
Dependent Session Types
via Intuitionistic Linear Type Theory

Bernardo Toninho
Carnegie Mellon University &
Universidade Nova de Lisboa

Luís Caires
Universidade Nova de Lisboa

Frank Pfenning
Carnegie Mellon University

ABSTRACT
We develop an interpretation of linear type theory as de-
pendent session types for a term passing extension of the
π-calculus. The type system allows us to express rich con-
straints on sessions, such as interface contracts and proof-
carrying certification, which go beyond existing session type
systems, and are here justified on purely logical grounds.
We can further refine our interpretation using proof irrele-
vance to eliminate communication overhead for proofs be-
tween trusted parties. Our technical results include type
preservation and global progress, which in our setting natu-
rally imply compliance to all properties declared in interface
contracts expressed by dependent types.

Keywords
type theory, dependent types, session types, π-calculus

1. INTRODUCTION
We introduce a theory of dependent session types for dis-
tributed processes, based on an interpretation of pure linear
type theory for a term passing extension of the π-calculus.

The π-calculus is a foundational model for interacting con-
current processes, building on the key ideas of naming, and
name mobility. Name mobility overcame essential limita-
tions of previous models, which were expressive enough to
capture value passing concurrent computation, but not dy-
namic allocation and reference passing, as needed to model,
e.g., ML-like programming languages and higher-order pro-
cesses [26, 30]. As for the λ-calculus, the π-calculus was orig-
inally presented as an untyped language. This has opened
the opportunity for intensive research on various type dis-
ciplines, some based on notions of linearity and sharing,
inspired by concepts originating in linear logic [24]. More
recently, session types have been introduced as a general
typing discipline for name passing processes that structure
interactions around the notion of sessions [20, 22].

A session connects, via a private communication channel,
exactly two subsystems which interact on it in perfect har-
mony. Interactions within a session always match precisely:
when one side sends, the other receives; when one side offers
a selection, the other chooses; when one side terminates, the
other quits as well. Such discipline is enforced even when
session channels are passed along in communications. New
sessions may be dynamically created by calling on capabil-
ities of persistent shared servers. Various forms of session
types have proven useful to model realistic concurrent inter-
actions in scenarios ranging from service-oriented computing
[11] to operating system kernels [15].

In prior work [10], we have discovered a remarkable corre-
spondence between session types and (intuitionistic) linear
logic, which offers the first purely logical account of all the
key features (both linear and shared) of session types. In
this paper, we extend our basic interpretation to cover pro-
cesses that communicate data values of an underlying func-
tional language, not just pure sessions, and generalize it by
introducing dependent types.

Our framework yields a powerful theory of dependent ses-
sion types in which types may be used to specify not only
the dynamics of protocols, but also properties of data re-
ceived and sent in communications in the style of interface
contracts. For generality, we assume data to be defined by
terms of some dependent type theory, such as LF [19]. This
way, functional terms may be used to represent not only
basic data (such as integers, strings, structures, and higher-
order functions) but also, quite importantly, proofs of data
properties. Such proof terms may also be exchanged in com-
munications, thus modeling a form of proof-carrying certi-
fication (cf. [27]), clearly useful for distributed computing.
Our development is based on a purely logical foundation,
via an interpretation of a standard sequent calculus proof
system for linear logic [4], where base types are drawn from
an underlying functional type theory [12].

All types in the logical structure are interpreted as some
kind of session behavior. Following [10], multiplicative types
A(B and A⊗B, correspond to input and output session
types A?.B, the type of sessions that receive a session of type
A and then behaves as B, and A!.B, the type of sessions that
send a session of type A and then behaves as B, respectively.
The exponential type !A is used to type shared channels,
associated with replicated servers. As we will see, a session
channel of base type τ just carries a basic value N of the

1

appropriate functional type τ . A dependent type ∀x:τ.B
types a session process that inputs a value N of type τ , and
then behaves as B{N/x}. Compatibly, a type ∃x:τ.B types
a session process that outputs a value N of type τ , and then
behaves as B{N/x}. As an example, consider the process

Up(x) , x(n).x〈n+ 1〉.0

In a classical session type system, this process is given type
x :?int.!int.end, which in our basic linear session type system
is rendered x : int ((int⊗1). Using dependent types we can
provide a much more informative interface contract, such as
(among many others):

UpInterface(x) , x : ∀n:int.∀p:(n > 0).∃y:int.∃q:(y > 0).0

This type specifies that if the process receives a positive
amount (on session x), it will send back a positive amount
as well. A sample process inhabiting type UpInterface(x) is

UpCert(x) , x(n).x(p).x〈n+ 1〉.x〈incp(n, p)〉.0

Here, we have used incp(n, p) to denote a proof term of type
(n+ 1 > 0), computed by some function

incp : Πm:int.(m > 0)→ (m+ 1 > 0)

given n and p. Clearly, process UpCert(x) mimics Up(x) de-
fined above, but also explicitly receives and sends proof cer-
tificates for the interface properties, thus witnessing the va-
lidity, at the appropriate steps, of all properties expressed by
dependent types. For example, UpCert(x), after outputting
m, also issues a proof of (m > 0).

Explicitly manipulating proof certificates may be necessary
in a distributed setting, but may also turn out redundant
in other scenarios. To address this potential issue, again
building on purely logical foundations, we explore proof ir-
relevance [29]. Proof irrelevance allows us to safely mark
parts of a type specification that must be respected at run-
time, but need not to be explicitly witnessed in the typed
process. Irrelevant components A in a type are marked by a
bracketing operator [A]. So, instead of type UpInterface(x)
for UpCert(x), we may instead pick type

UpInterfaceP(x) , x : ∀n:int.∀p:[n > 0].∃y:int.∃q:[y > 0].0

Then, by applying to the process UpCert(x) a type-directed
erasure map based on UpInterfaceP(x), we may prune the
behavior associated to irrelevant components of the process
type. We then get back to the process

Up(x) , x(n).x〈n+ 1〉.0

which can still be shown to conform to the rich interface
type UpInterfaceP(x), in a precise sense, since we know the
process passed type-checking with the extra information.

Our technical results show that our logical type system en-
joys type preservation under reduction in a rather strong
sense, and (global) progress, meaning that well typed pro-
cesses never get stuck. The standard result of type preserva-
tion naturally holds in our system (Theorem 3.3). A stronger
result, relating reduction in the process world and cut re-
duction/conversion steps in the sequent calculus world also
holds, but is out of the scope of this particular presentation.
The progress property (Theorem 3.5), in our setting, im-
plies not only that all communications prescribed by types

will succeed, but also that all “assertions” captured by de-
pendent types hold at the appropriate protocol steps.

The presentation is structured as follows: In Section 2 we
discuss our interpretation of linear logic as session types,
beginning with a session composition principle that is em-
bodied by a sequent calculus cut. We interpret each of the
propositions of intuitionistic linear logic as session behav-
iors, beginning with the multiplicative fragment, followed by
atomic propositions, additives and exponentials and, finally,
quantifiers, which correspond to input and output of proof
terms. Section 3 presents the results of type preservation
and progress for our type system. Section 4 describes the
usage of proof irrelevance as a form of type-directed runtime
optimization of processes and Section 5 concludes.

2. LINEAR LOGIC AS SESSION TYPES
In this section, we present our correspondence of quantified
linear logic propositions as session types for a term passing
π-calculus by interpreting each linear logic proposition as a
type describing the session behavior of a particular chan-
nel. The interpretation extends the one given in [10] with a
functional layer, based on some dependent type theory, giv-
ing meaning to base types, and also crucially, with universal
and existential dependent type constructors.

We begin by first defining our typing judgment. We start
off with a single typing context ∆ which is used according
to a linear discipline (it is not subject to weakening or con-
traction). Later in the paper we add new context regions
as necessary to account for the full generality of our system.
Our type system assigns types to channels. The context ∆
records assignments of the form x : A, denoting that a pro-
cess typed under such an assumption expects to be placed
in an environment providing the behavior A along channel
x. Our typing judgment is: ∆ ⇒ P :: z : A, meaning that
process P provides, on channel z, the session behavior de-
scribed by A when composed with any process environment
providing the appropriate channels in ∆. We tacitly assume
that all channels declared in ∆ and the channel z are dis-
tinct. We can apply renaming as necessary to satisfy this
condition. We always consider processes modulo structural
congruence, therefore typing is closed under structural con-
gruence by definition.

2.1 Cut as composition
A fundamental aspect of process calculi is parallel composi-
tion. Parallel composition allows for a process to rely on the
functionality of another to implement its own. In our typed
setting, this means that given a process P that implements
behavior A along some channel x, that is, ∆⇒ P :: x : A, we
can take a process Q that uses the behavior of type A (and
maybe more) to implement the behavior C on z (formally
∆′, x : A ⇒ Q :: z : C) and compose the two processes so
that the composition provides C along z outright. Since we
follow a linear typing discipline, Q requires all the behavior
supplied by P along x and therefore the composition must
restrict the scope of x to the two processes. The cognoscenti
will have already identified this reasoning principle as a se-
quent calculus cut, and we thus obtain the rule:

∆⇒ P :: x : A ∆′, x : A⇒ Q :: z : C

∆,∆′ ⇒ (νx)(P | Q) :: z : C
cut

2

When we compose two processes as in the above rule, we do
so in order for them to interact with one another. In general,
both P and Q may perform some interaction with the out-
side environment, but the point of composing them together
with a shared local name is so they communicate with each
other and evolve together to some residual processes P ′ and
Q′. All of these process reductions (interaction with the
“outside world” by P , by Q, and interaction between P and
Q) can be given meaning through the reduction of cuts in
a proof. We thus take the correspondence of principal cut
reductions and process reductions as a guiding principle in
our design, just as the correspondence between proof reduc-
tions and λ-calculus reductions are the guiding principle for
the Curry-Howard isomorphism.

We now build up the system, following and extending [10].
We interpret linear logic propositions as types that charac-
terize behaviors of processes as session-based interactions.
The grammar of propositions is given by:

A,B ::= 1 | τ |A(B | A⊗B | !A
| A N B | A⊕B | ∀x:τ.B | ∃x:τ.B

2.2 Linear implication
The usual way of reading A (B in linear logic is that,
given an A, we consume it and produce a B. Alternatively,
we can think of A (B as receiving something of type A
and producing something of type B. We therefore type a
channel z with A(B as:

∆, x : A⇒ P :: z : B

∆⇒ z(x).P :: z : A(B
(R

Given a process that performs an input on z, binding it to
x and continuing as P , we can type z with A(B if, under
the assumption that x provides a behavior of type A, P will
use that behavior to provide B along z. We have defined
what it means to type a channel with A (B, so we must
now define what it means to use such a channel:

∆⇒ P :: y : A ∆′, x : B ⇒ Q :: z : C

∆,∆′, x : A(B ⇒ (νy)x〈y〉.(P | Q) :: z : C
(L

We use a channel of type A (B to produce behavior C
along z by first outputting a fresh name y. Since the contract
of x : A(B dictates that x expects to receive a session that
is to be used as A, we must ensure that such is indeed the
case, which we do by having P provide A along y. Having
given x a channel of type A, it will now provide behavior of
type B, which can be used by Q to provide C along z. We
can see that this interpretation is reasonable by composing
an instance of (R with an instance of (L and appealing
to our guiding principle of corresponding process reductions
with cut reductions (we omit the full typing contexts for
brevity):

y : A⇒ P :: x : B

⇒ x(y).P :: x : A (B

⇒ Q1 :: y : A x : B ⇒ Q2 :: z : C

x : A (B ⇒ (νy)x〈y〉.(Q1 | Q2) :: z : C

⇒ (νx)(x(y).P | (νy)x〈y〉.(Q1 | Q2)) :: z : C

−→

⇒ Q1 :: y : A y : A⇒ P :: x : B

⇒ (νy)(Q1 | P) :: x : B x : B ⇒ Q2 :: z : C

⇒ (νx)((νy)(Q1 | P) | Q2) :: z : C

We can isolate the process reduction induced by this cut
reduction

(νx)(x(y).P | (νy)x〈y〉.(Q1 | Q2)) −→ (νx)((νy)(Q1 | P) | Q2)

and observe that, modulo structural congruence, it is the
expected interaction between and input x(y).P and output
x〈y〉.(Q1 | Q2) along a private channel x.

2.2.1 A simple example
Consider we want to describe a bank service in our system.
With what we have presented so far, we can specify what is,
for the moment, the protocol of a very simple bank process
that receives a string encoding a user’s identification and an
amount that is to be deposited and just terminates:

TBank , string ((nat (1)

We have not yet introduced base types (such as string), but
we will get into that shortly. The multiplicative unit 1, as
we show in the following section, denotes the terminated
session. An example of a process providing a session of this
type on channel x is:

x(s).x(n).0 :: x : TBank

This is not yet a particularly interesting example. However,
as we interpret more linear logic connectives, we can gradu-
ally refine our bank specification to describe richer and more
interesting features.

2.3 Multiplicative unit
The multiplicative unit of intuitionistic linear logic, written
1, is a proposition that is proved using no resources. Dually,
using the unit just consumes it, providing no resources. In
a process calculus setting, we interpret 1 as the terminated
session:

· ⇒ 0 :: z : 1
1R

∆⇒ P :: z : C
∆, x : 1⇒ P :: z : C

1L

We provide a session of type 1 with the terminated process
(it uses no further ambient resources) and use it (if such is
even the appropriate term) by simply erasing. This is one
of the two cases where no process reduction takes place in
composition, since the inactive process and the scope restric-
tion are erased through structural congruence, not through
reduction:

⇒ 0 :: x : 1
⇒ P :: z : C

x : 1⇒ P :: z : C
⇒ (νx)(0 | P) :: z : C ≡ ⇒ P :: z : C

2.4 Multiplicative conjunction
Multiplicative conjunction, written A ⊗ B, means that we
must be able to divide our resources (in our interpretation,
the sessions available for interaction in the context) in such
a way that we can produce both an A and a B. In fact, the
rules for ⊗ exhibit a deep symmetry with those for linear
implication. We exploit this symmetry and interpret ⊗ on
the right as output and as input on the left:

∆⇒ P :: y : A ∆′ ⇒ Q :: z : B

∆,∆′ ⇒ (νy)z〈y〉.(P | Q) :: z : A⊗B
⊗R

Since we need to able to provide both session behaviors A
and B, we output a fresh channel y, through which the pro-
cess P provides a session of type A. Since we are already

3

communicating along z, we use it to provide a session of
type B, which is realized by process Q. We use a session of
type A⊗B as follows:

∆, y : A, x : B ⇒ P :: z : C

∆, x : A⊗B ⇒ x(y).P :: z : C
⊗L

We input along x, because the contract of x : A⊗B enforces
that an output of a channel which can be used as a session
of type A will take place on x, we bind that channel to y,
and we can then safely use x as providing type B to provide
C along z. The reduction that supports this interpretation
is:

⇒ P1 :: y : A ⇒ P2 :: x : B

⇒ (νy)x〈y〉.(P1 | P2) :: x : A⊗B

y : A, x : B ⇒ P :: z : C

x : A⊗B ⇒ x(y).Q :: z : C

⇒ (νx)((νy)x〈y〉.(P1 | P2) | x(y).Q) :: z : C

−→
⇒ P2 :: x : B

⇒ P1 :: y : A y : A, x : B ⇒ Q :: z : C

x : B ⇒ (νy)(P1 | Q) :: z : C

⇒ (νx)(P2 | (νy)(P1 | Q)) :: z : C

Again, modulo structural congruence, this is exactly the ap-
propriate process reduction, communicating along the pri-
vate channel x.

2.4.1 A slightly less simple example
The example of 2.2.1 consists of a bank specification that
only allows a client to send its user identification, an amount
to be deposited and then terminate. Now that we have avail-
able the ⊗ type, we can slightly enrich our bank to send back
to the client a receipt of the deposited amount:

TBank , string ((nat ((nat⊗ 1))

For which we can produce the process:

z(s).z(a).(νr)z〈r〉.(Preceipt | 0) :: z : TBank

where Preceipt is a process that will return an appropriate
receipt back to the client. In order to give a precise definition
of Preceipt we need to develop a way of mentioning basic values
such as numbers, which we do in the following section.

Note, however, that this is still a rather simplistic bank pro-
cess in that it only offers deposit operations (which would
not leave its clients very happy), and only runs once. More-
over, this specification only really guarantees that the bank
will send back a number. Nothing ensures that it really
corresponds to the same value that the client wanted to de-
posit. In the following sections we develop our system to
adress each of these issues, ultimately building up to the a
dependent linear type theory of sessions.

2.5 Base types and the identity rule
In the previous section we have shown how to interpret lin-
ear implication and conjunction as the types of input and
output sessions, respectively. Before proceeding to the re-
maining linear logic connectives, we will assign meaning to
base types and interpret the identity axiom of linear logic.
As we have hinted at in the previous example, these turn
out to be essential for our development.

A base type τ denotes a proposition that can only be ulti-
mately proved from an ambient assumption of that partic-
ular type because it cannot be decomposed further. In this

sense, τ is an atom. Moreover, linear logic only allows us
to prove τ if it is our only remaining resource. In previous
work [10], since the focus was on interpreting the composite
connectives as pure process behavior, no interpretation was
given for atomic types. Here, atomic types connect us to
another language layer.

Commonly, we want processes to exchange data, such as
numbers and strings (indeed, most work on session types
takes this for granted and assumes that processes exchange
channels and data values [22, 8, 7, 18]). In our approach
processes communicate not just names, but also terms of a
functional language that assigns meaning to the base types
of the full calculus and, as we show in Section 2.8, pro-
duces the witnesses for universally and existentially quanti-
fied types.

Note that while these terms populate base types, the types
need not actually be atomic in the term language. Any extra
type structure only has meaning in the term language, while
from the perspective of the process calculus they are opaque
types with no further decomposable structure. We range
over the terms of this language with the letters (M,N),
and rely on a separate judgment for well-formedness of such
terms, written Ψ ` M : τ . Ψ is a context region that is
reserved for the term language (we may trivially add the
context Ψ to all the sequents in the rules we have seen so
far, since these do not affect Ψ).

We refrain from fully specifying the term language to main-
tain full generality. We instead assume that the term lan-
guage is defined by some intuitionistic system of natural de-
duction with the usual properties of substitution and weak-
ening (we could relax the requirement of weakening by con-
sidering a typed linear lambda calculus as the term language
such as [12], but we refrain from doing so for simplicity of
presentation).

We already explained how we can use an ambient assump-
tion of a given type to provide that same typed behavior on
another name. We only require two additional rules to fully
account for base types and the corresponding terms of the
functional language:

Ψ `M : τ
Ψ; · ⇒ [z ←M] :: z : τ

coerce

The coerce rule allows us to use terms from the functional
language to give meaning to names at base type. The pro-
cess construct [z ← M] locates functional term M at name
z (we will introduce the operational semantics for this con-
struct shortly). The final missing piece is a rule that takes
names of base type from the linear context and places them
in the appropriate Ψ context:

Ψ, x : τ ; ∆⇒ P :: z : C

Ψ; ∆, x : τ ⇒ P :: z : C
promo

This rule realizes our design to give meaning to base types
in the external functional language: given a channel that
provides complex session behavior, we successively play out
the session down to its basic constituents (which are the
types of the functional term language, the terminated session
1 or, as we detail later, persistent sessions), at which point,
if we are in the presence of a base type, we move it to the

4

context Ψ where it can be further interpreted as needed.

We can now determine what the behavior of the construct
in the coerce rule should be:

`M : τ
⇒ [x←M] :: x : τ

x : τ ; · ⇒ P :: z : C

x : τ ⇒ P :: z : C

⇒ (νx)([x←M] | P) :: z : C

−→⇒ P{M/x} :: z : C

where P{M/x} is the substitution of term M for variable x
in P . The construct [x ← M] is reminiscent of the applied
π-calculus notion of active substitution [1]. In the applied
π-calculus, there is no reduction step like the one above, and
the substitution is instead silently performed by a structural
congruence principle. Although we might have alternatively
interpreted this cut-elimination step by a structural congru-
ence (as we have done for multiplicative unit), we prefer
not to do so, without any loss of generality, to maintain a
crisper correspondence with the dynamics suggested by the
proof theory.

2.5.1 Identity as renaming
We have stated that hypotheses denote the existence of am-
bient names providing certain behaviors. Given the presence
of base types (which were not present in [10]), our system
should allow initial sequents Ψ;x : A⇒ P :: z : A, for some
process P . We know that x stands for a name or a term of
type A, whatever it may be, and we want to make use of
x to provide that same A as z. We thus want to equate x
and z as the same, and that is precisely the behavior that
process P must implement. For this we introduce a new
process construction, [x↔ z], meaning that both names are
interchangeable, obtaining the rule:

Ψ;x : A⇒ [x↔ z] :: z : A
id

The proof reductions that we obtain in cut elimination can
inform us of what the reductions should be:

y : A⇒ [y ↔ x] :: x : A x : A⇒ P :: z : C

y : A⇒ (νx)([y ↔ x] | P) :: z : C

−→ y : A⇒ P{y/x} :: z : C

⇒ P :: x : A x : A⇒ [x↔ z] :: z : A

⇒ (νx)(P | [x↔ z]) :: z : A

−→ ⇒ P{z/x} :: z : A

And so interchangeable names will, operationally, be substi-
tuted for each other. We are justified in renaming one to
the other in a type-safe way. It is possible to replace this
construct at any composite type by a process that acts as an
intermediary between the ambient session and the provided
one, simply acting as a copycat process, until we reach a
base type, at which point the two names are equated to re-
fer to the same functional term. This is the computational
content of the meta-theoretic proof of admissibility of the
identity rule (or initial rule) in a sequent calculus.

The two rules above define the reduction of the renaming
construct with the proviso that y and z do not occur in P ,
respectively. In general, we impose the formation restriction
that one of the names appearing in the renaming construct

must be bound, while the other one must not occur within
the remaining scope of the renaming construct, which is en-
forced by our typing discipline. By adding a structural con-
gruence, [y ↔ x] ≡ [x↔ y], we can summarize the two rules
as one:

(νx)([y ↔ x] | P) −→ P{y/x}

2.6 Additive conjunction and disjunction
We now turn our attention to additive conjunction, written
A N B. Additive conjunction represents alternative avail-
ability of resources (we are prepared to provide sessions A
and B, but can only provide one of them), where the choice
of resource A or B is made by the client of ANB. We thus
type a channel with ANB if it offers a choice between the
two behaviors A and B:

Ψ; ∆⇒ P :: z : A Ψ; ∆⇒ Q :: z : B

Ψ; ∆⇒ z.case(P,Q) :: z : ANB
NR

The process above branches to provide either A or B. If
A is selected, the process P provides the necessary session
behavior along z, otherwise, process Q provides the session
behavior B along z. We can use a channel of type ANB by
triggering either one of the possible choices:

Ψ; ∆, x : A⇒ P :: z : C

Ψ; ∆, x : ANB ⇒ x.inl;P :: z : C
NL1

Ψ; ∆, x : B ⇒ P :: z : C

Ψ; ∆, x : ANB ⇒ x.inr;P :: z : C
NL2

This form of minimal labelled choice is comparable to the
n-ary branching constructs of standard session-oriented π-
calculi [22]. Dually, additive disjunction corresponds to per-
forming a (binary) choice:

Ψ; ∆⇒ P :: z : A

Ψ; ∆⇒ z.inl;P :: z : A⊕B ⊕R1

Ψ; ∆⇒ P :: z : B

Ψ; ∆⇒ z.inr;P :: z : A⊕B ⊕R2

This means that in order to use a session of type A⊕ B to
offer a session behavior of type C, we must be able to offer
C for both possibilities of the choice:

Ψ; ∆, x : A⇒ P :: z : C Ψ; ∆, x : B ⇒ Q :: z : C

Ψ; ∆, x : A⊕B ⇒ x.case(P,Q) :: z : C
⊕L

The reduction we obtain through composition is:

⇒ P1 :: x : A ⇒ P2 :: x : B

⇒ x.case(P1, P2) :: x : ANB

x : A⇒ Q :: z : C

x : ANB ⇒ x.inl;Q :: z : C

⇒ (νx)(x.case(P1, P2) | x.inl;Q) :: z : C

−→
⇒ P1 :: x : A x : A⇒ Q :: z : C

⇒ (νx)(P1 | Q) :: z : C

and symmetrically:

⇒ P1 :: x : A ⇒ P2 :: x : B

⇒ x.case(P1, P2) :: x : ANB

x : B ⇒ Q :: z : C

x : ANB ⇒ x.inr;Q :: z : C

⇒ (νx)(x.case(P1, P2) | x.inr;Q) :: z : C

−→
⇒ P1 :: x : B x : B ⇒ Q :: z : C

⇒ (νx)(P2 | Q) :: z : C

5

2.6.1 A slightly less simple example. . . with choice
We refine our previous bank specification to account for
the fact that a bank offers several possible operations to
its clients. In particular, we consider the deposit operation
of Section 2.4.1 and consulting the account balance:

TBank , string (((nat ((nat⊗ 1)) N (nat⊗ 1))

We abstract the details of performing the deposit operation
with a function dep : string → nat → nat that takes the
user identification and the deposit amount and returns the
receipt, and the details of obtaining the balance of an ac-
count with a function bal : string → nat that takes the user
identification and returns the balance of the account:

z(s).z.case(z(a).(νr)z〈r〉.([r ← dep(s, a)] | 0),
(νb)z〈b〉.([b← bal(s)] | 0) :: z : TBank

2.7 Replication and exponential
We now develop the technical apparatus to provide an inter-
pretation of the linear logic exponential !A. Proof theoreti-
cally, the exponential enables a form of controlled weakening
and contraction. More precisely, a proposition !A provides
an arbitrary number of copies of A (possibly 0). This means
that to prove !A, we cannot use any linear resource, oth-
erwise we would not be able to use A an arbitrary number
of times. To cleanly account for the ability to weaken and
contract certain resources, we split the context in an unre-
stricted zone that is subject to weakening and contraction,
which we call Γ, and the linear zone (not subject to weak-
ening or contraction), which we still denote as ∆ (this form
of context splitting is consistent with Barber and Plotkin’s
DILL [4]). Variables declared in Γ are called unrestricted
and are denoted by (u, v, w). As before with the context
Ψ, we simply add Γ to all sequents in the rules we have
presented so far, since they do not use or change Γ in any
way.

We can now assign the type !A to a channel z as follows:

Ψ; Γ; · ⇒ P :: y : A

Ψ; Γ; · ⇒!z(y).P :: z : !A
!R

We represent the persistent (or unrestricted) nature of the
exponential by using an input-guarded process replication
construct. The above process expects an input along z (call
it y) to trigger the replication. The received name y will
be the one through which P provides the session behavior of
type A. Since the input is replicated (and P does not depend
on any linear sessions), the process is able to provide an
arbitrary number of copies of the session behavior A. Note
that while we do require the linear context to be empty,
we can use any ambient persistent session channel (called
standard channels in [17]) in Γ to implement a session of
type !A.

Using a (linear!) channel x of type !A conceptually requires
two steps. The first is to unlock the ability for this channel
to provide session A multiple times. This is accomplished
simply by renaming, taking care to make sure that the new
channel u : A is persistent and therefore declared in Γ.

Ψ; Γ, u : A; ∆⇒ P :: z : C

Ψ; Γ; ∆, x : !A⇒ P{x/u} :: z : C
!L

The second step is to actually create a fresh channel y : A
while retaining the capability to create more in the future,

encoded by keeping u : A in the context.

Ψ; Γ, u : A; ∆, y : A⇒ P :: z : C

Ψ; Γ, u : A; ∆⇒ (νy)u〈y〉.P :: z : C
copy

This copy rule is characteristic of sequent calculi implement-
ing DILL. It is interesting that !L merely renames, while copy
outputs a new bound name, being the computationally sig-
nificant operation.

To follow our program of identifying process reductions with
principal cut reductions, we must first observe that our pre-
vious composition rule cut cannot properly account for am-
bient unrestricted assumptions and thus does not completely
explain typed composition in its full generality. In fact, if
we simply compose the instances of !R and !L using cut:

Ψ; Γ; · ⇒ P :: y : A

Ψ; Γ; · ⇒ !x(y).P :: z : !A

Ψ; Γ, u : A; ∆⇒ Q :: z : C

Ψ; Γ; ∆, x : !A⇒ Q{x/u} :: z : C

Ψ; Γ; ∆⇒ (νx)(!x(y).P | Q{x/u}) :: z : C

not only can we not produce a process reduction (which is
expected due to the “silent” nature of !L), but we also are
unable to produce a proof reduction, since up to this point
we have not defined a persistent version of cut. We can
fix this by considering a composition rule for unrestricted
sessions:

Ψ; Γ; · ⇒ P :: x : A Ψ; Γ, u : A; ∆⇒ Q :: z : C

Ψ; Γ; ∆⇒ (νu)(!u(x).P | Q) :: z : C
cut!

Given a process P that provides a session A along x without
using any ambient linear sessions, and a process Q that im-
plements session behavior C along z by (potentially) using
the unrestricted ambient session u : A (as well as linear am-
bient sessions ∆), we may compose Q with P if we prepend
a replicated input along u to P , so it may now provide the
necessary multiple copies of the session behavior A to pro-
duce a process that provides C along z outright. We can now
exhibit our correspondence on the copy rule, where the pro-
cess reduction is matched with a proof reduction obtained
by the elimination of a persistent cut:

⇒ P :: x : A

u : A;x : A⇒ Q :: z : C

u : A;⇒ (νx)u〈x〉.Q :: z : C

⇒ (νu)(!u(x).P | (νx)u〈x〉.Q) :: z : C −→

⇒ P :: x : A

u : A⇒ P :: x : A u : A;x : A⇒ Q :: z : C

u : A⇒ (νx)(P | Q)

⇒ (νu)(!u(x).P | (νx)(P | Q)) :: z : C

If we now revisit our previous composition of !R and !L,
we can observe that the process composition is structurally
equivalent to persistent composition (which we know to ex-
hibit the appropriate process reduction when the persistent
session u is actually used). Similarly to what happens with
1, this is also one of the situations where we witness a proof
reduction (of a cut to a persistent cut) that is matched by
structural congruence in the process calculus. Note that the
proof reductions of the persistent cut are again matched by
process reductions (as we have shown above).

This form of composition of unrestricted resources intro-
duces a proof conversion in which the unrestricted resource
is “garbage collected” if never used. We can interpret this
conversion as extending the standard structural congruence

6

≡ between processes with the following rule (we will refer to
this extended congruence as ≡S):

(νx)(!x(y).P | Q) ≡S Q if x 6∈ fn(Q)

While not essential to our development, ≡S allows us to
provide a more concise statement for some of the theorems
of Section 3.

2.7.1 A bank with a persistent service
Having properly defined persistent sessions through linear
logic exponentials, we can now have a bank service that per-
sists through multiple sessions, instead of just being avail-
able for one usage:

TBank , !(string (((nat ((nat⊗ 1)) N (nat⊗ 1)))

By simply adding the ! to the type, we must obtain the bank
process:

!z(y).y(s).y.case(y(a).(νr)y〈r〉.([r ← dep(s, a)] | 0),
(νb)y〈b〉.([b← bal(s)] | 0)) :: z : TBank

which now receives a session channel (bound to y) and spawns
a replica that provides the behavior string (((nat ((nat⊗
1)) N (nat⊗ 1)) along y.

We now have what may seem to be a good specification for
what a bank process should be. However, if we only consider
the type TBank, we are really only describing a persistent
service that will receive a string and give a choice between
either receiving a number and sending one back or just send-
ing a number. When seen under this light, it becomes less
obvious that we should be happy with our specification of
what a simple bank process should be. In the next section,
we develop a way of refining the specification such that typ-
ing will ensure strong guarantees not just on the pure session
behavior, but also on the relationships between the actual
communicated data. This refinement comes from the uni-
versal and existential quantifiers of linear logic, which are
interpreted as a form of dependent product and sum, re-
spectively.

2.8 Quantification and term passing
In intuitionistic first-order linear logic we usually consider
the quantifiers ∀x.A and ∃x.A as ranging over a single do-
main that is left unspecified in order to study quantification
in a general setting, independent of a particular domain of
discourse. We now reconsider the quantifiers as ∀x:τ.A and
∃x:τ.A, and therefore focus on quantification where the do-
main of discourse is typed (in particular, with a type τ).

Let us first consider universal quantification. Logic allows
us to conclude ∀x:τ.A if by hypothesizing the existence of
some element of type τ , labelled by x, we can prove B (which
may depend on x). In linear logic, the hypothesis x : τ is
given an unrestricted character since it avoids the problem-
atic situation where a proposition may refer to an object
that may have already been consumed. Conversely, we use
an assumption of ∀x:τ.A by providing an object of type τ ,
which enables us to use A with the free variable x appropri-
ately instantiated (in type theory this means that A depends
on a term of type τ). We thus interpret a channel of type

∀x:τ.A as follows:

Ψ, x : τ ; Γ; ∆⇒ P :: z : A

Ψ; Γ; ∆⇒ z(x).P :: z : ∀x : τ.A
∀R

Similarly to how in type theory the universal quantifier cor-
responds to implication, we type the name z with ∀x:τ.A if
after performing an input of a term of type τ , we can type
z with A in the continuation P . We now define how to use
a name of type ∀y:τ.A:

Ψ ` N : τ Ψ; Γ; ∆, x : A{N/y} ⇒ P :: z : C

Ψ; Γ; ∆, x : ∀y : τ.A⇒ x〈N〉.P :: z : C
∀L

To use an ambient channel x of this type, we must output a
functional term of type τ . Upon doing so, x now offers the
session A, where the free variable in A has been instantiated
with the term N , which we can use in P to provide session
C along z.

We choose to use functional terms as the quantifier witnesses
because they allow us to refer to the values communicated
by processes (which are defined by the same functional lan-
guage). This allows us to express rich properties of the val-
ues communicated by processes (which we will see shortly).
Furthermore, it allows us to give a clean and logically based
account of processes that exchange proof objects (i.e., the
functional terms) which can serve as a form of inspectable
proof certificate (vis., a high-level model of proof carrying
code [27]).

The reduction for the processes in ∀R and ∀L is:

y : τ ;−;− ⇒ P :: x : A

⇒ x(y).P :: x : ∀y : τ.A

` N : τ x : A{N/y} ⇒ Q :: z : C

x : ∀y : τ.A⇒ x〈N〉.Q :: z : C

⇒ (νx)(x(y).P | x〈N〉.Q) :: z : C

−→
⇒ P{N/y} :: x : A{N/y} x : A{N/y} ⇒ Q :: z : C

⇒ (νx)(P{N/y} | Q) :: z : C

We now consider existential quantification. Logic allows us
to conclude ∃x:τ.A if we can produce a witness of type τ
and (potentially) use it to show A (in which x may be free
and therefore we need to instantiate the variable x with the
witness). Just as universal quantification was interpreted as
term input, we interpret existential quantification as term
output:

Ψ ` N : τ Ψ; Γ; ∆⇒ P :: z : A{N/x}
Ψ; Γ; ∆⇒ z〈N〉.P :: z : ∃x:τ.A

∃R

The term N provides a witness of τ , which is used to instan-
tiate x in the session type A provided by P along z. Using
a channel of type ∃y:τ.A is defined as:

Ψ, y : τ ; Γ; ∆, x : A⇒ P :: z : C

Ψ; Γ; ∆, x : ∃y:τ.A⇒ x(y).P :: z : C
∃L

Given that the contract of x : ∃y:τ.A is to output a term
of type τ along x and then provide behavior A (with the
appropriate instantiation of the variable y), we use a session
of existential type by performing an input along x, that is
bound in the continuation as y, which then uses the residual
behavior A to provide C along z.

The reduction of the process composition is identical to that

7

for sessions of universal quantification type:

` N : τ ⇒ P :: x : A{N/y}
⇒ x〈N〉.P :: x : ∃y : τ.A

y : τ ;x : A⇒ Q :: z : C

x : ∃y : τ.A⇒ x(y).Q :: z : C

⇒ (νx)(x〈N〉.P | x(y).Q) :: z : C

−→
⇒ P :: x : A{N/y} x : A⇒ Q{N/y} :: z : C

⇒ (νx)(P | Q{N/y}) :: z : C

We must note that as of this moment in our presentation, our
system is not yet a truly dependent type theory of sessions,
since we have not yet defined a way in which we can actually
have occurrences of the quantified variables in the bodies of
types. In logic, this is achieved by allowing atomic propo-
sitions p to depend on (typed) variables, that is, to have
atomic propositions be predicates on typed objects (e.g. in
∀x:τ.p(x), p is a predicate on objects of type τ). In type
theory, predicates correspond to indexed families of types.
For instance, ∀x:τ.p(x) defines a type family p indexed by
objects of type τ , that is, p(N) is a type for any object N of
type τ . We refrain from presenting further insights into the
technical aspects of dependent type theories for the sake of
brevity, simply noting that their expressive power gives rise
to practical and useful solutions to problems that range from
foundational aspects [25, 13, 14] to more practical aspects
of computer science [31, 28].

In our interpretation, we assume that we can define type
families in the functional term language, that is, the func-
tional term language is a dependent type theory in the style
of [19, 28]. We thus introduce the final requirement that
makes our interpretation a fully dependent type theory of
sessions.

2.8.1 A more sophisticated bank service
We now extend our running example of the bank process to
a system with a bank and an ATM that interfaces between
the bank and its clients. The ATM charges any client a
small amount for any operations performed. We therefore
specify such an ATM, with the additional caveat that it may
only charge at most 2 dollars per operation, and it must
provide a proof of such to the client. We begin with the
bank specification:

TBank , !(∀s : string.uid(s) (
(∀n : nat.deposit(s, n) ((receipt(s, n)⊗ 1)) N
(∃m : nat.balance(s,m)⊗ 1))

By using dependent types at both the session level and at
the functional term level, we can provide a refined specifica-
tion in which the bank receives the user identification and
then offers the deposit and balance operations: the former
receives a deposit order of n dollars for the specified user s
and issues a receipt that refers to s and n (all of which is
ensured by typing); the latter simply issues a balance state-
ment that refers to s and an amount m corresponding to
the account balance. We use dependent functions dep with
type Πs : string.Πn : nat.deposit(s, n) → receipt(s, n) and bal
with type Πs :string.Σm :nat.balance(s,m) to implement the
bank process (πi(N) denotes the ith projection of N):

!z(y).y(s).y(id).y.case(y(n).y(d).(νr)y〈r〉.
([r ← dep(s, n, d)] | 0), y〈π1(bal(s))〉.(νb)y〈b〉.

([b← π2(bal(s))] | 0)) :: z : TBank

The ATM client interface specification is (to make matters
simpler, we assume the ATM only performs deposits):

TATMClient , ∀s : string.uid(s) (
(∀n : nat.deposit(s, n) (∃m : nat.
∃p : (n− 2 ≤ m ≤ n).(receipt(s,m)⊗ 1))

The client sends its user id, a deposit instruction for some
amount n, and the ATM sends back to the client the receipt
for the deposited amount, along with a proof object p that
guarantees that the amount charged for the deposit is within
the bounds imposed by the specification. Note that we can
now ensure by typing alone that any well-typed ATM will
be guaranteed to not overcharge its clients. For the ATM
process, we use a function charge of type:

charge : Πs :string.Πn :nat.deposit(s, n)→
Σm : nat.Σp : (n− 2 ≤ m ≤ n).deposit(s,m)

The charge function takes the deposit object and issues a
new deposit object, providing the necessary proof objects to
ensure that the amount charged for the operation is within
specification bounds. A possible valid ATM process is (as-
suming the bank session is available on channel x):

z(s).z(id).z(n).z(d).(νy)x〈y〉.y〈s〉.(νi)y〈i〉.([i← id] | y.inl;
y〈π1(charge(s, n, d))〉.(νd′)y〈d′〉.
([d′ ← π2(π2(charge(s, n, d)))] | y(r).z〈π1(charge(s, n, d))〉.
z〈π1(π2(charge(s, n, d)))〉.(νt)z〈t〉.([t↔ r] | 0)))

:: z : TATMClient

2.9 Summary
We now take a step back and summarize what we have pre-
sented so far. We present a type system of dependent session
types for a term passing π-calculus, whose process construc-
tors are given below:

P ::= 0 | P |Q | (νy)P | x〈y〉.P | x〈N〉.P | x(y).P
| !x(y).P | x.inl;P | x.inr;P | x.case(P,Q)
| [y ↔ x] | [x← N]

The typing rules for our system are summarized in Fig. 1,
which is defined modulo structural congruence. Structural
congruence is the least congruence on processes defined by
the following rules:

P | 0 ≡ P P ≡α Q⇒ P ≡ Q P | (Q | R) ≡ (P | Q) | R
P | Q ≡ Q | P x 6∈ fn(P)⇒ P | (νx)Q ≡ (νx)(P | Q)
(νx)0 ≡ 0 (νx)(νy)P ≡ (νy)(νx)P [y ↔ x] ≡ [x↔ y]

The operational semantics for the [y ↔ x] and [x← N] con-
structs, as informed by the proof theory, consist of channel
renaming and term substitution, respectively. The channel
renaming construct’s behavior is to “re-implement” an am-
bient session on a different name. The reduction rules for
our calculus are summarized below:

x〈y〉.Q | x(z).P → Q | P{y/z}
x〈y〉.Q | !x(z).P → Q | P{y/z} | !x(z).P
x〈N〉.Q | x(z).P → Q | P{N/z}
(νx)([x↔ y] | P)→ P{y/x}
(νx)([x← N] | P)→ P{N/x}
x.inl;P | x.case(Q,R)→ P | Q
x.inr;P | x.case(Q,R)→ P | R
Q→ Q′ ⇒ P | Q→ P | Q′
P → Q⇒ (νy)P → (νy)Q
P ≡ P ′, P ′ → Q′, Q′ ≡ Q⇒ P → Q

8

The term substitution construct is similar to the active sub-
stitutions of the applied π-calculus, with the particular dif-
ferences that active substitutions are persistent and applied
by structural congruence, while ours obey a linear discipline
and are applied by an actual reduction step. Our term lan-
guage is also very different from the one in the applied π-
calculus, since our terms are defined in a functional language
that does not include the notion of process calculus (chan-
nel) name, whilst the terms in [1] can contain names. A
labelled transition system that characterizes relevant exter-
nal actions can be defined by a judgement P

α−→ Q, where
α denotes an action that can be silent, an output or input
of a (bound) name or of a term:

α ::= τ | (νz)x〈z〉 | (νz)x(y) | x〈N〉 | x(N)

We now present some of the formal results that we have
established for our system.

3. PROPERTIES OF THE TYPE SYSTEM
In this section we establish the results of type preservation
and progress for our type system, following the results of
[10]. The proof of type preservation relies on several re-
duction lemmas that relate process reductions with parallel
composition through the cut rule. We illustrate these with
the cases for the quantifiers.

Lemma 3.1. Assume (a) Ψ; Γ; ∆1 ⇒ P :: x : ∀y : τ.A

with P
x(N)→ P ′ and (b) Ψ; Γ; ∆2, x : ∀y : τ.B ⇒ Q :: z : C

with Q
x〈N〉→ Q′. Then Ψ; Γ; ∆1,∆2 ⇒ (νx)(P ′ | Q′) :: z : C.

Lemma 3.2. Assume (a) Ψ; Γ; ∆1 ⇒ P :: x : ∃y : τ.B

with P
x〈N〉→ P ′ and (b) Ψ; Γ; ∆2, x : ∃y : τ.B ⇒ Q :: z : C

with Q
x(N)→ Q′. Then Ψ; Γ; ∆1,∆2 ⇒ (νx)(P ′ | Q′) :: z : C.

We can now state and sketch the proof of type preservation.

Theorem 3.3 (Type Preservation). If Ψ; Γ; ∆⇒ P ::
z : A and P → Q then Ψ; Γ; ∆⇒ Q :: z : A.

Proof. By induction on the typing derivation. When the
last rule is an instance of cut, we appeal to the reduction
lemmas, one for each type C of the cut formula (these are of
the form of Lemmas 3.1 and 3.2), or to the rules for renaming
and substitution.

To establish progress, a lemma that establishes a contextual
progress property is required. First, we define:

live(P) , P ≡ (νn)(Q | R) for some Q,R, n

where Q ≡ π.Q′ (π is a non-replicated prefix), Q ≡ [x↔ y]
or Q ≡ [x ← N]. Given an action label α, we denote by
s(α) the subject of the action α (i.e., the name through
which the action takes place). We can now establish the
contextual progress property (note the use of ≡S , defined in
Section 2.7).

Lemma 3.4. Let Ψ; Γ; ∆ ⇒ P :: z : C. If live(P) then

there is Q such that either (a) P → Q, or (b) P
α→ Q for

some α where s(α) ∈ z,Γ,∆ and s(α) ∈ Γ,∆ if C = !A, or
(c) P ≡S [x ↔ z], for some x ∈ ∆, or (d) P ≡S [z ← N]
for some N .

Proof. Induction on typing. The proof is similar to that
of [10], with more cases when the last rule applied is cut,
to account for renaming, term substitutions, and quanti-
fiers.

Global progress follows directly from Lemma 3.4.

Theorem 3.5 (Progress). If ·; ·; · ⇒ P :: x : 1, and
live(P), then there exists a process Q such that P → Q.

Note that this is the case because P cannot perform any
action α with subject x, since x : 1.

The guiding principle mentioned earlier allows us to make
a stronger formal connection between cut reductions and
pi-calculus reductions, but this is beyond the scope of this
particular paper (and is straightforward, given the results of
[10] and the earlier presented reductions).

4. PROOF IRRELEVANCE
We now tackle the problem of eliminating some of the com-
munication overhead generated by the exchange of explicit
proof objects. Process calculi are a class of languages that
allow us to reason about concurrent processes that may or
may not be executing in a distributed setting. If such is
indeed the case, there is an argument to be made that trust
between the communicating parties should not be assumed
outright. In these scenarios, our system, in which properties
of the communicated data are ensured by typing but also
witnessed by explicit proof objects that are passed by pro-
cesses, seems to be a reasonable way of addressing the issue
of trust (or lack thereof). A client may not trust the remote
server code, but provided the server sends the proof objects,
the client may in principle check that the proof objects are
valid and thus obtains further assurances on the server.

However, it may not necessarily be the case that the commu-
nication of explicit proof objects is required by the parties
involved. For instance, the properties in question may be
easily decidable, or we have a scenario where we have code
residing on the same machine that represents multiple com-
municating sessions (e.g. an operating system, a file system,
etc.), or it may be the case that the communicating parties
do indeed exist in a distributed setting, but have established
trust by some exterior means. In some of these cases we can
type-check the process code, and so the proof objects are
in principle no longer really needed at runtime. Of course,
the system as we have presented so far has really no way of
determining if it is really the case that a proof object is not
used for its computational content. Luckily, proof theory
can help us, with the concept of proof irrelevance [3, 29].

Proof irrelevance is a technique that allows us to selectively
hide portions of a proof. These “hidden” proofs must ex-
ist, but it must also be the case that they can be safely
erased from a process at runtime. This means that typing
must ensure that these hidden proofs are never required to
compute something that is not erased. We internalize this
notion of proof irrelevance in the functional term language
with a new type, [A] (read bracket A), meaning that there is
a term of type A, but the term itself can be safely erased be-
fore runtime without changing the meaning of the process.
We can give a precise meaning to [A] by adding a new intro-
duction form for terms, written [M], meaning that M will

9

Ψ; Γ;x : A⇒ [x↔ z] :: z : A
id

Ψ, x : τ ; Γ; ∆⇒ P :: z : C

Ψ; Γ; ∆, x : τ ⇒ P :: z : C
promo Ψ `M : τ

Ψ; Γ; · ⇒ [z ←M] :: z : τ
coerce

Ψ; Γ; · ⇒ 0 :: z : 1
1R

Ψ; Γ; ∆⇒ P :: z : C

Ψ; Γ; ∆, x : 1⇒ P :: z : C
1L

Ψ; Γ; · ⇒ P :: y : A

Ψ; Γ; · ⇒ !z(y).P :: z : !A
!R

Ψ; Γ, u : A; ∆⇒ P :: z : C

Ψ; Γ; ∆, x : !A⇒ P{x/u} :: z : C
!L

Ψ; Γ, u : A; ∆, y : A⇒ P :: z : C

Ψ; Γ, u : A; ∆⇒ (νy)u〈y〉.P :: z : C
copy

Ψ; Γ; ∆⇒ P :: z : A Ψ; Γ; ∆⇒ Q :: z : B

Ψ; Γ; ∆⇒ z.case(P,Q) :: z : ANB
NR

Ψ; Γ; ∆, x : A⇒ P :: z : C

Ψ; Γ; ∆, x : ANB ⇒ x.inl;P :: z : C
NL1

Ψ; Γ; ∆, x : B ⇒ P :: z : C

Ψ; Γ; ∆, x : ANB ⇒ x.inr;P :: z : C
NL2

Ψ; Γ; ∆1 ⇒ P :: y : A Ψ; Γ; ∆2 ⇒ Q :: z : B

Ψ; Γ; ∆1,∆2 ⇒ (νy)z〈y〉.(P | Q) :: z : A⊗B ⊗R

Ψ; Γ; ∆, y : A, x : B ⇒ P :: z : C

Ψ; Γ; ∆, x : A⊗B ⇒ x(y).P :: z : C
⊗L

Ψ; Γ; ∆⇒ P :: z : A

Ψ; Γ; ∆⇒ z.inl;P :: z : A⊕B ⊕R1

Ψ; Γ; ∆⇒ P :: z : B

Ψ; Γ; ∆⇒ z.inr;P :: z : A⊕B ⊕R2

Ψ; Γ; ∆, x : A⇒ P :: z : C Ψ; Γ; ∆, x : B ⇒ Q :: z : C

Ψ; Γ; ∆, x : A⊕B ⇒ x.case(P,Q) :: z : C
⊕L

Ψ, x : A; Γ; ∆⇒ P :: z : B

Ψ; Γ; ∆⇒ z(x).P :: z : ∀x : A.B
∀R

Ψ ` N : A Ψ; Γ; ∆, x : B{N/y} ⇒ P :: z : C

Ψ; Γ; ∆, x : ∀y : A.B ⇒ x〈N〉.P :: z : C
∀L

Ψ ` N : A Ψ; Γ; ∆⇒ P : B{N/x}
Ψ; Γ; ∆⇒ z〈N〉.P :: z : ∃x : A.B

∃R
Ψ, y : A; Γ; ∆, x : B ⇒ P :: z : C

Ψ; Γ; ∆, x : ∃y : A.B ⇒ x(y).P :: z : C
∃L

Ψ; Γ; ∆1 ⇒ P :: x : A Ψ; Γ; ∆2, x : A⇒ Q :: z : C

Ψ; Γ; ∆1,∆2 ⇒ (νx)(P | Q) :: z : C
cut

Ψ; Γ; · ⇒ P :: x : A Ψ; Γ, u : A; ∆⇒ Q :: z : C

Ψ; Γ; ∆⇒ (νu)((!u(x).P) | Q) :: z : C
cut!

Figure 1: A Dependent Type Theory of Sessions.

not be available computationally. We also add a new class
of assumptions x ÷ A, meaning that x stands for a term of
type A that is not computationally available. Following the
style of [29], we define a promotion operation on contexts
that transforms computationally irrelevant hypotheses into
ordinary ones:

(·)⊕ , ·
(Ψ, x : A)⊕ , Ψ⊕, x : A

(Ψ, x÷A)⊕ , Ψ⊕, x : A

We can then define the introduction and elimination forms
of proof irrelevant terms:

Ψ⊕ `M : A
Ψ ` [M] : [A]

[]I
Ψ `M : [A] Ψ, x÷A ` N : C

Ψ ` let [x] = M in N : C
[]E

These rules guarantee that a variable of the form x÷A can
only be used in terms that are irrelevant (in the technical
sense). In such terms, we are allowed to refer to all variables,
including the irrelevant ones, since the term is not intended
to be available at runtime. Terms of bracket type can still
be used through the let binding shown above, but the bound
variable x is tagged with the irrelevant hypothesis form, to
maintain the invariant that no relevant term can use irrele-
vant variables in a computational manner. Using bracketed
types, we ensure that assigned terms are never explored for
their computational value, and so can be safely erased at
runtime. We first illustrate this with a very simple exam-
ple and then generalize to our running example of the bank.
Consider a very simple process with the following type:

T , ∀f :nat→ nat.∀n:nat.∀p:(n > 0).nat⊗ 1

The type describes a process that receives a natural number
function f , a natural number n and a proof that the n is

strictly positive (for instance, because f is not defined for
0). It will then reply with a natural number (the result of
applying f to n) and terminate. A sample process obeying
this specification is:

Server , x(f).x(n).x(p).(νy)x〈y〉.([y ← f(n)] | 0) :: x : T

A sample client that properly interacts with the above pro-
cess is

Client , x〈M〉.x〈1〉.x〈N〉.x(r).[r ↔ z] :: z : nat

where M must be a term of type nat→ nat and N is a term
of type 1 > 0.

Notice that in this situation, the proof object p in Server
only serves the purpose of ensuring a restriction on n, its
content is never actually used in a computationally mean-
ingful manner. That is, p is a computationally irrelevant
proof object. We can now make use of proof irrelevance to
identify that the proof object p in Server can be erased at
runtime:

TI , ∀f : nat→ nat.∀n : nat.∀p : [n > 0].nat⊗ 1

The server process stays the same, while the Client must now
send [N] instead of just N :

ClientI , x〈M〉.x〈1〉.x〈[N]〉.x(r).[r ↔ z] :: z : nat

We can define an operation that, given a well-typed process,
erases all terms of bracket type and the respective commu-
nication actions. This erasure is obviously not type preserv-
ing in general, in the sense that the resulting process may
no longer be assigned the same type in our system. How-
ever, the erasure is to be applied after we have ensured that
a process is well-typed (and therefore abides by whatever

10

specification is defined in its type), but before the code is
actually executed. Thus, the erasure is safe because we know
that all properties that typing ensured still hold.

In our example above, the erased server and client processes
would be:

Te , ∀f :nat→ nat.∀n:nat.nat⊗ 1

Servere , x(f).x(n).(νy)x〈y〉.([y ← f(n)] | 0) :: x : Te

Cliente , x〈M〉.x〈1〉.x(r).[r ↔ z] :: z : nat

The precise definition of the erasure function is standard,
since its interaction with the process layer is minimal with
the restriction to base types τ only. We therefore elide its
formal definition and the companion correctness theorem
from this presentation for the sake of brevity.

In our running example of the bank system, if we assume
the client trusts the ATM code to not be malicious, we may
employ proof irrelevance and write the type of the ATM
interface as:

TATMClientI , ∀s : string.uid(s) (
(∀n : nat.deposit(s, n) (∃m : nat.
∃p : [n− 2 ≤ m ≤ n].(receipt(s,m)⊗ 1))

which then allows us to safely erase the communication over-
head of the proof object p. To conclude, the technique of
internalizing proof irrelevance in bracket types provides a
clean and modular way of singling out terms (through their
types) that are never used for their computational content.
This provides us with the opportunity to erase these terms
and minimize communication overheads when appropriate.

5. CONCLUDING REMARKS
We have presented an interpretation of intuitionistic lin-
ear type theory as a dependent session type system for a
π-calculus with value passing. Our framework introduces
value passing by interpreting the (higher-order) type struc-
ture of an underlying functional dependent type theory as
atomic from the process perspective. Dependent types may
be used to elegantly specify properties of data exchanged by
processes in their session types. Previous work [7] encoded
these as assertions built into the session type. In particular,
we have shown how certified interface contracts, expressing
rich properties distributed protocols, may be expressed in
our framework. Our development provides a new account of
dependent session types [8] that is completely grounded in
logic, and is free from special-purpose technical machinery
that is usually required in this setting.

Our approach naturally addresses challenges not yet tackled
by other session type systems, such as the use of proof-based
certification in scenarios involving communication between
untrusted parties. We have also explored proof irrelevance
as a way of singling out proofs that may be safely erased
at runtime. We have proven that our system ensures type
preservation, session fidelity, and global progress.

Several other connections between the π-calculus and linear
logic have been establish. A first line of research has investi-
gated the use of linearity in type systems (see, e.g., [24, 23,
9, 18]). These type systems have not developed any interpre-
tation of the pure linear logic connectives as behavioral (ses-
sion) type operators, a program that we have initiated [10],

and extend here to the setting of a much richer dependent
linear type theory. A second line of work has investigated
operational interpretations of linear logic proofs in the π-
calculus and related models (see, e.g., [2, 6, 5, 21]). We may
broadly characterize these as applications of the π-calculus
as a convenient language for analyzing linear logic proof ob-
jects, while our aim is to develop the linear propositions-
as-types paradigm as a foundation for distributed, session-
based, practical programming languages, with rich interface
specifications.

In future work, we plan on extending our program of pro-
viding logical explanations to the phenomena of concurrency
to multi-party session types, which are a generalization of
the binary session types we have given logical meaning in
this and prior work. To achieve this, we plan to investigate
potential relationships of multi-party sessions to linear epis-
temic logic [16], which provides a natural way of reasoning
about several principals. Another interesting line of research
is the development of appropriate theories of bisimulation
and observational equivalence for (dependent) session types
and the study of their relationship to forms of logical and
proof equivalence. Finally, we also wish to consider a poten-
tially tighter integration of functional and concurrent com-
putation that does not require the two-layer stratification
that we have presented in this paper. Ongoing research in
concurrent evaluation strategies for functional programs us-
ing logical interpretations might provide deeper insights in
this particular direction.

Acknowledgments
Support for this research was provided by the Fundação para
a Ciência e a Tecnologia (Portuguese Foundation for Science
and Technology) through the Carnegie Mellon Portugal Pro-
gram, under grants SFRH / BD / 33763 / 2009 and INTER-
FACES NGN-44 / 2009, and CITI.

6. REFERENCES
[1] M. Abadi and C. Fournet. Mobile values, new names,

and secure communication. In 28th Symposium on
Principles of Programming Languages, POPL’01,
pages 104–115. ACM, 2001.

[2] S. Abramsky. Computational Interpretations of Linear
Logic. Theor. Comp. Sci., 111(1&2), 1993.

[3] S. Awodey and A. Bauer. Propositions as [types]. J.
Log. Comput., 14(4):447–471, 2004.

[4] A. Barber and G. Plotkin. Dual Intuitionistic Linear
Logic. Technical Report LFCS-96-347, Univ. of
Edinburgh, 1997.

[5] E. Beffara. A Concurrent Model for Linear Logic.
ENTCS, 155:147–168, 2006.

[6] G. Bellin and P. Scott. On the π-Calculus and Linear
Logic. Theor. Comp. Sci., 135:11–65, 1994.

[7] L. Bocchi, K. Honda, E. Tuosto, and N. Yoshida. A
theory of design-by-contract for distributed multiparty
interactions. In 21st International Conference on
Concurrency Theory, CONCUR’10, pages 162–176.
Springer LNCS 6269, 2010.

[8] E. Bonelli, A. Compagnoni, and E. L. Gunter.
Correspondence Assertions for Process
Synchronization in Concurrent Communications. J. of
Func. Prog., 15(2):219–247, 2005.

11

[9] L. Caires. Logical Semantics of Types for
Concurrency. In International Conference on Algebra
and Coalgebra in Computer Science, CALCO’07,
pages 16–35. Springer LNCS 4624, 2007.

[10] L. Caires and F. Pfenning. Session types as
intuitionistic linear propositions. In 21st International
Conference on Concurrency Theory, CONCUR’10,
pages 222–236. Springer LNCS 6269, 2010.

[11] L. Caires and H. T. Vieira. Conversation types. Theor.
Comput. Sci., 411(51-52):4399–4440, 2010.

[12] I. Cervesato and F. Pfenning. A linear logical
framework. Inf. & Comput., 179(1), 2002.

[13] R. Constable et al. Implementing Mathematics with
the Nuprl Proof Development System. Prentice-Hall,
1986.

[14] T. Coquand and G. Huet. The calculus of
constructions. Inf. & Comput., 76:95–120, February
1988.

[15] M. Fähndrich, M. Aiken, C. Hawblitzel, O. Hodson,
G. C. Hunt, J. R. Larus, and S. Levi. Language
support for fast and reliable message-based
communication in Singularity OS. In EuroSys 2006,
pages 177–190. ACM, 2006.

[16] D. Garg, L. Bauer, K. Bowers, F. Pfenning, and
M. Reiter. A linear logic of affirmation and knowledge.
In Proceedings of the 11th European Symposium on
Research in Computer Security, ESORICS’06, pages
297–312. Springer LNCS 4189, Sept. 2006.

[17] S. Gay and M. Hole. Subtyping for Session Types in
the Pi Calculus. Acta Informatica, 42(2-3):191–225,
2005.

[18] M. Giunti and V. T. Vasconcelos. A Linear Account of
Session Types in the Pi-Calculus. In 21st International
Conference on Concurrency Theory, CONCUR’10,
pages 432–446. Springer LNCS 6269, 2010.

[19] R. Harper, F. Honsell, and G. Plotkin. A framework
for defining logics. J. ACM, 40:143–184, January 1993.

[20] K. Honda. Types for dyadic interaction. In 4th
International Conference on Concurrency Theory,
CONCUR’93, pages 509–523. Springer LNCS 715,
1993.

[21] K. Honda and O. Laurent. An exact correspondence
between a typed pi-calculus and polarised proof-nets.
Theor. Comp. Sci., 411:2223–2238, 2010.

[22] K. Honda, V. T. Vasconcelos, and M. Kubo. Language
primitives and type discipline for structured
communication-based programming. In 7th European
Symposium on Programming Languages and Systems,
ESOP’98, pages 122–138. Springer LNCS 1381, 1998.

[23] A. Igarashi and N. Kobayashi. A generic type system
for the pi-calculus. In 28th Symposium on Principles
of Programming Languages, POPL’01, pages 128–141.
ACM, 2001.

[24] N. Kobayashi, B. C. Pierce, and D. N. Turner.
Linearity and the pi-calculus. In 23rd Symposium on
Principles of Programming Languages, POPL’96,
pages 358–371. ACM, 1996.

[25] P. Martin-Löf. Constructive mathematics and
computer programming. In Logic, Methodology and
Philosophy of Science VI, pages 153–175.
North-Holland, 1980.

[26] R. Milner. Functions as processes. Math. Struct. in
Comp. Sci., 2(2):119–141, 1992.

[27] G. C. Necula. Proof-carrying code. In 24th Symposium
on Principles of Programming Languages, POPL’97,
pages 106–119. ACM, 1997.

[28] U. Norell. Towards a practical programming language
based on dependent type theory. PhD thesis, Chalmers
University of Technology, SE-412 96 Göteborg,
Sweden, September 2007.

[29] F. Pfenning. Intensionality, extensionality, and proof
irrelevance in modal type theory. In 16th Symposium
on Logic in Computer Science, LICS’01, pages
221–230. IEEE Computer Society, 2001.

[30] D. Sangiorgi and D. Walker. The π-calculus: A Theory
of Mobile Processes. Cambridge University Press,
2001.

[31] H. Xi and F. Pfenning. Eliminating array bound
checking through dependent types. In Conference on
Programming Language Design and Implementation,
PLDI’98, pages 249–257. ACM, 1998.

12

	Introduction
	Linear Logic as Session Types
	Cut as composition
	Linear implication
	A simple example

	Multiplicative unit
	Multiplicative conjunction
	A slightly less simple example

	Base types and the identity rule
	Identity as renaming

	Additive conjunction and disjunction
	A slightly less simple example…with choice

	Replication and exponential
	A bank with a persistent service

	Quantification and term passing
	A more sophisticated bank service

	Summary

	Properties of the type system
	Proof irrelevance
	Concluding Remarks
	References

