or thread names. We then define a predicate (P‖Q) to assert
that P and Q are composable, in the sense that if P and Q are both well-
defined and P‖Q holds, then P | Q is also well-defined.

Definition 2.12 (Composable Networks)

P‖Q , ft(Q)#ft(P ) and forall n. lb(P, n)#lb(Q,n) and st(P, n)#st(Q, n)

Notice that P‖Q does not necessarily imply fn(P )#fn(Q). Henceforth, we
assume networks to be always well-defined.

3 Spatial-Behavioral Types

In this section, we present in detail our notion of spatial-behavioral type, and
develop a type system to discipline interactions between distributed objects
modeled in the calculus presented above. Intuitively, a type T describes a usage
pattern for a given object. An assertion of the form n : T states that the object
named n may be safely used as specified by the type T . In general, the type
of a network P is expressed by a composite assertion n1 : T1 | . . . | nk : Tk

that specifies the types of various objects named n1, . . . , nk available in P to
the external environment. Such a typing environment states that the system
provides independent services at the names ni, each one able to be safely used
as specified by the type Ti respectively. We first introduce the syntax of types.

Definition 3.1 (Types) The set T of types is inductively defined by the fol-
lowing abstract syntax:

T ::= U, V ∈ T (Types)
0 (0) | T | U (Spatial Composition)

| T ∧ U (Conjunction) | T ; U (Sequential Composition)
| T ◦ (Owned) | l(U)V (Method)
| α (Variable) | rec α.T (Recursion)

We first explain the intuitive meaning of the various kinds of types, by inter-
preting them as properties of objects.

• An object satisfies n : 0 if it is idle (Definition 2.9).
• An object satisfies n : T | U if it can independently satisfy both n : T and

n : U . We may also understand such a typing as the specification of two
independent views for the object n. More precisely, a n : T | U typing says

12



that the interfaces T and U provided by object n are based in disjoint (in
a sense to be made precise below) sets of resources / subsystems, and thus
may be safely invoked concurrently.

• An object satisfies n : T ∧U if it can satisfy both n : T and n : U , although
not necessarily concurrently. Conservatively, such an object may only be
used either as specified by n : T or as specified by n : U , being the choice
made by the object’s client.

• An object satisfies n : T ; U if it can satisfy first n : T and afterwards n : U ,
in sequence. In particular, it will only be obliged to satisfy n : U after being
used as specified by n : T . Implicit in this description is the notion of “usage
according to a type”, and “termination” of such an usage; we will get back
to this point later.

• As explained in the Introduction, the owned type n : T ◦ means that the
object may be used as specified by T , but furthermore (and crucially) that
this T view must be exclusively owned. For example, a reference of type
n : T ◦ may be stored in the local state of an object, or returned by a
method call, although a reference of type n : T may not, because of possible
liveness constraints associated to the type T . This will become clearer in
the precise semantic definitions below.

• An object satisfies n : l(U)V if it offers a method l that whenever passed
an argument of type U is ensured to return back a result of type V ◦, and
exercise, during the call, an usage of the argument conforming to type U .
Thus, a method type specify both a safety and a liveness properties. Notice
also that the result is always an owned type: this reflects the fact that an
object cannot both retain exclusive ownership of a reference and return it
at the end of a method call.

• Recursive types are interpreted as greatest fixed points, we will not detail
the developments related to recursion, as they would follow predictable lines.

We now enter the technical description of our type system. A typing envi-
ronment (A,B,C, σ, δ) is a finite partial mapping from N ∪ V to T . We
write A , η1 : T1, . . . , ηn : Tn for the typing environment A with domain
D(A) = {η1, . . . , ηn} such that A(ηi) = Ti, for i = 1, . . . , n. We extend
type operations 0, (T | U), (T ∧ U), (T ; U) and T ◦ to typing environments
pointwise, as follows. 0 denotes any typing environment (including the empty
one) that assigns 0 to all elements in its domain. Given A and B such that
D(A) = D(B), we define type environments 0, (A | B), (A;B), (A∧B), and
A◦, all with domain D(A), such that, for all η ∈ D(A), we have

0(η) , 0 (A | B)(η) , A(η) | B(η) (A;B)(η) , A(η);B(η)

(A ∧B)(η) , A(η) ∧B(η) A◦(η) , A(η)◦

Given a sequence T = T1, . . . , Tn of types (or typing environments) we denote
by Π(T ) the type (or typing environment) (T1 | · · · | Tn). When we write A,B
for a type environment we mean that the domains of A and B are disjoint.
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( Refl )

A <: A
( SeqIdL )

0;A <:> A
( SeqIdR )

A; 0 <:> A
( ParId )

0 | A <:> A
( ParComm )

A | B <: B | A

( SeqAssoc )

A; (B;C) <:> (A;B);C
( ParAssoc )

(A | B) | C <:> A | (B | C)

( ParSeq )

(A;B) | (C;D) <: (A | C); (B | D)

( AndL )

A ∧B <: A
( AndR )

A ∧B <: B

( And )

A <: B A <: C

A <: B ∧C
( Trans )

A <: B B <: C

A <: C

( ParCong )

A <: B

A | C <: B | C

( SeqCongL )

A <: B

A;C <: B;C

( SeqCongR )

A <: B

C;A <: C;B

( OwnNil )

A◦ <: 0
( OwnProj )

A◦ <: A
( OwnOwn )

A◦ <: A◦◦
( NilOwn )

0 <: 0◦

( OwnParSeq )

A◦;B <: A◦ | B

( OwnCong )

A <: B

A◦ <: B◦

( ParOwn )

A◦ | B◦ <:> (A | B)◦

η : rec α.U <:> η : U{α/rec α.U} η : U <: η : V

η : rec α.U <: η : rec α.V

Fig. 4. Subtyping Rules

Our type system is based on the following forms of formal judgments:

A <: B (Subtyping) P :: A . B (Networks)
[M ; t] :: A σ . B δ [U ] (Objects) e :: A σ . B δ [U ] (Expressions)

Subtyping judgments are interpreted as expected. For networks, the typing
judgment assigns to the network P an “assume-guarantee” assertion of the
form A . B, cf. the adjunct of the composition operator of spatial logics [11].
Intuitively, a judgment P :: A . B asserts that if P is composed with any
network Q that satisfies the typing A, one is guaranteed to obtain a network
(P | Q) that satisfies the typing B. This form of judgment is essential for
achieving compositionality in our type system. In an expression typing judg-
ment, e is the expression to be typed, A and B are typing environments, and
U is a type. The auxiliary type environments σ and δ (and A and B as well)
keep information about effects on the local state of objects, and will be further
explained below (notice the symbol separating the global environments A
and B from the state environments σ and δ in judgments, not to be confused
with the | type constructor).

What does it really mean for a network to satisfy a typing? As discussed
above, types are semantically interpreted as properties (sets of networks) ex-
pressible in a spatial logic. In Section 3.1 below we will present in detail a
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( TNil )

nil :: A σ . A σ [0]
( TValue )

v :: v : T ◦ σ . v : 0 σ [T ]

( TWrite )

a!(v) :: v : T ◦ σ, a : 0 . σ, a : T [0]
( TRead )

a? :: σ, a : T . σ, a : 0 [T ]

( TCall )

v.l(u) :: v : l(U)V | u : U σ . σ [V ]

( TNew )

[M ;0] :: A◦ a : 0 . [T ]

new[a; M ] :: A◦ . [T ◦]

( TSub )

A <: A′ B′ <: B V ′ <: V
e :: A′ σ . B′ δ [V ′]

e :: A σ . B δ [V ]

( TAnd )

e :: A σ . B δ [U ]
e :: A σ . B δ [V ]

e :: A σ . B δ [U ∧ V ]

( TPar )

e :: A σ . B δ [V ]

e :: A | C σ, φ . B | C δ, φ [V ]

( TSeq )

e :: A σ . B δ [V ]

e :: A;C σ . B;C δ [V ]

ei :: Bi σi . δi [Vi]
f :: C, x : V ◦ δ . E, x : 0 φ [U ]

let x = e inf :: Π(B);C σ . E φ [U ]
( TLet )

Fig. 5. Typing Rules (Expressions).

logical semantics of types, around which our soundness proofs are developed.
For now, we present our type system as a formal system, and explain from
an intuitive perspective the various rules and the main results. Our type sys-
tem is composed by four sets of rules, to derive judgments of the four forms
listed above. In Fig. 4 we present the subtyping axioms and rules. Subtyp-
ing principles are motivated by selected natural properties of types, and re-
flect valid semantic entailments in our logic (cf. Proposition 3.7). A first set
of rules states that (− | −) and 0 define a commutative monoid. The rule
(A;B) | (C;D) <: (A | C); (B | D) expresses the basic interaction principle
between sequential and independent composition, allowing us to derive, e.g.,
A | B <: A;B (interleaving). The rules for (−)◦ are quite interesting, notice
that (−)◦ and (− | −) reveal a familiar algebraic structure. Not so familiar
is the rule A◦;B <: A◦ | B, asserting a key principle involving sequential
composition and ownership: the owned usage A◦ is not active (yet), and thus
B cannot causally depend on it. A further set of rules express congruence
principles, and unfolding of recursion.

In Fig. 5, we present the typing rules for expressions. Intuitively, a expression
typing judgment e :: A σ . B δ [U ] means that e, when in the presence of
services conforming to A and in a store conforming to σ will, after termination,
yield a value of type U , while leaving a store conforming to δ, and the given
services in a state where they may be still used as specified by the residual
typing B. Notice that typing of expressions depends on typing of objects,
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M ≡ (N | l(x) = e) ( TOCall )

e :: A, x : U σ . B, x : 0 δ [V ]

[M ;0] :: A σ . B δ [l(U)V ]

( TONil )

[M ;0] :: A σ . A σ [0]

[M ; t] :: A σ . B δ [U ]
[M ;0] :: B δ . C φ [V ]

[M ; t] :: A σ . C φ [U ; V ]
( TOSeq )

[M ; t] :: A σ . B δ [U ]
[N ; u] :: C σ′ . D δ′ [V ]

( TOPar )

[M ; t] :: A | C σ, σ′ . B | D δ, δ′ [U | V ]

( TOOwn )

[M ;0] :: A◦ σ . δ [T ]

[M ;0] :: A◦ σ . δ [T ◦]

Fig. 6. Typing Rules (Objects).

( TVoid )

0 :: A . A

( TStruc )

P :: A . B P ≡ Q

Q :: A . B

[M ; t] :: A si : Vi . B δ [T ] ( TObj )

n[M ; si〈ni〉; t] :: A | Π(ni : Vi
◦) . n : T

( TPar )

P :: A . B Q :: C . D P‖Q
P | Q :: A | C . B | D

( TComp )

P :: A . B Q :: B . C P‖Q
P | Q :: A . C

P :: A . B n#A,B

(νn)P :: A . B
( TNew )

A <: A′ P :: A′ . B′ B′ <: B

P :: A . B
( TSub )

Fig. 7. Typing Rules (Networks).

through the rule for new [M ]. To intuitively grasp the general meaning of typing
rules for expressions rules, it is useful to keep in mind that in a judgment
e :: A σ . B δ [U ], the return type U , as well as the stored types σ, δ,
are implicitly “owned” (e.g., we avoid writing U◦ in the return type [U ]).
Consistently, in the rule for a value (name or variable), the value v may be
returned only if its type is owned (T ◦). The same happens in the rule for a
write a!(v), where ownership of some T view of v is handed over from the
thread to the store. Notice how read / write effects are recorded in the left (σ)
and right (δ) environments. Typing a method call v.l(u) requires separation
between the method server v and the argument u. However, it does not force
u, v to be different objects: non-interference is here ensured by the spatial
typing via − | −, stating that the method part and the argument part do not
share resources. We also have some congruence rules, a subtyping rule, and the
rule for let. In the let rule, each expression ei is required not to interfere with
a concurrent ej, by reading and writing in the local store. This condition will
be slightly relaxed in Section 4, after the introduction of shared variables and
types. Notice that the values returned from each ei, whose evaluation depends
on separate resources Bi, are separate owned values, each of type Vi

◦.
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In Fig. 7, we present the typing rules for objects and networks. Intuitively,
the judgment [M ‖ t] :: A σ . B δ [U ] asserts that any object n[M ‖ s ‖ t]
whose store s satisfies σ, upon composition with any network satisfying A
can be safely used according to type the U . The residuals B and δ reflect the
state of the external and local resources after the usage specified by U has
been completed. Under this intuitive reading, we believe that all the rules for
objects are already quite transparent, and the same remark also applies to
the rules for networks. We discuss a bit the rule for object introduction. The
rule requires that all state elements are distinctly named, and that each of the
stored values ni must be available in the environment for ownership by the
object (as specified by Vi

◦). Although in a perhaps subtle way, subtyping plays
a key role in the derivation of expression, objects and network judgments,
as the factorization of a substantial amount of structural reasoning in the
subtyping relation contributed to keep our typing rules reasonably clean (we
omit the obvious rule for subtyping object judgments).

Example 2.2 (continued). We now assign types to the system components. For
F and H we may expect the typings F :: . f : Tf and H :: . h : Th, where

Tf , rec α.flight(); (book() ∧ free()); α

Th , rec α.hotel(); (book() ∧ free()); α

For the gateway G, we let G :: bk : Tbank . gw : Tgw where

Tbk , rec α.debit()bool; α Tgw , rec α.pay(book() ∧ free()); α

Set Tbr , rec α.(flight() | hotel()); order(); α. Now, the following judgment
is derivable: (F | H | G | B) :: bk : Tbk . br : Tbr.

This judgment asserts that the network (F | H | G | B), when composed with
any system providing the Tbk type at bk, will be safe for use at br as specified
by type Tbr. Such typing may be obtained compositionally from the types of
the subsystems in many ways. A possible root level split of the system may be
between the broker B :: gw : Tgw, f : Tf , h : Th . br : Tbr and the back-end
subsystem (G | H | F ) :: bk : Tbk . gw : Tgw, f : Tf , h : Th, where we conclude
by the forward composition rule.

We define the following variant of the Kleene iterator: T⊗ , rec α.(T ; α)◦.
Notice that we have T⊗ <:> (T ; T⊗)

◦
<: 0∧(T ; T⊗). Hence, T⊗ can be unfolded

infinitely many times into copies of T (as T ∗ does), but also be stored and
returned by method calls, since it is an owned type (while T ∗ may not).

Example 2.11 (continued). For the spooler S , we propose the following typings.
First, we abbreviate Tres , (use())⊗, Trm , rec α.alloc()Tres; free(Tres

◦); α
and Tsrv , rec α.open(); Tres; close(); α. Then the following is derivable:
S :: pool : Trm . server : Tsrv. Notice how owned types (Tres

◦) are used
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to express ownership transfer of resources from the pool to the spooler and
back. In general, we would expect a resource pool such as the one expected at
pool to be shared by multiple users, while here the Trm type just captures a very
particular sequential usage. We will return to this point in Section 4 below.

The safety properties ensured by our type system may be formally expressed
in many ways. The fundamental consequence of typing is stuck-freeness, from
which, as discussed in Section 2, other properties follow, such as race absence
for unshareable resources, and conformance to usage protocols. We can thus
already hint to our main soundness result, in a somewhat specific form.

Claim. Let P :: . n : l(0)0. Then there is Q such that P
n.lc(nil)−→ Q and for

all R such that Q ⇒ R it is not the case that stuck(R).

The claim states that any network typed by n : l(0)0 offers a method l at
object n that, after invoked, is ensured to evolve into a stuck state. More
general safety results follow as direct consequence of the semantics of types,
as developed in the next section, refining the preliminary presentation in [6].

3.1 Logical Semantics of Types

Any typing environment A denotes a certain property JAK, in the sense that if
P is assigned type A, then soundness of our type system ensures that P ∈ JAK,
or, in terms of logical satisfaction, that P |= A. In fact, we will not interpret
types as properties directly, but will rather embed types in a more primitive
spatial logic, so that each typing environment A is interpreted by a certain
formula A. The satisfaction predicate |= is inductively defined on the structure
of formulas, in such a way that P |= A implies that P enjoys certain general
safety properties, in particular, stuck-freeness.

Definition 3.2 (Logic) The set F of formulas is defined by:

A, B ::= A ∧ B | ∀x.A | A | B | A . B
| 0 | A; B | A◦ | (ν)A | n : lc(m) | n : c(A)V

As in [7, 8, 5], our logic includes (positive) first-order logic, the basic spatial
operators of composition and its adjunct with their standard meanings, and
certain specific operators, in particular some behavioral modalities. Instead of
including action prefixing modalities, we introduce a general sequential com-
position formula of the form A; B, where A is interpreted both as a property,
and as a usage pattern. Usage patterns are modeled by usage, a transition rela-
tion between networks and labeled by formulas, noted P A7−→ Q. The intuitive
meaning of P A7−→ Q is that if P is used (by the environment) as specified by
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P |= A ∧ B iff P |= A and P |= B
P |= A | B iff exists Q, R. P ≡ Q | R and Q |= A and R |= B
P |= A . B iff forall Q. if (P‖Q) and Q |= A then P | Q |= B
P |= ∀x.A iff forall n. P |= A{x/n}
P |= 0 iff idle(P )

P |= A◦ iff P |= A and P |= 0

P |= A; B iff P |= A and forall Q. if P
A7−→ Q then Q |= B

P |= n : lc(m) iff exists Q. idle(P ) and P
n.lc(m)−→ Q

P |= (ν)A iff exists Q. P ≡ (νm)Q and Q |= A and m#fn(A)

P |= n : c(A)V iff forall R,Q. if (P‖R) and R |= A and P | R ⇒ Q

then ¬stuck(Q) and

forall Q′, r. if Q n.c(r)−→ Q′ then

exists P ′, R′, Rv. Q′ ≡ P ′ | R′ | Rv and

Rv |= r : V ◦and R A7−→ R′

Fig. 8. Satisfaction

P
07−→ P

P
U7−→ Q

P
U∧V7−→ Q

P
V7−→ Q

P
U∧V7−→ Q

P
U{x/n}7−→ Q

P
∀x.U7−→ Q

P
n.lc(m)−→ Q

P
n:lc(m)7−→ Q

P ≡ (νm)R R
U7−→ Q

P
(ν)U7−→ Q

P
U7−→ R R

V7−→ Q

P
U;V7−→ Q

P
U◦
7−→ (P \ U◦)

R |= A P | R ⇒ n.c(r)−→ Q R
A7−→ R′

P
n:c(A)V7−→ Q \R′ \ r : V ◦

P ≡ P1 | P2 P1
U7−→ Q1 P2

V7−→ Q2 Q1 | Q2 ≡ Q

P
U | V7−→ Q

Fig. 9. Usage

A, it may evolve to Q. Satisfaction and usage are defined by mutual induction.

Definition 3.3 (Satisfaction) Satisfaction, noted P |= A, and typed usage,

noted P A7−→ Q are defined in Fig. 9. We also define JAK , {P | P |= A}.

To avoid clashes between fresh names introduced in the subsidiary transi-

tions, the rule for P
U | V7−→Q is subject to the provisos Q1‖Q2 and (fn(Q1) \

fn(P1))#(fn(Q2)\ fn(P2)). The semantics of n : lc(m) and n : c(A)V is defined
from the labeled transition system and external actions (Definition 2.7). In-
tuitively, P satisfies n : c(A)V if P contains a thread c that whenever passed
a resource R satisfying A, is guaranteed to evolve in a stuck free way until a
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value r is returned, while exercising on R an usage specified by A. Thus, the
c(A)V operator enforces both safety and liveness properties. The definition
of usage for most type constructors is not unexpected. The usage for U◦ is

particularly interesting: we have P
U◦
7−→ Q where Q = P \ U◦, where P \ A is

the complement of property A w.r.t. the process P .

Definition 3.4 (Complement) For any formula A, we denote by (P \ A)
the 5-largest Q such that P ≡ R | Q and R |= A. For any process R, we
denote by P \R the 5-largest Q such that P ≡ R | Q.

The complement (P \ A) of P w.r.t. A, when it exists, it is unique (proof
in appendix, Lemma A.2). The usage for U◦ models the situation where a
minimal “piece” of the system (in the sense of 5, Definition 2.4) that satisfies
property U is taken away (ownership is passed from the system to the envi-
ronment). The usage for n : c(A)V mimics the satisfaction clause, but notice
how the returned resource (r : V ◦) and the residual R′ of the argument is
removed from the target. However, if the argument R is typed by an owned

type (say, U◦) the usage R
U◦
7−→ R′ ensures that ownership is passed from the

environment (caller) to the system. Using these ingredients, we introduce our
interpretation of types. For any type environment A, we define a formula dAe:

Definition 3.5 The embedding of types into logical formulas is given by:

dn : 0e , 0 dn : U | V e , (ν)(dn : Ue | dn : V e)
dn : U◦e , (ν)dn : Ue◦ dn : U ; V e , (ν)(dn : Ue; dn : V e)

dn : U ∧ V e , dn : Ue ∧ dn : V e
dA,Be , dAe | dBe
dn : l(U)V e , ∀u, c . n : lc(u); n : c(u : U)V

Thus, all types are interpreted “directly”, except method and thread types,
which are interpreted in terms of finer grain primitives. Building on this in-
terpretation, we define validity of subtyping and typing judgments as follows:

Definition 3.6 (Validity of typing and subtyping judgments)

valid(A <: B) , JdAeK ⊆ JdBeK valid(P :: A . B) , P |= dAe . dBe

valid([M ; t] :: A σ . B δ [T ]) ,
forall n, ni . n[M ‖ si 〈ni〉 ‖ t] |=

(A | Π(ni : σ(si)
◦) . (n : T ); (B | Π(ni : δ(si)

◦))

valid(e :: A, x : T σ . B, x : S δ [V ]) ,
exists C,U . A <: C;B and x : T <: x : U ; S . and forall n, ni, pk.

n[ ‖ si 〈ni〉 ‖ c
〈
e{xk/pk}

〉
] |=

A | Π(ni : σ(si)
◦) . c(p : U)V ; (B | Π(ni : δ(si)

◦))
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From now on, we will sometimes write typing environments where formulas are
expected, having in mind the interpretation just presented. Our interpretation
enjoys several nice properties. For example, the property stated in the Claim
above (right before Section 3.1) is a direct consequence of the definition of the
logical predicate |=. We can now state our main results (proofs in appendix):

Proposition 3.7 (Soundness of Subtyping) If A <: B then JAK ⊆ JBK.

Theorem 3.8 (Soundness of Typing) If P :: A . B then P |= A . B.

The proof technique we have developed here may be seen as an instance of the
general method of logical relations, well understood in the setting of functional
programming, but still quite unexplored in a concurrency setting. In a similar
way, we build on a semantic interpretation of typed terms, which is defined
by induction on types (as formulas), and then prove soundness by induction
on typing derivations. Our result establishing validity under substitution for
derivable expression-typing judgments then plays the role of the so-called Basic
Lemma in the logical relations method. Because types are directly interpreted
as properties of networks, our soundness results allows us to conclude:

Proposition 3.9 Let P |= A and A <: B;C. If P
B7−→ Q then Q |= C.

Proposition 3.9 is a semantic counterpart of the more familiar syntactic subject
reduction property. In our case, it is an immediate consequence of the sound-
ness of subtyping and of the semantics of B;C. By interpreting the semantic
clause for the type n : l(U)V , we also have:

Proposition 3.10 (Stuck Freeness) Let P :: . n : l(U)V , and R be such

that R |= m : U and R‖P . For all Q such that P | R n.lc(m)−→ ⇒ Q we have

¬stuck(Q). Moreover, if Q n.c(r)−→ Q′ for some Q′, then Q′ |= r : V ◦.

A further consequence of Proposition 3.10, is that in well-typed processes all
objects are used according to their intended usage protocols, as specified by
the assigned spatial-behavioral types, and no races on method calls occur.
More generally, Theorem 3.8 ensures that, after composition with an object
BA such that BA . bk : Tbk, the system (F | H | G | B) of Example 2.2 may
be used according to the protocol Tbr, without getting stuck, and ensuring
that all objects H, G, F , etc, are used according to their intended protocols.

4 Resource Sharing and Shared Types

Although our framework already seems fairly powerful, it still prevents useful
forms of sharing to be typable. While race absence may be a desirable correct-
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ness property of concurrent programming in general, in many situations, races
are not problematic if the involved resources may be safely shared (e.g., read-
ing variables of “pure” type values, such as integers). Moreover, many com-
mon system resources are assumed to be intrinsically raceful (e.g., semaphores,
buffers). Sharing is also particularly useful to allow different threads to commu-
nicate by side effects. In this section, we show how sharing is accommodated in
our framework. First, we add shared store elements (∗a〈v〉) and shared meth-
ods (∗l(x) = e) to the basic syntax of our calculus, together with structural
congruence axioms to specify replication of shared methods:

M ::= · · · | ∗l(x) = e ∗l(x) = e ≡ (∗l(x) = e | ∗ l(x) = e)

s ::= · · · | ∗a〈v〉 ∗l(x) = e ≡ (∗l(x) = e | l(x) = e)

The semantics defined in Section 2 is augmented by the following two rules:

e
∗a?(v)−→ e′

n[ ‖ ∗a〈v〉 ‖ c〈e〉] → n[ ‖ ‖ c〈e′〉]
e
∗a!(v)−→ e′

n[ ‖ ‖ c〈e〉] → n[ ‖ ∗a〈v〉 ‖ c〈e′〉]

Thus, an object store may possibly record several values under the same shared
tag ∗a, so that e.g., ∗a〈1〉 | ∗a〈2〉 is a valid store, although a〈1〉 | a〈2〉 is not.
Reading from the shared store consumes a state element, and writing to the
shared store posts new state elements: the shared store behaves as a tuple
space, that may be accessed concurrently by several threads within the same
object. For technical convenience, we require that shared methods bodies do
not reference other free variables than the parameter x: this does not bring any
loss of generality, since any external reference may still be accessed through
the local state. For processes to be composable, we require that public object
slices agree on shared methods.

∗µ ∈ smeth(P, n) , P ≡ n[∗µ ‖ ‖ ] | R

P‖∗Q , P‖Q and for all n. smeth(P, n) = smeth(Q, n)

More interesting extensions relate to typing, the challenge is then to discipline
shared access to the store of objects and of object slices. To that end, we sep-
arately assign types to the shared and unshared parts of the store. The intent
is that while the types of the values stored under a given tag in the unshared
part may dynamically change (cf. the spooler example 2.11), values stored
under a given tag in the shared part must satisfy a fixed invariant. Since the
shared part may suffer interference from parallel running threads, we rely on
this invariant to ensure soundness (cf. the rely-guarantee approach [22]). To
type shared usages of objects we introduce shared types, defined (by abbrevia-
tion) as !U , rec α.(0∧U ∧ (α | α)). Shared types satisfy expected subtyping
principles, namely !U <:> !U | !U , !U <: U and !U <: 0. The first principle al-
lows a service of type !U to be used simultaneously by an unbounded number
of clients. We may also derive !U <: U ; !U .
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Example 4.1 Consider the object NL , nl [ ∗null() = nil ‖ ‖ ]. It offers a
method null that whenever called returns the value nil. Clearly, the service
provided by NL may be shared by an arbitrary number of clients, without in-
curring in any execution error (stuck state) or protocol violation. So we expect
the typing NL :: . !null()0.

Example 4.2 Consider the following code for an object BF :

BF , buf [ ∗put(x) = ∗a!(x) | ∗get() = ∗a? ‖ ‖ ]

BF implements a resource buffer. It keeps in its local shared state a bunch
of references for resources of some type R◦. If all ∗a 〈−〉 cells are ensured to
always hold values of type R◦, we expect to obtain the typing BF :: . buf :
!(put(R◦)∧get()R). This type would allow multiple clients to share the buffer,
while calling both methods, possibly concurrently. The typing of the put method
demands ownership of the argument (via the type R◦). We may formally spec-
ify the given shared store invariant by the assertion buf .a : R. An alternative
typing for the same object is BF :: . buf :!put(R◦) | !get()R. This lat-
ter typing would allow BF to be used as an (unordered) queue, in a context
where a bunch of writers use the buf :!put(R◦) view, while a bunch of readers
use the buf :!get()R view of BF . Notice that although the methods put and
get interfere through the local store of BF, according to our intended seman-
tics the associated views are still safely separable by (− | −) (up to any store
manipulations that conform to the sharing invariant buf .a : R).

We now describe the technical development necessary to accommodate sharing
in the sense discussed above in our type system. Basically, we extend our
basic typing judgments with a additional slot (ς, η), that specifies (by means
of typing) the intended invariants on the shared stores. We thus introduce

P :: A ς . B (Networks) [M ; t] :: A σ η . B δ [U ] (Objects)
e :: A σ η . B δ [U ] (Expressions)

The sharing slot of object and expression typing judgments contains normal
typing environments, while the sharing slot of network typing judgments con-
tain a located typing environment. A located typing environment (ς) is a finite
partial mapping from N ×N to T . We write ς , n1.pn11

: Ui, . . . , nk.pn : Unkrn

for the located typing environment that assigns type Ui to (ni, pnij
), that is,

to the contents of shared state cells pnij
of object ni. We also write n.pi : Ui

as a shorthand for such a located typing environment, where the pi range over
the names of the shared state cells of each object n. We explain the general
approach with a few typing rules in Fig. 10, the complete set of typing rules
is presented in the appendix (Figs. B.1, B.2, and B.3).

The n.pi : Ui (or pi : Ui) assertion in the sharing slot of the typing judgments
specifies what are the admissible interferences from the environment, asserting
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( TSWrite )

∗a? :: σ δ, a : T . σ [T ]
( TSRead )

∗a!(v) :: v : T ◦ σ δ, a : T . σ [0]

[M ; t] :: A si : Vi pi : Ui . B; δ [T ] ( TSObj )

n[M ; si〈vi〉 | ∗pij

〈
rij

〉
; t] :: A | Π(vi : Vi

◦) | Π(rij : Ui
◦) n.pi : Ui . n : T

P :: A | !S ς . B Q :: C | !S ς . D P‖∗Q
P | Q :: A | C | !S ς . B | D

( TSPar )

Fig. 10. Some Sharing Typing Rules

P |=ς A | B iff exists Q, R. P ≡ Q | R and Q |=ς A and R |=ς B
P |=ς n : c(A)V iff forall R,Q. if (P‖∗R) and R |=ς A and P | R ⇒ς Q

then ¬stuck(Q) and

forall Q′, r. if Q n.c(r)−→ Q′ then

exists P ′, R′, Rv. Q′ ≡ P ′ | R′ | Rv and

Rv |= r : V ◦and R A7−→ς R′

Fig. 11. Sharing-indexed Satisfaction

that the store of each object n may only be modified (written or read) on its
state elements pi 〈−〉 if the invariant that such state elements will always
contain values of type Ui

◦ is preserved. The soundness of the sharing type
system is proven as in Section 3.1, by semantical means. In the current setting,
we introduce a sharing-indexed logical predicate |=ς , that takes into account
possible interferences through the shared stores of objects as specified by the
located typing environment ς. Thus P |=ς A means that P satisfies A in any
computational context that reads from and writes to the stores of objects in
P as specified by ς. We show a few clauses of the inductive definition of |=ς in
Fig. 11, the complete definition is presented in the appendix. The environment
ς plays its essential role in the satisfaction clause for n : c(A)V ; for the other
logical operators, ς is compositionally propagated in the structure of formulas.
Intuitively, P |=ς n : c(A)V if P contains a thread c that whenever passed a
resource R satisfying A, is guaranteed to evolve in a stuck free way, subject
to possible interferences through the objects’ store as specified by ς, until a
value r is returned, while exercising on R an usage specified by A. Evolution
(reduction) of a system subject to interferences as specified by a located typing
environment ς is defined by interference-sensitive reduction, defined as follows:

Definition 4.3 (Interference-sensitive reduction) Given a located typing
environment ς, we define −→ς to be the least relation specified by:

P −→ Q

P −→ς Q

ς(n.a) = U

P | n[ ‖ a 〈v〉 ‖ ] −→ς P \ v : U◦
R |=ς v : U◦ ς(n.a) = U

P −→ς Q | R | n[ ‖ a 〈v〉 ‖ ]
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Thus −→ς coincides with −→ except that object state elements of the appro-
priate type (as specified by ς) may be read and written from / to the environ-
ment. We note ⇒ς the transitive reflexive closure of −→ς . Validity of sharing
typing judgments is defined as in Definition 3.6, but taking into account the
sharing-index. We may then state and prove (details in the appendix).

Theorem 4.4 (Soundness of Typing) If P :: A ς . B then P |=ς A . B.

We conclude the section showing how to type the spooler of our running
example in a scenario with concurrent sharing and resource handover.

Example 2.11 (continued). Consider the implementation of a resource pool:

RP , pool [ ∗free(x) = ∗a!(x) | ∗alloc() = ∗a? ‖ ‖ ]

We may derive the typing RP :: pool.a : Tres . pool : Tp where Tp ,
!(free(Tres

◦)∧alloc()Tres) and Tres , (use())⊗. For the spooler S of Section 2
we may now derive S :: pool : Tp . server : Tsrv. Thus, we also have
S :: pool : Tp pool.a(Tres) . server : Tsrv. Suppose we introduce another
spooler S ′ where S ′ :: pool : Tp pool.a : Tres . alt : Tsrv. By (TSPar), we have

S | S ′ :: pool : Tp pool.a : Tres . server : Tsrv | alt : Tsrv

We may now plug the resource pool RP in the “backend” of S | S ′, and get

RP | S | S ′ :: pool.a : Tres . server : Tsrv | alt : Tsrv

T so that the pool is shared by both spoolers. The resulting system is still
open to interference, as specified by pool.a : Tres: one may close it definitely
by (TSNew), to obtain (νpool)(RP | S | S ′) :: . server : Tsrv | alt : Tsrv.
Notice how owned types allow the resources (of type Tres

◦) to be passed around
dynamically from the pool to the spoolers and back, while fully respecting their
usage protocols by the clients, in a scenario where the pool itself is shared.

5 Related Work and Discussion

The focus of this work is on a notion of spatial-behavioral typing, and its
use to discipline interactions in concurrent distributed systems. To that end,
we have presented a distributed object calculus inspired on well-established
proposals [1, 3, 16]. We have adopted a distributed remote method invocation
semantics, that involves a reply-answer protocol, and preserves the spatial dis-
tribution of threads in the system during method calls. This technical approach
seems a rather natural choice, and a faithful account of actual implementations
of distributed services. In our case, it was also imposed upon us by the ne-
cessity of expressing spatial decomposition of behaviors with respect to types,
and then for our semantic soundness proofs to go through. Our type system
enforces several safety properties on distributed object systems, in particular
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availability (meaning that method calls will be always served), and race ab-
sence with respect to unshareable resource access (meaning that the intended
usage protocols of resources will be respected). Such properties result from
the fact that our types are able to specify constraints on sequentiality of be-
havior, separation of resource access, and dynamic propagation of ownership,
in a compositional way. Compositionality is certainly a desirable property of
any verification method for concurrency, but it seems absolutely critical when
one considers service-based systems, which are by nature open-ended, and dy-
namically assembled by relying on interface specifications or contracts. Thus,
we would like to investigate how notions of types as developed here may be
applied to other recently proposed service calculi, such as [4].

Our type system can be seen as a fragment of a spatial logic for concur-
rency [7, 8, 5], where the composition / separation operator plays a key role
in ensuring resource control and non-interference. In our model, separation,
up to structural congruence, cuts across the structure of objects, in order to
separate safe computations involving both global and local resources. Spatial
separation as a useful concept to reason about resource control and interference
control in imperative programs was suggested in early works by Hoare [18] and
Reynolds [29], and has recently motivated the development of the separation
logics of O’Hearn and Reynolds [30, 25]. The work in this paper draws inspi-
ration in some concepts introduced in that line of research, namely the use of
the composition operator to talk about non-interference. It is then interesting
to further discuss the relationship between the approaches.

Separation logics have been mainly used to talk about the heap structure, in
a Hoare-style reasoning about imperative programs. In such models, actions
are transformations on the passive heap state, while in our case states and
actions are both represented by processes inside a common domain. Although
our process model may be presented as an abstract separation algebra [10],
in the case of dynamic spatial logic if an element satisfies A | B this means
that there are two independent subsystems that can safely accomplish the
behaviors A and B, while in separation logic separation is used to reason about
passive heap states, and behavior independently handled by Hoare triples. We
find that the free combination of logical primitives to talk about spatial, or
“intensional”, aspects (such as resource usage or mobility) and behavioral
aspects (such as the ability to perform actions) of processes in the same logic
allows non-trivial properties of concurrent systems to be expressed in a rather
uniform way. In any case, a dynamic spatial logic usually contains a separation
logic for “processes-as-resources” as a fragment, notwithstanding its original
motivation of reasoning about the structural dynamics of process systems by
interpreting the process calculus static operators spatially.

In applications of separation logic to concurrency, simple imperative programs
with conditional critical regions (CCRs) have been considered: in [26] it is
discussed how separation logic assertions very conveniently specify how heap
pieces may be safely passed around between threads, using a Hoare-style proof
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rule for CCRs [18]. In our case, types for the internal state of objects play a
role similar to Hoare’s resource invariants. However, we are able to deal with
a richer computational model, in the sense that concurrent objects may be
passed around as first-class entities, each such object carrying its own state
and associated (possibly concurrently executing) operations. We represent re-
sources as certain objects for which a certain concurrent usage protocol must
be respected: this is a key ingredient of our approach. Spatial-behavioral logics
turn out particularly convenient for reasoning about behavioral and resource-
sensitive properties of such objects, of which, e.g., shared memory cells are
but a special case as discussed in the Introduction (cf. Strachey’s load-update
pairs). The “ownership hypothesis” as formulated by O’Hearn [26] also ap-
plies to our development, interpreted as ownership of references to interactive
objects, rather than ownership of heap state. As a consequence, the own-
ership relation may be dynamically dictated by the (exported) type of the
objects, rather than by assertions (using types or logic) on the (client) code
that accesses shared entities, as in [26]. The notion of complement (P \ A)
(Definition 3.4) is related to the notion of footprint [10, 28], where the (mini-
mal) part of the system P that satisfies A may be understood as the footprint
of the behavior specified by A, even if here we talk of a formula footprint
(which is a process), instead of a command footprint (which is a heap piece).
Thus, fundamental concepts proposed in the context of the separation logics
are also playing an important role in this work. A different way of exploiting
separation logic within a process model (CSP-like, without name passing) was
investigated by O’Hearn and Hoare [27], using a trace semantics, and building
on an analogy between communication channels and heap cells.

A central claim of this work is that to reason about concurrent objects it is
convenient to express in interfaces not only sequentiality constraints, as in
more familiar behavioral or session type systems, but also independence con-
straints, stating what methods / operations may be simultaneously invoked,
and when. We believe that such expressiveness is fairly important to support
compositional reasoning about concurrent objects, although not previously in-
vestigated. We have introduced a owned type operator in our type structure.
Our owned type constructor, aiming at the specification of dynamic owner-
ship propagation, also seems to be new. A different notion of ownership type
has been introduced in [15, 14], to enforce encapsulation in object-oriented
programs, while we are introducing owned types to discipline the transfer of
stateful objects between interacting processes, a fairly orthogonal concern.

The spatial interpretation of composition, together with owned types and com-
positional typing (via . ), distinguishes our approach from other works on type
systems for concurrent calculi that also combine composition and behavioral
operations [20, 13]. In such works, parallel composition is interpreted behav-
iorally, as interleaving of actions, rather than as spatial separation of processes,
as witnessed by several subtyping principles. It is out of the scope of such type
systems to capture combined sequentiality / independence constraints, and to
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control transfer of ownership independently of name passing, as possible with
owned types, e.g., and illustrated in our broker and spooler examples. On the
other hand, most works on types for concurrency have been applied to more
fundamental models (variants of the π-calculus) for which spatial-behavioral
typings as we are considering here may well turn out hard to develop. For ex-
ample, in order to obtain more precise typings for sequential behaviors, in [23]
a sequential composition operator was added to the π-calculus, the resulting
language would be a possible subject to study combinations of classical types
with spatial-behavioral types for the π-calculus. Some protocols definable in
our type system are reminiscent of session types [19], it would be interesting
to see how sessions might be representable in our setting. We also intend to
investigate algorithmic presentations of our type system, in order to assess
and demonstrate its practicality.

Unlike most works on type systems for concurrent calculi, we have adopted a
semantic view of typing. The (original) understanding of types as properties
has not always been a common guiding principle in the design of types for
concurrent calculi, where a syntactical view seems to be dominant (however,
see [12]). We find that a logic such as ours provides a suitable metalanguage in
which many properties of interest may be formally expressed at an adequate
level of abstraction, and that our proofs are much more intuitive and modular
than more usual syntactic subject reduction style proof. For example, we are
here able to deal with a very rich subtyping relation involving commutative
monoidal operators in a straightforward modular way, while a syntactical proof
would certainly have forced us to introduce technical artifacts, such as normal
forms for types, and commutation results for derivations.

We have built on a logical relations (actually a unary logical predicate) tech-
nique to prove soundness. Although well-studied in the context of functional
programming, logical relations have not been much explored in concurrency;
an exception is [31], where they are applied to show termination of processes.
It would then be interesting to understand these techniques in more general
terms, a preliminary study along such directions was already presented in [9].
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A Appendix to Section 3

Lemma A.1 Some properties of satisfaction and usage.

(1) Let n 6∈ fn(A). Then P |= A if and only if (νn)P |= A.
(2) If P |= A and idle(Q) then P | Q |= A.

(3) If idle(P ) and P
A7−→ Q then idle(Q).

(4) Let P1 |= A and P2 |= B where P1‖P2. If P1 | P2
A | B7−→ Q then there are

Q1, Q2 such that Q ≡ Q1 | Q2, where P1
A7−→ Q1, and P2

B7−→ Q2.

(5) If P |= A then there is Q such that P
A7−→ Q.

(6) If P |= A and P ≡ Q then Q |= A.

Lemma A.2 Some properties of complement.

(1) Let P ≡ Q1 | R1 and P ≡ Q2 | R2, with Ri |= A and 5-maximal for
i = 1, 2, for some Q1, Q2, R1, R2 and Qi. Then R1 ≡ R2.

(2) For all A, B and P , we have P \ (A | B) = P \ A \B.
(3) For all A, B and P1, P2, we have P1 \ (A) | P2 \B = (P1 | P2) \ (A | B).

Proof. (1) Suppose R1 6≡ R2. Then R1 ≡ R′
1 | R, R2 ≡ R | R′

2, where R′
1‖R′

2

and R′
1 6≡ 0 or R′

2 6≡ 0. We have R′
1 | R |= A and R′

2 | R |= A. We may show,
by induction on A, that R |= A (intuitively, if R′

1 is really needed in R′
1 | R to

the satisfaction of A, then R′
2 | R has no way to emulate, given that R′

1‖R′
2).

This would contradict the maximality of both R1 and R2. Hence R1 ≡ R2.

Proposition 3.7. If A <: B then JAK ⊆ JBK.

Proof. By induction on the derivation of A <: B. For each subtyping rule, we
show that if the premises are valid, so is the conclusion. Due to the role of
usage in satisfaction, we need to show the following statement (2), that will
be proven by simultaneous induction with the main statement (1):

(2) If A <: B, P |= A, P
B7−→ Q then P

A7−→ Q′, for Q ≡ Q′ | R and idle(R).

We detail the proof of several interesting cases:

• (Case of (SeqAssocLR)) (1) Let P |= (A; B); C. Then P |= A; B and for all

R, if P
A;B7−→ R then R |= C. Then, P |= A and for all Q, such that P

A7−→ Q

then Q |= B. Also for all R such that Q
B7−→ R, we have R |= C. Thus

Q |= B; C. Hence P |= A; (B; C). (2) Immediate.
• (Case of (SeqPar)) (1) Let P |= (A; B) | (C; D). So P ≡ (νm)(P1 | P2)

where P1 |= A; B and P2 |= C; D. Also P1 |= A and for all Q′ such that

P1
A7−→ Q′ we have Q′ |= B. Likewise, P2 |= C and for all Q′′ such that

P2
C7−→ Q′′ we have Q′′ |= D. We have P |= A | C. Pick R such that P

A | C−→
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R. By Lemma A.1(4), there are R1 and R2 such that R ≡ R1 | R2 and P1
A7−→

R1 and P2
C7−→ R2. We conclude R |= B | D, so P |= (A | C); (B | D).

(2) Let P
(A | C);(B | D)7−→ Q, so that P

A | C7−→ R
B | D7−→ Q. This means that P ≡

P1 | P2 and P1
A7−→ R1, P2

C7−→ R2, R ≡ R1 | R2 ≡ R′
1 | R′

2 and R′
1

B7−→ Q′
1,

R′
2

D7−→ Q′
2 and Q ≡ Q′

1 | Q′
2. Since P |= (A; B) | (C; D), we also know that

P |= Q1 | Q2 where Q1 |= A; B and Q2 |= C; D. By Lemma A.1(4), we

conclude P
A | C7−→ R, where Q1

A7−→ R1 and Q2
C7−→ R2. But then R1 |= B and

R2 |= D. By Lemma A.1(4), R
B | D7−→ Q′, where R1

B7−→ Q′′
1, R2

D7−→ Q′′
2 and

Q ≡ Q′′
1 | Q′′

2. Since Q1
A;B7−→ Q′′

1 and Q2
C;D7−→ Q′′

2, we conclude P
(A;B) | (C;D)7−→ Q.

• (Case of (SeqCongL)) (1) Let P |= A; C. Then P |= A and for all Q such

that P
A7−→ Q we have P |= C. By i.h., P |= B. Let P

B7−→ Q for some Q.

By i.h. (2), we have P
A7−→ Q′ where Q ≡ Q′ | R and idle(R). Since Q′ |= C,

by Lemma A.1(2) we conclude Q |= C. We conclude P |= B; C. (2) Let

P
B;C7−→ Q. Then P

B7−→ R
C7−→ Q. By i.h. (2), P

A7−→ R′, where R′ | R′′ ≡ R

and idle(R′′). We know that R′ |= C. Hence R′ C7−→ Q′, where Q ≡ Q′ | R′′.
• (Case of (OwnParSeq)). (1) Let P |= A◦; B. Hence P |= A◦, and for all

Q = P \ A◦ we have Q |= B. We conclude P |= A◦ | B. (2) Let P
A◦ | B7−→ Q.

We have P ≡ P1 | P2 where P1
A◦
7−→ Q1 and P2

B7−→ Q2. We have P1 | P2
A◦ | 07−→

Q1 | P2
0 | B7−→ Q, and conclude by Lemma A.1(4).

• (Case of (ParOwn)). (a) (1) Let P |= A◦ | B◦. Hence P ≡ (νm)(P1 | P2)
where P1 |= A and P1 |= A with idle(P1) and idle(P2). So idle(P ) and

P1 | P2 |= A | B, so P |= (A | B)◦. (2) Let P
(A | B)◦7−→ Q, so Q = P \ (A | B)◦.

We have P = P1 | P2 where P1 \ A◦ and P2 \B◦. Hence P
A◦ | B◦

7−→ Q.
(b) (1) Let P |= (A | B)◦. So idle(P ) and P ≡ (νm)(P1 | P2) where

P1 |= A and P1 |= A. Then idle(P1) and idle(P2) so P |= A◦ | B◦. (2)

Let P
A◦ | B◦

7−→ Q, so P = P1 | P2 where Q = (P1 \ A◦) | (P2 \ B◦). So Q =

P \ (A | B)◦. We conclude P
(A | B)◦7−→ Q.

The proof of our next main result needs some build up and auxiliary Lemmas.
We attempt to be both succint and clear, in order to present the complete
proof in a reasonable amount of space.

Definition A.3 (Active context) An active context is a syntactic type con-
text where the hole appears in unguarded position. Active contexts are defined:

E ::= 2 | E ; T | E | T | T | E | E◦ | rec α.E

Given a context E and a type T , we write E [T ] for the type obtained by replacing
the hole of E with T . We extend our definition of active contexts to typing
environments and multi-hole contexts in the expected way.
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Lemma A.4 Let e :: A σ . B δ [V ]. Then valid(e :: A σ . B δ [V ]).

Proof. By induction on the typing derivation, we prove the stronger property:
Let e :: A, x : T σ . B, x : S δ [V ]. Then, for any active type context F [−],

exists C, U . A <: C;B . x : T <: x : U ; S . for all n, ni, mk.

n[ ‖ si 〈ni〉 ‖ c
〈
e{xk/mk}

〉
] |= F [A] | Sσ . c(m : U)V ; (F [B] | Sδ)

We write P Z⇒ Q to refer to an arbitrary stuck-free reduction sequence from P
to Q. We use the notation Sσ, etc, to refer to a formula of the form Πni∈D(σ)(ni :
σ(ni)

◦). We prove the result for a single substitution {x/m}, the general case is
similar. When considering transition sequences, and decompositions up to | ,
we implicitly remove topmost name restrictions: by Lemma A.1(2), this does
not invalidate our reasoning. We sometimes refer to a subtyping rule such as
(NilOwn), to mean the corresponding semantic inclusion (by Lemma 3.7). We
show the most interesting cases:

• (Case of (TValue)) We have e :: A′ σ . B′ δ [V ] where A′ = A, x : T and
B′ = A, x : 0 where T = V ◦, A = B = S = 0, σ = δ, and e = v.

Set No , n[ ‖ si 〈ni〉 ‖ c 〈m〉]. Consider subcases (a) e = x and (b) e 6= x.
Case (a) Pick P |= F [A] | Sσ and R |= m : V ◦. Let

P | R | No Z⇒ Q
n.c(v)−→ Q′

We must have Q = P | R | No and Q′ = P | R | n[ ‖ si 〈ni〉 ‖ ] and v = m.
We have P | R |= F [B] | Sδ | m : V ◦. Set C = 0 and U = V ◦.

Thus R
m:U7−→ R′ for some R′. We can check that No

n:c(m:V ◦)V7−→ N ′ implies

N ′ |= F [B] | Sδ (notice the only possible usage R
m:V ◦
7−→ R \ (m : V ◦)).

So No |= F [A | m : T ] | Sσ . c(m : U)V ; (F [B] | Sδ).
Case (b) is similar, except that we have e = x = v.

• (Case of (TNew)) We have e :: A′ σ . B′ δ [V ] derived from [M ;0] ::
A′′◦, x : T ′◦ . 0 [V ], where A′ = A′′◦, x : T , and B′ = 0, and T = T ′◦, and
A = A′′◦, and B = S = 0 and e = new [N ], and σ = δ = 0.

Let P |= F [A]. By (ParSeq) and (OwnParSeq), P |= m : T ′◦ | A′′◦ | F [0].
Thus P ≡ (νp)(P1 | P2) where P1 |= F [0] and P2 |= A′′◦.

Let No , n[ ‖ ‖ c 〈new[N ]〉]. Set U , T = T ′◦. Pick R |= m : T ′◦ and

let P | R | No Z⇒ Q
n.c(v)−→ Q′. So Q = P | R | (νf)(n[ ‖ ‖ c 〈f〉] | f [N ‖ ‖ ])

and Q′ = P | R | n[ ‖ ‖ ] | f [N ‖ ‖ ], and v = f (f fresh).
By i.h., Lemma A.5, P2 | R | f [N ‖ ‖ ] |= f : V ◦. So, Q′ |= F [B] | f : V ◦.

Set C , A = A′′◦ . We have P
m:U7−→ R′. As above, if No

n:c(m:U)V7−→ N ′ then
N ′ |= F [B]. So No |= F [A] . n : c(m : U)V ;F [B].

• (Case of (TCall)) Let e = v.l(u) and e :: A′ σ . B′ δ [V ] where
A′ = v : l(E)V | u : E, B′ = 0, and σ = δ.

For (x = u = v), we have e{x/m} = m.l(m), A = 0, B = 0, S = 0 and
T = l(E)V | E. Pick P |= F [A] | Sσ. Set No , n[M ‖ s ‖ c 〈m.l(m)〉],
and pick R |= m : l(E)V | E. We first show that all transition sequences
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of the form R
m.ld(m)−→ Z⇒m.d(r)−→ R′ are such that R′ ≡ R′

1 | R′
2 | Rv where

Rv |= r : V ◦, and R ≡ R1 | R2 where R1
m:l(E)V7−→ R′

1 and R2
m:E7−→ R′

2. Let

P | R | No Z⇒ Q
n.c(v)−→ Q′. This sequence must have the form:

P | R | No → P | n[ ‖ s ‖ c 〈m.d()〉] Z⇒

P | R′ | n[ ‖ s ‖ c 〈r〉] n.c(r)−→ P | R′ | n[ ‖ s ‖ ]

Set C , 0 and U , E | l(E)V . We know that R
m:U7−→ R′. Moreover

P | No
n:c(m:U)V7−→ P | No and we notice that P | No |= F [A] | Sσ. Hence

No |= F [A] | Sσ . n : c(m : U)V ;F [B] | Sδ.
For (x = v, x 6= u), and thus (u 6= v). We have e{x/m} = m.l(u), A =

u : E, B = 0, T = l(E)V , S = 0. Pick P |= F [u : E] | Sσ. Hence P |= (u :
E); (F [0] | Sσ). Set No , n[ ‖ s ‖ c 〈m.l(u)〉], and pick R |= m : l(E)V .

We first show that all transition sequences P | R
m.ld(u)−→ Z⇒m.d(r)−→ Px are

such that Px ≡ P ′ | R′ | Rv where Rv |= r : V ◦, and R
m:l(E)V7−→ R′ and

P
m:E7−→ P ′. Let P | R | No Z⇒ Q

n.c(v)−→ Q′. We conclude that this sequence
must have the form:

P | R | No → P | R | n[ ‖ s ‖ c 〈m.d()〉] Z⇒

Px | n[ ‖ s ‖ c 〈r〉] n.c(r)−→ Px | n[ ‖ s ‖ ]

Set C , 0 and U , l(E)V . We know R
m:U7−→ R′. Moreover P | No

n:c(m:U)V7−→
P ′ | No. Since P ′ |= (F [0] | Sσ), No |= F [A] | Sσ . n : c(m : U)V ;F [B] | Sδ.

(x = u, x 6= v) As above, swapping the roles of u and v.
(x 6= u, x 6= v) Also similar to the cases above.

• (Case of (TPar)) We have e :: A | D σ, φ . B | D δ, φ [V ] concluded
from e :: A σ . B δ [V ]. Let A | D = (A′ | D′), x : Ta | Td and
B | D = (B′ | D′), x : Sa | Td and A = A′, x : Ta and B = B′, x : Sa. Let
P |= F [A′ | D′] | Sσ | Sφ. By i.h. w.r.t the context F [2 | D′], we have No |=
F [A′ | D′] | Sσ . c(m : T ′

a)V ; (F [B′′ | D′] | Sδ) where A′ <: B′′;B′ and
Ta <: T ′

a; Sa. So No |= F [A′ | D′] | Sσ,φ . c(m : T ′
a | Td)V ; (F [B′′ | D′] | Sδ,φ),

where A′ | D′ <: B′′; (B′ | D′) and Ta; Td <: T ′
a; (Sa | Td).

• (Case of (TWrite)) We have a!(v) :: v : V ◦ σ, a : 0 . σ, a : V [0]. We
consider two cases (x = v and x 6= v).

(x = v). In this case, A = B = C = 0, T = U = V ◦, and S = 0. Let
No , n[ ‖ s | a〈u〉 ‖ c 〈a!(m)〉]. Let P |= F [A] | Sσ,a:0 and R |= m : V ◦. Let

P | R | No Z⇒ Q′ n.c(v)−→ Q′′. This transition sequence must have the form

P | R | No −→ P | R | n[ ‖ s ‖ c 〈nil〉] n.c(nil)−→ P | R | n[ ‖ s | a 〈m〉 ‖ ]

where P | R |= F [A] | Sσ,a:V and R
m:U7−→ R \ (m : V ◦). We thus conclude

No |= F [A] | Sσ,a:0 . c(m : U)0; (F [B] | Sσ,a:V ).
(x 6= v) In this case, A = v : V ◦, C = v : V ◦, B = 0, T = U = S = 0.

We consider No , n[ ‖ s, a〈u〉 ‖ c 〈a!(v)〉]. Let P |= F [A] | Sσ,a:0 and
R |= 0. Then P |= F [v : V ◦] | Sσ,a:0 and then P |= v : V ◦ | F [0] | Sσ,a:0. Let
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P | R | No Z⇒ Q′ n.c(v)−→ Q′′. This transition sequence must have the form

P | R | No −→ P | R | n[ ‖ s ‖ c 〈nil〉] n.c(nil)−→ P | R | n[ ‖ s | a 〈v〉 ‖ ]

where P |= F [0] | Sσ,a:V , R
07−→ R. We conclude No |= F [A] | Sσ,a:0 .

c(0)0; (F [B] | Sσ,a:V ).
• (Case of (TLet)) We have let y = e inf :: Π(B);D σ . H [U ] concluded

from ei :: Bi σi . 0 δi [Vi], for i = 1 . . . n, and f :: D, y : V ◦ δ .
H, y : 0 φ [U ].

Assume Π(B);D = Π(B′);D′, x : Π(E); F . Then Bi = B′
i, x : Ei, and

T = Π(E); F . We also have H = H′, x : S and D = D′, x : F . We con-
sider here the case n = 2, the general case is similar. So, (B1 | B2);D =
(B′

1 | B′
2);D

′, x : (E1 | E2); F where Bi = B′
i, x : Ei, and T = (E1 | E2); F .

We have A = (B′
1 | B′

2);D
′.

Let Ne1 , n[ ‖ s1 ‖ c 〈e1{x/m}〉] and Ne2 , n[ ‖ s2 ‖ c 〈e2{x/m}〉]. By i.h.
(for e1), we have Ne1 |= B′

1;B
′
2;F [D′] | Sσ1 . c(m : E1)V1; (B

′
2;F [D′] | Sδ1)

and (for e2) Ne2 |= B′
2;B

′
1;F [D′] | Sσ2 . c(m : E2)V2; (B

′
1;F [D′] | Sδ2). Pick

P |= F [A] and R |= m : T . So P ≡ (νp)(P1 | P2), P1 |= B′
1 and P2 |= B′

2.

Note that if P1 | R1 | Ne1 Z⇒ Q1
n.c(v1)−→ Q′

1, by the property for Ne1 , we

conclude Q′
1 ≡ Rv1 | R′

1 | P ′
1 | n[ ‖ d1 ‖ ] where Rv1 |= v1 : V1, R1

m:E17−→ R′
1

and P ′
1 |= B′

2;F [D′] | Sδ1 .

Not that if P2 | R2 | Ne2 Z⇒ Q2
n.c(v2)−→ Q′

2, by the property for Ne2 , we

conclude Q′
2 ≡ Rv2 | R′

2 | P ′
2 | n[ ‖ d2 ‖ ] where Rv2 |= v2 : V2

◦, R2
m:E27−→ R′

2

and P ′
2 |= B′

1;F [D′] | Sδ2 .
Let No , n[ ‖ s1, s2 ‖ c 〈let y1 = e1{x/m}, y2 = e2{x/m} in f{x/m}〉].

Given the independence of the transition sequences starting at P1 | R1 | Ne1

and P1 | R2 | Ne2 , we conclude that all reductions P | R | No Z⇒ Px | Nx
where Nx = n[ ‖ d1, d2 ‖ c 〈let y1 = v1, y2 = v2 in f{x/m}〉] must be such
that Px = R′ | Rv1 | Rv2 | P ′ where R′ |= m : F , Rvi

|= vi : V ◦
i , P ′ |=

F [D′] | Sδ1,δ2 , and R
m:E1 | E27−→ R′.

Let Nf , n[ ‖ d1, d2 ‖ c 〈f{x/m}{y1/v1}{y2/v2}〉]. By i.h. (for f), we know
that Nf |= F [D′] | Sδ1,δ2 . c(m : F | v1 : V ◦

1 | v2 : V ◦
2 )U ; (F [H′] | Sφ). But

then, Nf | Rv |= F [D′] | Sδ1,δ2 . c(m : F )U ; (F [H′] | Sφ), and Nf | Rv | P ′ |=
c(m : F )U ; (F [H′] | Sφ). Therefore P | R | No Z⇒ Px | Nx −→n.c(r)−→ Pf ,
where for any such sequence we have Pf ≡ P ′′ | R′′ | V ′′ | n[ ‖ a ‖ ]

with P ′′ |= F [H′] | Sφ and R
m:T7−→ R′′ and V ′′ |= r : U◦. We conclude

No |= F [A] | Sσ . c(m : T )U ; (F [H′] | Sφ).

Lemma A.5 Let the judgment [M ‖ s ‖ t] :: A σ . B δ [T ] be derivable.
Then valid([M ‖ s ‖ t] :: A σ . B δ [T ]).

Proof. By induction on the typing derivation.

• (Case of (TOnil)) We have derived [M ‖ si 〈ni〉 ‖ 0] :: A σ . A σ [0]. Let
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P |= A | Π(ni : σ(ni)
◦). Since P |= A implies idle(P ) for any type A (not

formula) and Π(ni : σ(ni))
◦ |= 0, we have that P |= 0. Thus P | n[M ‖ s ‖ 0] |=

0. If P | n[M ‖ s ‖ 0]
07−→ Q then Q ≡ P | n[M ‖ s ‖ 0], hence n[M ‖ s ‖ 0] |=

A | Sσ . n : 0; (A | Sσ).
• (Case of (TOPar)) Let [M1 | M2; t1 | t2] :: A | C σ, σ′ . B | D δ, δ′ [U | V ]

be concluded from [M1; t1] :: A σ . B δ[U ] and [M2; t2] :: C σ′ . D δ′ [V ].
Pick P |= A | C | Sσ | Sσ′ . Thus P ≡ (νp)(P1 | P2 | S1 | S2) where P1 |= A,
P2 |= C, S1 |= Sσ and S2 |= Sσ′ . By i.h., P1 | S1 | n[M1 ‖ s1 ‖ t1] |=
(n : U); (B | Sδ) and P2 | S2 | n[M2 ‖ s2 ‖ t2] |= n : V ; (D | Sδ′). So,
P1 | P2 | n[M1 | M2; s1 | s2; t1 | t2] |= n : U | V . By (ParSeq)

P1 | P2 | n[M1 | M2; s1 | s2; t1 | t2] |= n : U | V ; (B | D | Sδ | Sδ′)

• (Case of (TOOwn)) We have n[M ;0] :: A◦ . [T ◦] concluded from
n[M ;0] :: A◦ . 0 [T ]. Let P |= A◦. By i.h., P | n[M ‖ ‖ 0] |= n : T , and

for all R such that P | n[M ‖ ‖ 0]
n:T7−→ R we have R |= 0. Since P |= 0, we

conclude P | n[M ‖ ‖ 0] |= n : T ◦.
• (Case of (TOCall)) We have [M ;0] :: A σ . B δ[l(T )V ] concluded from
l(x) = e | N ≡ M and e : A, x : T σ . B, x : 0 δ[V ]. Pick P |= A | Sσ

and some name m. Let No , n[M ‖ s ‖ 0] and S , P | No. We have

No
n.lc(m)−→ N where N , n[M ‖ s ‖ c 〈e{x/m}〉].

By Lemma A.4, there is C, U such that A <: C;B and T <: U ;0
(so that T <: U) and N |= A | Sσ . n : c(m : U)V ; (B | Sδ). Then
S |= ∀m . n : lc(m); c(m : U)V ; (B | Sδ) and S |= ∀m . n : lc(m); c(m :
T )V ; (B | Sδ). Therefore, S |= n : l(T )V ; (B | Sδ), and since P was arbi-
trary, No |= (A | Sσ) . n : l(T )V ; (B | Sδ).

Theorem 3.8. If P :: A . B then P |= A . B.

Proof. By induction on the typing derivation.

• (Case of (TPar)) We have P | Q :: A | C . B | D concluded from P :: A . B
and Q :: C . D. Let R |= A | C. Then R ≡ (νm)(R1 | R2) where R1 |= A
and R2 |= C. By i.h., we have that P | R1 |= B and Q | R2 |= D. So,
R1 | R2 | P | Q |= B | D. By Lemma A.1(1), R | P | Q |= B | D.

• (Case of (TComp)) We have P | Q :: A . C conclude from P :: A . B
and Q :: B . C. Let R |= A. By i.h., we have that R | P |= B and, again
by i.h., R | P | Q |= C.

• (Case of (TNew)) We have concluded (νn)P :: A . B from P :: A . B
where n#A,B. Consider (νn)P and R |= A (we may assume n 6∈ fn(R)).
By i.h., we have that R | P |= B. By Lemma A.1(1), (νn)(R | P ) |= B, and
thus R | (νn)P |= B.

• (Case of (TSub)) By Proposition 3.7.
• (Case of (TObj)) Let n[M ‖ s〈ni〉 ‖ t] :: A | Π(ni : V ◦

i ) . n : T be
concluded from [M ; t] :: A si : Vi : . B [T ]. By Lemma A.5, we have
n[M ‖ s〈ni〉 ‖ t] |= (A | Π(ni : V ◦

i )) . (n : T );B.
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B Appendix to Section 4

In Figs. B.1, B.2, and B.3, we present the complete set of typing rules for the
full type system with sharing. The rules are almost the same as for the basic
system, with the addition of the sharing slot in judgments. The sharing slot
plays its essential role in rules TSWrite and TSRead (expressions), TSPar and
TSObjs (Networks), and is propagated in an additive fashion in the remaining
typing rules. The soundness proof is developed along the same lines as in the
basic case without sharing. We introduce the sharing-indexed logical predicate
and the sharing-indexed usage, as defined in Figs B.4 and B.5. This allows us
to define semantic validity for typing judgments.

Definition B.1 (Validity of sharing typing and subtyping judgments)

valid(P :: A ς . B) , P |=ς A . B

valid([M ; t] :: A σ pi : Ui . B δ [T ]) ,

for all n, ni, rij . n[M ‖ si 〈ni〉 | ∗pij

〈
rij

〉
‖ t] |=n.pi:Ui

(A | Π(ni : σ(si)
◦) | Π(rij : Ui

◦) . (n : T ); (B | Π(ni : δ(si)
◦))

valid(e :: A, x : T σ pi : Ui . B, x : S δ [V ]) ,
exists C,U . A <: C;B and x : T <: x : U ; S . and forall n, ni, pk, rij .

n[ ‖ si 〈ni〉 | ∗pij

〈
rij

〉
‖ c

〈
e{xk/pk}

〉
] |=n.pi:Ui

A | Π(ni : σ(si)
◦) | Π(rij : Ui

◦) . c(p : U)V ; (B | Π(ni : δ(si)
◦))

Again, soundness of the type system is proven by showing that each typing
rule establishes validity of the judgment in its conclusion, given the validity
of its premises. All properties in Lemma A.1, also carry to |=ς .

Lemma B.2 Let e :: A σ η . B δ [V ]. Then valid(e :: A σ η . B δ [V ]).

Proof. By induction on the typing derivation, we prove the stronger property.
Let e :: A, x : T σ η . B, x : S δ [V ]. For any active type context F [−],

exists C,U . A <: C;B and x : T <: x : U ; S . and for all n, ni, pk, rij .

n[ ‖ si 〈ni〉 | ∗pij

〈
rij

〉
‖ c

〈
e{xk/pk}

〉
] |=n.pi:Ui

F [A] | Sσ | Π(rij : Ui
◦) . c(p : U)V ; (B | Sδ))

• (Case of (TSRead)) We have ∗a? :: σ η . σ [V ]. Then A = B = 0,
T = S = 0, and η = η′, a : V . Let C = U = 0. Let No , n[ ‖ s | ∗p ‖ c 〈a?〉],
where ς = n.η. Let P |=ς F [A] | Sσ | S∗p,η and R |=ς 0.

Let P | R | No Z⇒ς Q′ n.c(v)−→ Q′′. This sequence must have the form
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( TSNil )

nil :: A σ η . A σ [0]
( TSValue )

v :: v : T ◦ σ η . v : 0 σ [T ]

( TWrite )

a!(v) :: v : T ◦ σ, a : 0 η . σ, a : T [0]
( TRead )

a? :: σ, a : T η . σ, a : 0 [T ]

( TSWrite )

∗a!(v) :: v : T ◦ σ η, a : T . σ [0]
( TSRead )

∗a? :: σ η, a : T . σ [T ]

( TSCall )

v.l(u) :: v : l(U)V | u : U σ η . σ [V ]

( TSNew )

[M ;0] :: A◦ a : 0 η . [T ]

new[a; M ] :: A◦ η . [T ◦]

( TSSub )

A <: A′ B′ <: B V ′ <: V
e :: A′ σ η . B′ δ [V ′]

e :: A σ η . B δ [V ]

( TSAnd )

e :: A σ η . B δ [U ]
e :: A σ η . B δ [V ]

e :: A σ η . B δ [U ∧ V ]

( TSPar )

e :: A σ η . B δ [V ]

e :: A | C σ, φ η . B | C δ, φ [V ]

( TSSeq )

e :: A σ η . B δ [V ]

e :: A;C σ η . B;C δ [V ]

ei :: Bi σi η . δi [Vi]
f :: C, x : V ◦ δ η . E, x : 0 φ [U ]

let x = e inf :: Π(B);C σ η . E φ [U ]
( TSLet )

Fig. B.1. Sharing Typing Rules (Expressions).

M ≡ (N | l(x) = e) ( TOSCall )

e :: A, x : U σ η . B, x : 0 δ [V ]

[M ;0] :: A σ η . B δ [l(U)V ]

( TOSNil )

[M ;0] :: A σ η . A σ [0]

[M ; t] :: A σ η . B δ [U ] [M ;0] :: B δ η . C φ [V ]

[M ; t] :: A σ η . C φ [U ; V ]
( TOSSeq )

[M ; t] :: A σ η . B δ [U ]
[N ; u] :: C σ′ η . D δ′ [V ]

( TOSPar )

[M ; t] :: A | C σ, σ′ η . B | D δ, δ′ [U | V ]

( TOSOwn )

[M ;0] :: A◦ σ η . δ [T ]

[M ;0] :: A◦ σ η . δ [T ◦]

Fig. B.2. Sharing Typing Rules (Objects).

P | R | No −→ P | R | n[ ‖ s | ∗ p′ ‖ c 〈v〉] n.c(v)−→ P | R | n[ ‖ s | ∗ p′ ‖ ]

where ∗p′ = ∗p \ ∗a〈v〉, P |=ς F [A] | Sσ | v : V ◦ and R
07−→ R. We thus

conclude No |=ς F [A] | Sσ | S∗p,η . c(0); (F [A] | Sσ).
• (Case of (TSLet)) We have let y = e inf :: Π(B);D σ ς . H [U ]

concluded from ei :: Bi σi ς . 0 δi [Vi], for i = 1 . . . n, and f ::
D, y : V ◦ δ ς . H, y : 0 φ [U ]. We introduce the same abbreviations as
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( TSVoid )

0 :: A ς . A

( TSStruc )

P :: A ς . B P ≡ Q

Q :: A ς . B
( TSPar )

P :: A | !S ς . B
Q :: C | !S ς . D P‖∗Q

P | Q :: A | C | !S ς . B | D

( TComp )

P :: A ς . B
Q :: B ς . C P‖∗Q
P | Q :: A ς . C

( TSNew )

P :: A ς, n.p : T . B n#A,B, ς

(νn)P :: A ς . B

( TSSub )

A <: A′ P :: A′ ς . B′ B′ <: B

P :: A ς . B

[M ; t] :: A si : Vi pi : Ui . B; δ [T ] ( TSObj )

n[M ‖ si〈vi〉 | ∗pij

〈
rij

〉
‖ t] :: A | Π(vi : Vi

◦) | Π(rij : Ui
◦) n.pi : Ui . n : T

Fig. B.3. Sharing Typing Rules (Networks).

in the proof of Lemma A.4((TLet)). Let Ne1 , n[ ‖ s1 | ∗ p1 ‖ c 〈e1{x/m}〉],
Ne2 , n[ ‖ s2 | ∗ p1 ‖ c 〈e2{x/m}〉].

By i.h., Ne1 |=ς B′
1;B

′
2;F [D′] | Sσ1 | S∗p1,η . c(m : E1)V1; (B

′
2;F [D′] | Sδ1)

and Ne2 |=ς B′
2;B

′
1;F [D′] | Sσ2 | S∗p2,η . c(m : E2)V2; (B

′
1;F [D′] | Sδ2).

Pick P |=ς F [A] | Sσ and Rς |= m : T . So P ≡ (νp)(P1 | P2), where
P1 |=ς B′

1 | Sσ1 and P2 |=ς B′
2 | Sσ2 .

Let No , n[ ‖ s1, s2 ‖ c 〈let y1 = e1{x/m}, y2 = e2{x/m} in f{x/m}〉].
Given the conformance to ς of all reduction sequences starting at P1 | R1 | Ne1

and P1 | R2 | Ne2 , and the properties stated above for Ne1 and Ne2 , we con-
clude that all reductions P | R | No Z⇒ς Px | Nx where

Nx = n[ ‖ d1, d2 ‖ c 〈let y1 = v1, y2 = v2 in f{x/m}〉]

must be such that Px = R′ | Rv1 | Rv2 | P ′ where R′ |=ς m : F , Rvi
|= vi :

V ◦
i , P ′ |=ς F [D′] | Sδ1,δ2 , and R

m:E1 | E27−→ R′. As in the proof of Lemma A.4
(TLet), we conclude No |=ς F [A] | Sσ | S∗p,η . c(m : T )U ; (F [H′] | Sφ).

Lemma B.3 Let the judgment [M ‖ s ‖ t] :: A σ η . B δ [T ] be derivable.
Then valid([M ‖ s ‖ t] :: A σ η . B δ [T ]).

Proof. We show (Case of (TOSCall)). We have [M ;0] :: A σ η . B δ[l(T )V ]
concluded from l(x) = e | N ≡ M and e : A, x : T σ η . B, x : 0 δ[V ].
Pick P |= A | Sσ | S∗p,η and some name m. Let No , n[M ‖ s | ∗ p ‖ 0] and

Q , P | No. We have No
n.lc(m)−→ N where N , n[M ‖ s | ∗ p ‖ c 〈e{x/m}〉].

By Lemma B.2, there is C, U such that A <: C;B and T <: U ;0 (so
that T <: U) and N |=ς A | Sσ | S∗p,η . n : c(m : U)V ; (B | Sδ). Then
Q |=ς ∀m . n : lc(m); c(m : U)V ; (B | Sδ) and Q |=ς ∀m . n : lc(m); c(m :
T )V ; (B | Sδ). Therefore, Q |=ς n : l(T )V ; (B | Sδ), and since P was arbitrary,
No |=ς A | Sσ | S∗p,η . n : l(T )V ; (B | Sδ).
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P |=ς A ∧ B iff P |=ς A and P |=ς B
P |=ς A | B iff exists Q, R. P ≡ Q | R and Q |=ς A and R |=ς B
P |=ς A . B iff forall Q. if (P‖∗Q) and Q |=ς A then P | Q |=ς B
P |=ς ∀x.A iff forall n. P |=ς A{x/n}
P |=ς 0 iff idle(P )

P |=ς A◦ iff P |=ς A and P |=ς 0

P |=ς A; B iff P |=ς A and forall Q. if P
A7−→ς Q then Q |=ς B

P |=ς n : lc(m) iff exists Q. idle(P ) and P
n.lc(m)−→ Q

P |=ς (ν)A iff exists Q. P ≡ (νm)Q and Q |=ς A and m#fn(A)

P |=ς n : c(A)V iff forall R,Q. if (P‖∗R) and R |=ς A and P | R ⇒ς Q

then ¬stuck(Q) and

forall Q′, r. if Q n.c(r)−→ Q′ then

exists P ′, R′, Rv. Q′ ≡ P ′ | R′ | Rv and

Rv |=ς r : V ◦and R A7−→ς R′

Fig. B.4. Sharing-indexed Satisfaction

P
07−→ς P

P
U7−→ς Q

P
U∧V7−→ς Q

P
V7−→ς Q

P
U∧V7−→ς Q

P
U{x/n}7−→ ς Q

P
∀x.U7−→ς Q

P
n.lc(m)−→ Q

P
n:lc(m)7−→ ς Q

P ≡ (νm)R R
U7−→ς Q

P
(ν)U7−→ς Q

P
U7−→ς R R

V7−→ς Q

P
U;V7−→ς Q

P
U◦
7−→ς (P \ U◦)

R |=ς A P | R ⇒ ς
n.c(r)−→ Q R

A7−→ς R′

P
n:c(A)V7−→ ς Q \R′ \ r : V ◦

P ≡ P1 | P2 P1
U7−→ς Q1 P2

V7−→ς Q2 Q1 | Q2 ≡ Q

P
U | V7−→ς Q

Fig. B.5. Usage

Theorem 4.4. If P :: A ς . B then P |=ς A . B.

Proof. By induction on the typing derivation. We detail two interesting cases:

• (Case of (TSPar)) We have P | Q :: A | C | !S ς . B | D concluded from
P :: A | !S ς . B and Q :: C | !S ς . D. Pick R |=ς A | C | !S. Then
R ≡ (νm)(R1 | R2 | R3) where R1 |=ς A and R2 |=ς C and R3 |=ς !S.
Then R3 |=ς !S | !S, so that R3 ≡ (νn)(Ra

3 | Rb
3) where Ra

3 |=ς !S and
Rb

3 |=ς !S. By i.h., we have that P | R1 | Ra
3 |=ς B and Q | R2 | Rb

3 |=ς D.
So, R1 | R2 | P | Q |=ς B | D. Then R | P | Q |=ς B | D.

• (Case of (TSObj)) Let n[M ‖ s〈ni〉 ‖ t] :: A | Π(ni : V ◦
i ) . n : T be

concluded from [M ; t] :: A si : Vi : . B [T ]. By Lemma B.3, we have
n[M ‖ s〈ni〉 ‖ t] |= (A | Π(ni : V ◦

i )) . (n : T );B.
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