Linearity, Control Effects, and Behavioral Types*

Luis Caires' and Jorge A. Pérez'+2

1 NOVA LINCS and Departamento de Informitica, FCT, Universidade Nova de Lisboa
2 University of Groningen & CWI, Amsterdam

Abstract. Mainstream programming idioms intensively rely on state mutation,
sharing, and concurrency. Designing type systems for handling and disciplining
such idioms is challenging, due to long known conflicts between internal non-
determinism, linearity, and control effects such as exceptions. In this paper, we
present the first type system that accommodates non-deterministic and abortable
behaviors in the setting of session-based concurrent programs. Remarkably, our
type system builds on a Curry-Howard correspondence with (classical) linear
logic conservatively extended with two dual modalities capturing an additive
(co)monad, and provides a first example of a Curry-Howard interpretation of a re-
alistic programming language with built-in internal non-determinism. Thanks to
its deep logical foundations, our system elegantly addresses several well-known
tensions between control, linearity, and non-determinism: globally, it enforces
progress and fidelity; locally, it allows the specification of non-deterministic and
abortable computations. The expressivity of our system is illustrated by several
examples, including a typed encoding of a higher-order functional language with
threads, session channels, non-determinism, and exceptions.

1 Introduction

In this paper, we study a principled, typeful foundation to represent a relevant class of
control effects within a behavioral type system for stateful concurrent programs. So-
phisticated structural type systems have shaped mainstream static type checking for a
long time now, and are fairly complete tools to discipline and effectively check pro-
grams that manipulate pure values. Unfortunately, the same cannot be said for most
mainstream programming idioms, which intensively rely on state mutation, sharing,
and often concurrency, about which “standard” type systems are quite silent.

Interactive concurrent systems need to manipulate stateful resources, ranging from
basic memory references and passive objects (such as files, locks, and communication
channels) to dynamic entities (such as threads or web references) typically subject to
linearity constraints. To extend type-based verification techniques to this challenging
setting, substructural type systems, based on various forms of linearity and affinity, have
been increasingly investigated [31/45l47/46/35]], and start to make their way towards
practical adoption. Recent examples include Mozilla’s Rust, but also embeddings of
session types in target languages without linear types [32/41]. Some approaches use
types to model states (cf. assertions); examples include typestate and several affine,
linear, and stateful type systems, see, e.g., [20/31133]]. In other works, types are used to
model behaviors (cf. processes); examples in this line include session types and usage
types such as, e.g., [27128134]], often referred to as behavioral types [29].

* Extended version, with appendices (January 21, 2017).

2 Luis Caires and Jorge A. Pérez

LET a = Ref() IN LET b = Ref() IN LET a = Ref() IN LET b = Ref() IN
LETzl = f() IN LETzl = f() IN

LET ¢’ = write a 21 IN LET22 = g() IN

LET22 = g() IN LETa’ = write a x1 IN

LET b’ = write b 22 IN(free a’; free b') LET b’ = write b x2 IN (free a'; free b')

Fig. 1. Two code snippets.

Linear types are in general very expressive, and the fine-grained specifications of
usage types that they typically support may simultaneously bring a benefit and a curse.
In particular, a still open issue is how to seamlessly combine linearity with many other
useful programming mechanisms—a prominent example being the interaction of lin-
earity with non-determinism and control effects, such as exceptions and (linear) contin-
uations. The general issue is that by their very essence control effects (and associated
programming language constructs) conflict with the linear, stateful usage discipline of
values manipulated by programs, which makes it difficult to statically check programs.
For example, when a communication channel is aborted, any linear values held by a
channel client continuation must be aborted as well (which may not be always pos-
sible), or passed away to some candidate consumer code in scope. Likewise, after an
exception is raised, it is not always clear how to safely discard a continuation holding
linear values, nor how to proceed after the exception is caught. This situation is already
present in non-deterministic programs where subexpressions may return more than one
result, or even no result at all (e.g., “fail”), as in the non-deterministic monad.

These challenges and conflicts are illustrated by the examples in Fig. [T] adapted
from [46], which we express in an idealized linear functional language. The Ref func-
tion is assumed to return a stateful fresh value r that may either be initially discarded,
or subject to a strictly linear protocol consisting of a write r x operation followed by
a free r operation. We use a common idiom when programming with usage types, in
which an operation f acting on a linear value a that needs to be used according to a
stateful protocol would be called as a’ = (fa), where a’ refers to the new state of a
(which gets “consumed” in the call (f a)). So, in our examples, failure to call free r’
after v’ = write r x may result in, say, a memory leak. Now, in Fig. (left), if for some
reason the call f() raises an exception, the continuation will be safely aborted, but if
f() succeeds and the call g() raises an exception instead, the resulting behavior would
be ill-defined, as the required execution of free a’ will be discarded. On the other hand,
consider the slightly different code snippet in Fig. [1| (right): even assuming that f() or
¢() may raise an exception, there will be no value usage violations, since both a and b
will still be in their initially discardable state at such stage. A suitable typing discipline
should deem the left snippet unsafe but the right snippet safe, taking into account the
interference between control effects and the linear usage behavior of values in scope.

For a further example, consider the slightly more involved scenario given in Fig. [2]
which involves concurrent communication and explicit exception handling. Our ideal-
ized linear functional language is now assumed to include the ability to fork threads, and
manipulate session typed communication channels. In the first line of Fig. [2} a thread

Linearity, Control Effects, and Behavioral Types 3

LET log = FORK [. RECV(/,m1); RECV(I, m2); CLOSE?[IN
LET res = FORK f. RECV(f, code); SEND(f, gs(code)); RECV(f, bk); CLOSE? f IN
SEND(res, QU2112); RECV(res, gss);
TRY
LET log = Check log gss IN
SEND(res, bkok); SEND(log, “ok”); CLOSE!log; CLOSE!res
CATCH logc. SEND(logc, “fail”); CLOSE!logc

Fig. 2. Code snippet for the server example.

representing a logging server is forked: the fork primitive FORK!.e spawns a thread
with body e accessing one endpoint of session channel [, and returns the other end-
point (bound to log) to the caller. The logging server receives precisely two messages,
whose payload is a string, and closes the connection. Then another concurrent thread is
spawned, mocking a resource allocation service: it receives a resource code, returns the
quality of service constraints, and receives some reservation information bk.

The server at channel res is used by client code that first sends a resource code
QU2112, receives a quality of service gss spec, and then calls a conformance checking
operation Check which, crucially, may raise an exception:

LET Check = M. \x.SEND(I, “checkin”);if Valid(x) then [else THROW () IN ...

All interactions between client and server are meant to be logged, so channel log is also
passed to the Check function together with the quality of service specification.

The overall expected behavior would be as follows. If Valid() returns true, then
Check succeeds and the client will proceed booking the resource; however, if Check
raises an exception, the continuation will be discarded and the exception handler in-
voked. In this case, the continuation of the resource allocation thread at the other end-
point will also need to be aborted. If the overall ongoing (linear) session between client
and server could be safely discarded at that particular stage of the protocol, then the
overall behavior may be deemed safe, even if the log could not be safely aborted, since
the linear outstanding interaction on the log endpoint will be performed anyway by the
exception handler. Indeed, notice that the log is linearly passed to the exception han-
dler as logc. Again, a suitable typing discipline combining effects and linearity should
be able to express the assumptions underlying the reasoning above, and deem the code
snippet safe, under the stated assumptions, but unsafe if the client server session is
not safely abortable exactly before the RECV(f, bk) interaction (cf. Line 2 in Fig. .
Moreover, any such typing discipline should also be compatible with internal non-
determinism, in the sense that if the result of Valid() is non-deterministic, then the
resulting computation must be soundly typed for any alternative result, including the
degenerate situation in which no value at all is returned, and the rest of the computation
needs to safely abort, including, in that extreme case, the exception handler code itself!

The main goal of the paper is to investigate a principled foundation to express, rea-
son and type-check a wide class of control effects in the context of a linear behavioral

4 Luis Caires and Jorge A. Pérez

type system. Crucially, our approach builds on prior work on Curry-Howard correspon-
dences between session types and various fragments of linear logic; our type system is
a conservative extension of a standard system of classical linear logic. By approaching
a Curry-Howard correspondence from the programming language perspective (in the
spirit of, e.g., [18l615]), we introduce two new dual logical modalities—monadic &A
and co-monadic @& A—with associated programming constructs and proof reductions.
As is often the case for type systems motivated by Curry-Howard correspondences,
our system ensures global progress and usage / session protocol fidelity. Moreover,
it is intrinsically compatible with all other logically motivated constructs and meth-
ods introduced in prior/related work, such as behavioral polymorphism [[10/48], logical
relations [37]], dependent types [42]], higher-order code mobility [44], and multiparty
protocols [9U16].

It turns out that our new modalities & A and @ A suffice to express general forms of
internal non-determinism, and, importantly, include failure—an explicitly typed form
of affinity—as a special case. These two modalities can be seen as an additional pair
of linear logic exponentials, and as such obey the basic monadic / co-monadic laws.
However, while the standard linear logic modalities ! A and 7 A encapsulate contraction
and weakening, & A and @A encapsulate non-determinism and failure, in a sense to
be made precise below. Although related to the non-deterministic monad and to well-
known powerdomain models of non-determinism [39]], a key novelty of our work is the
perfect Curry-Howard match between proof reductions associated to the & A and B A
modalities and sensible operational rules. This correspondence allows us to state cut-
elimination, and to naturally derive key properties with practical impact (e.g., lock free-
dom, fidelity, and strong normalization), while supporting natural effectful program-
ming idioms and powerful reasoning techniques (such as logical relations).

We will illustrate through examples how expressive linear usage protocols involv-
ing effects may be compiled down to the basic linear logic system extended with these
two primitives and associated programming constructs. We will present our basic re-
sults and examples for a canonical session-based m-calculus model realizing a Curry-
Howard interpretation of session types as linear logic propositions. As is well-known,
the m-calculus is a complete foundational model, able to represent, e.g., general con-
current computation, higher-order data, and object-oriented features [40]. Hence, our
development is carried out in the setting of most higher-level programming languages.
In particular, we will use this process model as target language in a typed encoding of an
effectful linear higher-order functional language with threads, session-typed channels,
non-determinism, and exceptions, allowing us to show typings for the above examples.

Structure of the paper. Next, §[2] presents our Curry-Howard interpretation of session
types for concurrent processes via examples. §[3] establishes meta-theoretical results
for typed processes: cut elimination (Theorem [3.1)), type preservation (Theorem [3.2)),
progress (Theorem [3.3)). Also, a postponing result (Theorem [3.5) connects our process
model with the (non confluent) non-determinism typical of process calculi. §{d]encodes
A€ (a linear, higher-order functional language with concurrency and exceptions) into
session-typed processes. A**“ is the reference language for the motivating examples
above. Theorem |4.2|ensures that our encoding preserves typing; therefore, all results in
§[3| will carry over to A**. In §[5| we discuss related works, and §[6|concludes.

Linearity, Control Effects, and Behavioral Types 5

2 The Core Language and its Type System

We base our development on a standard session-typed w-calculus, a core language in
which general higher-order concurrent programs may be modeled and analyzed [40].
The (binary) session discipline [27428] applies to pairs of name passing processes that
communicate through point-to-point channels. In this setting, interaction between pro-
cesses always occur in matching pairs: when one partner sends, the other receives; when
one partner offers a selection, the other chooses; when a partner closes the session, the
other must acknowledge—no further interactions may occur on the same channel. Ses-
sions are initiated when a participant invokes a server, which acts as a shared provider,
with the capability of unboundedly spawning fresh sessions between the invoking client
and the newly created service instance process. A service name may be publicly shared
by any clients in the environment. A session-based system exhibits concurrency and
parallelism because many sessions may be executing simultaneously and independently.
No races in communications within a session (or even between different sessions) can
occur. Both session and server names may be passed around in communications. Ses-
sion channels are subject to a linear usage discipline, conforming to a specific state de-
pendent protocol, while server channels can be freely shared, and used by an arbitrary
number of concurrent clients that can call on them for spawning new session instances.
Next we gradually introduce the ingredients of our typed process model (syntax,
semantics, session types and their linear logic interpretation), which are summarized in
Figure 3| (Page [I4). This presentation allows us to better motivate and describe the key
novelty in this paper—the(dual) types for non-deterministic behaviors in sessions.
Caires and Pfenning [11]] introduced a type system for 7r-calculus processes that cor-
responds to a linear logic proof system, revealing the first Curry-Howard interpretation
of session types as linear logic propositions. Unlike traditional session type systems,
Curry-Howard interpretations of behavioral types ensure global progress (i.e., well-
typed processes never get stuck), livelock-freedom, and confluence (up to =), and may
be developed within intuitionistic [[11/13] or classical linear logic [[13/48]], with certain
subtle differences in expressiveness. Our system extends the presentation X5 of classi-
cal linear logic [[1] with mix principles and, crucially, with new exponential modalities
@A and &A, which will be interpreted as (dual) types for non-deterministic sessions.

Definition 2.1 (Types). Types (A, B, C) are given by
AB:=1|1|!A|?7A|A®B|A®B|A®B|A&B|®A|&A

In examples we will also assume given some basic (data) types (e.g., naturals, strings,
etc), but will not elaborate the nature of such basic types (see, e.g., [42]). Despite nota-
tional similarity, there is no ambiguity between our new (unary) modalities ® A and & A
and standard linear logic (binary) operators for additive disjunction and conjunction.

For any type A, we define its dual A, where (+) corresponds to linear logic negation
(-)*, following standard de Morgan-like laws. Intuitively, the type of a session endpoint
is the dual of the type of the opposite endpoint.

Definition 2.2 (Duality). The duality relation on types is given by:

6 Luis Caires and Jorge A. Pérez

Typing judgments have the form P - A; ©, where P is a program term, A is the linear
context and O is the unrestricted context, along the lines of DILL [4] and X5 [1]. Both
contexts are assignments of types to (channel) names x,y, z, We write -’ to denote
empty typing environments. After erasing the term P, our judgment corresponds exactly
to a logical sequent in the classical linear logic Y5 of [1]]. Remarkably, this formulation
naturally supports a Curry-Howard interpretation for the exponentials !A and 7A in
terms of standard (7-calculus) semantics for lazy replication [[11J13].

2.1 Reduction Semantics

The operational semantics of our session calculus is defined by a relation of reduction
(denoted P — @) that expresses dynamic evolution, and a relation of structural congru-
ence (denoted P = @), which equates processes with the same spatial (or static) struc-
ture. This semantics exhibits a precise correspondence with cut elimination at the logic
level. While most cut-reduction steps directly correspond to process reductions, other
cut-reduction steps are better expressed in the process world as structural congruence
principles or as behavioral equivalences; this applies similarly to the so-called commut-
ing conversions, which are known to capture typed behavioral equivalences [37]].

To describe reductions and conversions on proof trees (which correspond to typing
derivations), we introduce a simple algebraic notation. For each typing rule (T*) with
k premises dy, . . ., dj, we denote by T*(py, ps, . . .) the derivation obtained by applying
rule (T*) to the derivations p1, . . ., pi. If the proof rule binds names Z in the conclusion
(as in, e.g., cut), we would then write T*(Z)(p1, p2, - - .) to make this binding explicit.

2.2 Basic Typing Rules, Congruence Rules, and Reduction Rules

The parallel composition of processes is typed in our system by rules corresponding to
the cut and mix principles (dependent and independent composition, respectively).

PHAO QF A, PFAz:A0 QF A 2:A;0
(Tcut)

© (T])
P|QFA A6 (vz)(P|Q)F A A6 06

(T)

The mix rule (T |) types the composition of two processes that do not share linear
names; P and @) run in parallel but do not interact. The cut rule (Tcut) types the com-
position of P and () while establishing a binary session between them using a single
linear channel x; each process holds one of the two (dual) endpoints x of a session of
type A and A. This channel is kept private to the composition by the restriction opera-
tor (vz)(...) so that the newly established session will not be affected by interferences.
Rule (T-) allows the inactive process O to be introduced. Neutrality of O is expressed by
the conversion T|(T-, D) = D at the level of proofs, which corresponds exactly to the
usual structural congruence principle O | P = P (we consider here a conversion, not a
computational reduction, since it does not involve any process interaction). We take pro-
cess terms up to basic structural congruence principles, namely we assume that — | — is
commutative and associative with unit 0, etc. This way, e.g., P | @ and @ | P denote the
same process, i.e., the (unique) parallel composition of P and @). Thus, Rule (Tcut) is
symmetric w.r.t. its premises: if Tcut(D;, D5) is a derivation then Tcut(Ds, D) is the
same derivation; we then also consider the conversion Tcut(D1, Do) = Tcut(Dy, D).

Linearity, Control Effects, and Behavioral Types 7

Session Send and Receive Session-typed processes communicate by sending and re-
ceiving messages according to some session discipline. The message payload can be a
value of some primitive data type or a session channel; we focus here on the general
case of session passing (delegation). Type A ® B is the type of a session that first sends
a session of type A and then continues as a session of type B. As such, it corresponds to
the session type !A.B of [27]]. Dually, A B is the type of a session that first receives
a session of type A and then continues as a session of type B; it thus corresponds to
the session type ?A.B. Hence, the session type ?A.B corresponds to the linear type
A — B. We have the following typing rules for send A ® B and receive A '3 B.

PHAyA;0 QF A, 2:B;0 (T®) RET,y:C,2:D; 0
Z(y).(P | Q) A A 2:A® B; © z(y).RF I'z:C % D; 0

(T®)

An output process is then of the form Z(y).M, where y is a freshly created name. The
behavior of such an output process is to send session y on z and then proceed as defined
by M. In our typed language, the output continuation M has the form P | (), where P
defines the behavior of the session y being sent and () the behavior of the continuation
session on x. An input process is of the form z(y).R, a process that receives on ses-
sion x a session n, passed in parameter ¥y, and then proceeds as specified by R. The
continuation R will use the received session but also any other open sessions (includ-
ing x). Notice that y is bound both in Z(y).M and in z(y).R, and so only fresh names
can be sent in output processes; this corresponds to the internal mobility discipline [[7],
without loss of expressiveness. The associated principal cut reduction corresponds to
process communication, where C' = A, D=8, expressed by

Teut(z)(T@(y) (D1, D2), T2 (y)(Ds)) — Teut(x)(Teut(y) (D1, Ds3), D2)
This reduction exactly captures (bound output) communication in the 7-calculus
(va)(@(y).-M | z(y).R) = (vx)(vy)(M | R)

where we write M = P | . Although — | — is commutative there is no ambiguity in
Rule (T®): P and Q are the split of M typed by P+ A,y:A;0 and Q + A’ 2:B; 0,
respectively, and A and A’ are the split of the linear context in the conclusion. The mul-
tiplicative units L and 1 type session termination actions as seen from each endpoint;
no partner can further use a closed session.

PrF A6

— T1 TL
r.close z:1;0 (T1) r.close; Pt x: 1, A; 0 (Tl

The associated principal cut reduction corresponds to session termination, which we
define at the level of processes and proof trees respectively by the rules

(va)(xz.close | z.close; P) — P Tcut(z)(T1,TL(D)) — D

Types 1 and L correspond to the single type end in usual session types, and usually
have a silent interpretation. In the presence of mix principles, as we consider here,
propositions . —o 1and 1 —o L are valid. Considering 1. = 1, we could define a single
type ‘@’ as standing for “both” 1 or L, where ® = e. (Recall that A — B £ A9 B.)

8 Luis Caires and Jorge A. Pérez

Session Offer and Choice The linear type A & B types a session that first chooses
(from the dual partner menu) either “left” or “right”, and then continues as a session
of type A or B, depending on the choice. This type is the binary version of the session
type ®;er{li:A;} (labeled internal choice). The linear type A& B types a session that
first offers both “left” or “right” menu options and then continues as a session of type
A or B, depending on the choice made by the partner. Thus, A&B is the binary version
of the session type &;cr{l;:A;} (labeled external choice). Offers and choices are typed
by the additive linear conjunction and disjunction & and @, as defined by the rules:

REA x:A;0 (Toby) RF A, z:B;©0
z.inl; RE A x:A® B; 6 r.inr; RE A x:A® B; 6
PHA A0 QF Ax:B;0
x.case(P,Q)F Aj2:A & B; ©
The associated principal cut reductions correspond to the process and proof reductions
(vr)(x.case(P,Q) | z.inl; R) — (vz)(P | R)
(ve)(xz.case(P,Q) | z.inr; R) — (vz)(Q | R)

TCUt(Z)(T&(Dl, Dg), T@1<D3)) — TCLIt(iL’)(Dl, Dg)
TCUt({E)(T&(Dl, Dg), Tdoy (Dd)) — TCUt(ﬁ)(DQ, D3)

(Tdo)

(T&)

In examples we may consider n-are labeled sums, close to usual session types con-
structs:

RFE A x:A;0 P kA xA;0 (aliel)
1l RE A z: Bier {12‘ : Al},) x.caseief(li.Pi) FA z: &er {12‘ : AZ}, e
with associated principal cut reduction expressed by

(vx)(z.case;cr(1;.F;) | .15 R) — (vz)(P; | R)

Example 2.3 (Movie Server (1)). Consider a toy scenario involving a movie server and
some clients. We first model a single session (on channel s) established between client
Alice(s) and server instance SBody(s). The server session offers two options: “buy
movie” (inl), and “preview trailer” (inr). Alice selects the “preview” option from the
server menu, and plays the corresponding protocol. Consider now the following terms:

SBody(s) £ s.case(s(title).s(card).s(movie).s.close, s(title).s(trailer).s.close)
Alice(s) = s.inr; s(“mullholanddrive”).s(preview).s.close; 0

(vs)(SBody(s) | Alice(s))

lI>

System

Assume some given basic types for movie titles (), credit card data (C') and movie files
M, which are self-dual (since they do not type communication capabilities but values
of basic types). We can then provide the following types and derivable type assignments
for the various system components as follows:

SBT 2 (T —-C —-oM®1) & (T - M®1)
SBody(s) ks : SBT ;- Alice(s) s : SBT ;-

We would then have System F - ;-. While the type of the server endpoint is SBT, the
type of a client endpoint would be SBT = (TQC@M — L) (T®M — 1). O

Linearity, Control Effects, and Behavioral Types 9

Shared Service Definition and Invocation Shared service definition and invocation
are typed by the linear logic exponentials ! and ?. Type ! A types a shared channel that
persistently offers a replicated service which whenever invoked spawns a fresh session
of type A (from the server’s perspective). Dually, type 7A types a shared channel on
which requests to a persistently replicated service of type A can be unboundedly issued
(from the client’s perspective). We consider the following typing rules:

PFAx:A 6 QFy:A6 PrAyA;x:A 6

- (T? T!
PrFAz7A;0 T lz(y).Q F x:14;0 T Z?(y).PF A;x:A,0

(Tcopy)

The associated principal cut reduction corresponds to shared service invocation

(va)(lz(y)-Q [T2(y).P) = (vr)('z(y).Q | (vy)(P | Q)

This operational interpretation of the rules for !A and 7 A (cf. [1I38/4], implementing
“lazy” contraction) exactly coincides with the usual interpretation of lazy replication.
Notice that Rule (T?) is silent on the term assignment: it implements a bookkeeping
device to move the typed channel x:? A to the unrestricted context, and does not induce
a computational effect (e.g., as exchange is also implicitly handled).

As our typing judgments have two different regions, linear and exponential, two cut
rules are required [4], one for cutting a linear (session) channel in the linear context
(Rule (Tcut), already presented in §[2.2)), and the following rule, for cutting an unre-
stricted (shared) channel in the exponential context [38/4]:

PFyA:0 QF Ajx:A,0

o) (2 P Q) A6 ()

For typing “source programs” only the linear Rule (Tcut) is required, but Rule (Tcut”)
is required for cut-elimination; hence, Rule (Tcut”) is a “runtime” typing rule. The
principal reduction above is expressed at the level of proofs by

Teut()(T!(y)(D1), Teopy(y)(D2)) — Teuts (ay)(Ds, Teut(y)(Dy, D))

Example 2.4 (Movie Server (2)). We illustrate the usage of !A and ?A types using a
shared movie server, which may answer requests from an unbounded number of clients;
here we use just two concurrent clients, SAlice and SBob. Alice still selects the “pre-
view trailer” option as in Example 2.3] but Bob selects the “buy movie” option. Recall
the definitions of processes SBody(s) and Alice(s) and type SBT from Example[2.3]

MOVIES (srv) = srv(s).SBody(s)
Bob(s) £ 5.inl;3(“inception”).5(bobscard).s(mpeg).s.close; 0
SAlice(srv) = 570(s). Alice(s) SBob(srv) = 570(s). Bob(s)
Systemy = (vsrv)(MOVIES (srv) | SAlice(srv) | SBob(srv))

The following typing judgments are derivable:

MOVIES (srv) & srv : ISBT ; - SAlice(srv) & - ;srv: SBT
SBob(srv) & - ;srv: SBT Alice(srv) | Bob(srv) & srv : 7SBT; -

10 Luis Caires and Jorge A. Pérez

We can obtain System., b -; - as follows: we first use the (mix) Rule (T |) to compose
the two clients; then, Rule (T?) is used to merge the shared endpoints under the explicit
type 7SBT; finally, the clients are composed with the server using Rule (Tcut). a

Identity We interpret the identity axiom by the forwarder process [z «+ y] [12148],
which denotes a bidirectional (linear) link between sessions x and y, giving a logical
justification to a known concept in 7-calculi (cf. [24]). The forwarder at type A is typed

[zy] F 2:A, y:A; O (Tid)

The associated cut reduction (vz)(P | [z +> y]) — P{y/xz} (where y is not free in
P) is akin to the application of an explicit substitution. It is known since [30] that
linear forwarders can simulate substitution in the sense of the above reduction rule.
We also introduce [z +> y] = [y <> z] as a structural congruence axiom, as a direct
consequence of (implicit) exchange in the typing context. While a well-typed copycat
process F'4 without forwarder links can be easily constructed for any concrete type
A by n-expansion (see [13]]) the primitive forwarder is important when considering
polymorphism [[10]. It also allows us to represent the “free” output construct z(y).P
(where y is a free channel name in scope) by Z(z).([y <> 2] | P) (cf. [7]]).

2.3 Non-Determinism and Failure

The developments of this paper focus on the challenge of expressing fundamental prim-
itives for non-deterministic behavior—including the special important case of abortable
behavior—in the setting of our Curry-Howard correspondence for session types.

It is often believed that a Curry-Howard interpretation of a programming language
is hard to reconcile with true (so-called internal) non-determinism in computation, since
reduction steps should express at most behavioral equivalences on processes, via proof
identities, which are inherently confluent from an operational viewpoint. However, it
is clear, at least from work on denotational semantics and functional programming,
that non-determinism can be handled equationally by working on the powerdomain of
computation results. In the logical setting, developments on differential linear logic [22]
also require the interpretation domain for proofs to be closed under a (formal) notion
of “sum”, which could be interpreted as non-deterministic choice. Although partially
inspired by such approaches, our proposal picks a fairly different road, which turns out
to lead to the first example of a Curry-Howard interpretation of a realistic programming
language with built-in internal non-determinism.

It is well-known after Girard that the linear logic exponential modalities !A and
7A, which have been used above to model the type of shared channel names, are not
uniquely defined by their standard proof rules: not surprisingly, if one adds additional
operators defined by the same rules, we obtain independent monad / comonad pairs.
We exploit this fact to our advantage, noting that it allows us to modularly add new
“exponential” modalities to the base logical system, defined by identical proof rules (in
Girard’s original formulation), without semantically interfering with the existing ones.
Any such pair of connectives (say, &A and @A) will yield a dual monad / comonad pair

Linearity, Control Effects, and Behavioral Types 11

defined by the fundamental principles (in a simplified form):

FAA F&AA
FA&A F&A oA

For the usual modalities ! A and ? A, additional specific rules for 7 A define the intended
semantics of the linear logic exponentials, which encapsulate the structural principles
of weakening and contraction:

FA FA?A,74
FATA FAA

These observations suggest a logically justified methodology for adding new monadic
operators to the basic linear logic framework, by means of independent monad / como-
nad pairs in which the monad semantics is defined by specific additional logical prin-
ciples. We develop our type system on top of (classical) linear logic, conservatively
extended with two operators capturing a (co)monad defined by (a refined version of
the) following principles, which can be verified to be sound for an (additive) monad
&— and comonad G—.

FAA - &A, A - oA F&A
FARA FRABA F&A F&A

The resulting proof (and type) system provides a Curry-Howard interpretation of a re-
alistic programming language with built-in internal non-determinism and failure.

Getting back to the presentation of our type system, we capture non-deterministic
behavior in the type structure by operators &A and @A related by duality (&A = ©A)
and defined by the following rules:

PrA x:A;0
) ’ T&Z T&ZE
r.some; P+ A, 2:84A;,60 (T&a) xr.mone F x:&A4;60 (T&%)
Prw:&A, x:A;0 P &A;0 QF&A; 0

(Tem)

(T&)

zr.someg; P w:&A, 2:DA; O PeQF &A;60

Intuitively, 8&A is the type of a session that may produce a behavior of type A: this
potential is made concrete in Rule (T&%) where the behavior x:A is indeed available
(some), whereas Rule (T&?) describes the case in which x:A is not available (none).
Dually, the type ©A is the type of a session that may consume a behavior of type A.
Rule (TZ) accounts for the possibility of not being able to consume an A by consid-
ering sessions different from x as potentially not available (i.e., abortable - cf. w:& A
in the rule, where w denotes a sequence w1, . .., w, of names). Rule (T&) expresses
non-deterministic choice. While it may be seem to correspond to a formal sum of proofs
(cf. [22])), in our case it corresponds exactly to non-deterministic choice PHQ of pro-
cesse and can only be used inside the monad & A. The principal cut reductions are:

Teut(z)(T&%5(D1), T®Z(D2)) — Teut(z)(D1, D2)
Teut(z)(T&®, TOZ(Dy)) — T | (T&Y1, -+, T&WY?)

3 We use @ for denoting internal non-determinism in processes since this is rather standard;
indeed, this notation goes back at least to De Nicola and Hennessy [19]].

12 Luis Caires and Jorge A. Pérez

At the level of the process interpretation, these reduction rules are expressed by

(va)(z.some; P | x.someg; Q) — (va)(P | Q)
(vx)(x.none | z.somew; Q) — wy.mone | --- | w,.none

Notice how the reduction for none safely discards the continuation Q. We also consider
the following proof conversion (and corresponding process congruence) that expresses
the distribution of parallel composition over internal choice:

Tcut(z)(T&(D1, D2), D3) = T&(Tcut(x)(D1, D3), Teut(z) (D2, D3))
(vz)(P [(Q®R)) = (vz)(P | Q)& (vz)(P | R)

Notice that, in principle, the two computational reduction rules above could be for-
mally used to express the reduction rules for the “sharing” exponentials (cf. [48]) in
presentations of linear logic with explicit weakening and dereliction rules, instead of
the DILL-style presentation we have adopted here. Indeed, we prefer the DILL-style
presentation as it more tightly express the behavior of sharing present in traditional ses-
sion types. On the other hand, together with the conversion principle just shown, the
primitives and reduction rules just presented turn out to be quite adequate to express the
behavior of non-determinism and failure.
Before closing the section, we discuss examples that use §A and & A types.

Example 2.5 (Movie Server (3)). Getting back to our movie server scenario we illus-
trate how to model a system with a client Randy(s) that non-deterministically decides
between either buying a movie or just seeing its trailer. Recalling process definitions for
SBody(s), Alice(s), and Bob(s) from Examples2.3|and 2.4} we would have:

Randy(s) £ s.some; Alice(s)®s.some; Bob(s)
USystem = (vs)(s.someg; SBody(s) | Randy(s))

where the suitable types and type assignments are now given by
Randy(s) - s: &SBT ; - s.somey; SBody(s) s : ®SBT ; -

Process Randy(s) is typed by using Rule (T&3) on each individual client; then, using
Rule (T&) one would obtain a typed non-deterministic choice between them. The server
is typed using Rule (T®%;) with @w = {), for there are no sessions (besides s) in the linear
context (recall that SBody(s) - s : SBT ;). This way, we derive USystem - -; -. O

Interestingly, the non-deterministic choices enabled at the level of types by &A and
@A (and at the process level by @) are completely orthogonal to the usual determin-
istic choices enabled by labeled internal and external choices. The following example
illustrates the pleasant interaction between deterministic and non-deterministic choices:

Example 2.6 (Movie Server (4)). Consider now a variant of the movie server that logs
the request made by the client on a log service [of (boolean) type B = 1 ¢ 1. We
extend the process SBody(s) from Example|2.3|as follows:

SBodyL(s) = s.case(s(title).s(card).s{movie).s.close | l.inl;l.close,
s(title).s(trailer).s.close | l.inr;l.close)

Linearity, Control Effects, and Behavioral Types 13

We may provide a typing SBodyL(s) b s:SBT, :B ; - which cannot be composed with
the non-deterministic client Randy(s) from Example However, process

s.somey; [.some; SBodyL(s)
may now be composed with client process Randy(s) as
ULSystem = (vs)(s.some; l.5ome; SBodyL(s) | Randy(s))
Now we may derive: [.some; SBodyL(s) \- s:SBT,1:&B ;- and
s.somey; [.some; SBodyL(s) b+ s:®SBT,1:&B ;- ULSystem - 1:&B ; -

Writing P = @ to denote the reflexive-transitive closure of P — (), we obtain the
reduction sequence ULSystem = (l.inr;l.close®l.inl;l.close).

Notice that the visible behavior of log channel [in ULSystem must be given the
non-deterministic type &B: there is no typing ULSystem + [:B, since the resulting
interaction is essentially non-deterministic. ad

In our system, the ability of representing (internal) non-determinism is intrinsically
tied to that of describing, in a completely logically motivated manner, abortable behav-
iors as typical of programming constructs such as exceptions and compensations [23].
Our following example illustrates this distinctive aspect of our model.

Example 2.7 (Movie Server (5)). To consider the possibility of modeling failure, we
introduce the code for a “faulty” client, that non-deterministically behaves like Bob(s)
(cf. Example[2.4) or does not produce any behavior at all. Consider the non-determinis-
tic server SBodyNDL(s) from Example[2.6f we may now have:

Buzz(s) = s.some; Bob(s)®s.none Buzz(s) Fs: &SBT ;-
(vs)(SBodyNDL(s) | Buzz(s)) F 1:&B ;-

Notice how failure of sub-computations propagates inside the monad & — , encapsulated
in a hereditarily safe way. Here, we have the reduction sequence

(vs)(SBodyNDL(s) | Buzz(s)) = (l.none®l.inl;l.close)

reflecting that the composed system either aborts or chooses /.in1 on the log. a

We now illustrate how systems encapsulating non-deterministic behavior can never-
theless be given a globally deterministic type, thus showing that internal non-determinism
and failure are not visible as long as they are typed by “plain” deterministic types.

Example 2.8. Consider the following processes and typings:

Some(y) = y.some; y.inl; y.closedy.some; y.inr; y.close

Prod = T(y).(Some(y) | x.close; b{“done”).b.close)

Cons = z(u).(u.some; u.case(u.close;0,u.close; 0) | z.close)

Blob £ (vx)(Prod | Cons)

Some(y) Fy: &B ProdtFz:(&B)® L,b: Strel Cons - z:(®B) 2 1

14 Luis Caires and Jorge A. Pérez

(Processes)
Pu=[zoy [PIQ](vy)P |0
| Z(y).P | x(y).P | T2(y).P | la(y).P
| z.case(P, Q) | z.inr; P | .inl; P | z.close | z.close; P

| P®Q | x.some; P | z.none; P | x.somew; P

(Reduction - Contextual Congruence Rules omitted)

z(y).Q | x(y).P — (vy)(Q | P) z?(y).Q | 'z(y).P — (vy)(Q | P) | 'z(y).P
z.inr; P | z.case(Q,R) - P | R z.inl; P | z.case(Q,R) - P | Q

(vz)([x+y] | P) = P{y/x} z.some; P | z.somew;Q — P | Q

z.close | z.close; P — P x.none | z.somew; Q) — wi.none | ... | w,.none
P— Q= (vy)P — (vy)Q P=P . P-Q.Q=Q=P—Q
RQ—-Q=P|Q—->P|Q Q— Q = PeQ — PaQ’

(Structural Congruence - Contextual Congruence Rules omitted)

Pjo=P P=,Q=P=Q (vz)0=0 PlQ=Q|P
PI@QIR=(P[QIR =z¢&m(P)=P|e)Q=(vz)(P|Q)
[y = [y] (vx)(vy)P = (vy)(vz)P 09p0=0 PeQ = QaP
PO(QOR) = (PoQ)dR (vz)(P | (QOR)) = (va)(P | Q)&(va)(P | R)

Fig. 3. The Process Language.

Notice that the although the producer process Prod sends a non-deterministic boolean
to the consumer process Cons, the type of the composed system Blobis b : Str ® 1, a
deterministic type. In fact, we may easily verify that Blob = b(“done”).b.close. O

Figure [3| summarizes our process language, and associated reduction and structural
congruence relations. The main properties of our system will be established next.

3 Main Results

We collect in this section main sanity results for our non-deterministic linear logic-
based type system for session process behavior. First, our system enjoys the cut-elim-
ination property. Cut elimination may be derived given a suitable congruence =, on
processes consisting of reduction (computational conversions), structural congruence
(structural conversions), and some key commuting conversions (cf.[1137013]).

Theorem 3.1 (Cut Elimination). If P - A;© then there is a process Q) such that
P =, Qand Q+ A;O is derivable without using rules (Tcut) and (Tcut’).

The proof is an extension of the proof for classical linear logic with mix, but consid-
ering the new reductions and conversions introduced above for revealing and reducing
principal cuts involving the & A and & A modalities.

Linearity, Control Effects, and Behavioral Types 15

Then, we may state type safety, witnessed by theorems of type preservation and
global progress for closed systems. Type preservation states that the observable inter-
face of a system is invariant under reduction.

Theorem 3.2 (Type Preservation). If P+ A;© and P — Q then Q F A; 6.

Proof. (Sketch) By induction on typing derivations, and case analysis on reduction steps.
In each case, the result easily follows, given that reductions come from well-defined
proof conversions, which by construction preserve typing. [

Unlike standard type systems for session types, our logical interpretation satisfies
global process, meaning that well-typed processes never get stuck on pending linear
communications. More precisely, we say that a process P is live, noted live(P), if and
only if P = C[r.Q] where C[—] is a static context (e.g. a process term context in which
the hole is not behind an action prefix, but only under parallel composition — | —, name
restriction (va)—, or sum —@®— operators) and 7.() is not a replicated process (i.e.,
is a session input, output, offer, choice, or non-deterministic action). We then have:

Theorem 3.3 (Progress). If P - ; © and live(P) then there is Q such that P — Q.

Proof. (Sketch) By induction on the typing derivation. Our proof relies on a contextual
progress lemma, which uses a labeled transition system for processes, compatible with
reduction (cf. [13]]). This lemma yields a more general progress property for processes
with free linear channels that transition by means of immediate external interactions. It
extends Lemma 4.3 in [13]] (which holds for a language without non-determinism) as
follows: If P - A; © and live(P) then either (1) there is () such that P — @ or (2)
there are P; (i = 1..n) such that P = @& P; and for all P; there exist); and « such that
P; 5 Q. The proof of this extended lemma is by induction on derivations. [

We now discuss additional results that clarify some key features of the our type system.
We say that a process P is prime if it is not structurally congruent to a process of the
form Q@ R with non-trivial (i.e., equivalent to 0) () and R. We can then prove:

Proposition 3.4. Let P = A; © where types in A; © are deterministic (do not contain
&A or @A types at the top level), and let P = Q /. Then Q is prime.

Proof. (Sketch) By induction on the typing derivation. [

Based on a logical system in which reduction matches cut-elimination, it turns out that
typing in our system enforces confluence and also strong normalization. These results
can be established using (linear) logical relations, as developed in [37]. Intuitively, con-
fluence holds because non-determinism is captured equationally without losing infor-
mation, by means of delaying choice in processes P®(), which express sets of alter-
native states. Still, it is interesting to relate our system with standard process calculi
which explicitly commit non-deterministic states into alternative components. For that
purpose, we investigate the extension of the reduction relation in Figure [3] with non-
confluent rules for internal choice, standard in process calculi but clearly incompatible
with any Curry-Howard interpretation, namely P®Q — P and P®Q — (. We denote
by P —. @ (and P =, Q) the extended reduction relation, which can be proven to
still satisfy preservation and progress in the sense of Theorems and We may

16 Luis Caires and Jorge A. Pérez

then show the following property, expressing postponing of internal non-deterministic
collapse of non-deterministic states into prime states.

Theorem 3.5 (Postponing). Let P - A; ©. We have
LIfP= P®... &P, /4 with P; prime for all i, then P = P; forall 0 < i < n.
2.LetC = {P; | P =. P, /5. and P; is prime }. Then C is finite up to =, with
#C =mn,andforall0 <i<n, P= Pi®...6P, >, P,.

Proof. 1. Trivial by definition. 2. By induction on the reduction sequence, using the fact
that we may commute = reduction steps backwards with =, reduction steps. |

Theorem [3.52) shows that no information is lost by = with respect to the (standard)
non-deterministic (and non-confluent) semantics of internal choice P®(expressed by
=.. We may therefore tightly relate our system, based on a logically motivated re-
duction relation, with a standard non-confluent reduction relation including rules for
internal choice, in the sense that the former precisely captures the multiset of observ-
able alternatives defined by the latter, while preserving compositional and equational
reasoning about system behavior as expected from a Curry-Howard interpretation.

4 Higher-Order Concurrency, Non Determinism, and Exceptions

We illustrate the expressive power of our typed process model by embedding A**, a lin-
ear higher-order functional, concurrent programming language with concurrency, non-
determinism—including failure—, and exceptions. Defined by a typed compositional
encoding, this embedding allows us to showcase the generality of our developments
and the relevance of our Curry-Howard correspondence in a broader setting; it will also
enable us to give a rigorous footing to our motivating examples (cf. Figures [I|and [2).

The Target Calculus. **“ is a typed call-by-value functional calculus, defined by the
grammar below. We use e, €/, . . . to range over expressions; v, v’, . .. to range over val-
ues; x,, z, . . . to range over variables; ¢, ¢/, . .. to range over channels, and T, U, A, B
to range over types. The syntax of values, expressions, and types (7) is as follows:

va=1x | x| Aze | (v)
ex=v|(fz)|LETa=e; INeg
| TRYe; CATCHz. eo | THROW 2
| LIFTe|SOME!z;e | SOME? z;e | NONE! z;¢e | e1Peq
| FORKc.e | SEND(c,e;);ea | RECV(c, 2);e | CLOSE!c;e | CLOSE? ¢

T:i=unit| A5 B|AS B|IT.T | ?T.T | end, | end; | &T | &T

We say expressions are effectful if they can raise an exception, and pure otherwise.
. . . . 0
Besides the unit type, types for A** include (linear) arrow types of two forms: A — B

is the type of functions that do not raise exceptions, whereas A L, Bis the type of
functions that may raise an exception of type T'. We also have session types !T.T" and
?7T.T' for output and input channel-based communication. Types for labeled selection
and choice are not included but can be easily accommodated. Types end; and end-
denote the dual views of terminated endpoints. Furthermore, we have types ®&71" and

Linearity, Control Effects, and Behavioral Types 17

&T for expressions that may produce and consume values of a type T, respectively.
We write S, S’ to denote the session fragment of the type structure (i.e., no unit nor
arrow types). On this fragment, we assume a duality relation, denoted S, defined as
expected. The type syntax does not include general (non-linear) functional values nor
shared sessions; the integration of these constructs is orthogonal and unsurprising.

As values, we consider variables, abstractions, and the unit value *; we also have the
abortable value ((v)), which represents discardable (affine) values: given a value v of
type T', value {(v)) will be of type ®T'. For convenience, the language is let-expanded; as
aresult, application is of the form (f), for variables f and . Expressions also include
a try-catch construct for scoped exceptions, with the expected meaning, and a construct
for raising/throwing exceptions with an explicit value. The key features of the process
model in §[2] appear as expressions that may produce a value of a certain type and one
construct that may consume a value of a certain type. Non-deterministic choices be-
tween two expressions are also supported. Concurrency is enabled by spawning threads,
using a forking construct. Moreover, A**“ includes expressions for channel-based com-
munication, enabling the exchange of values of any type (including channels).

As mentioned above, the intended operational model for **€ is call-by-value; rather
than directly giving the operational semantics for the language, we first delineate its
behavior via a type system and then give its semantics indirectly, via a type respecting
encoding into the basic type system introduced in §[2]

The type system we consider here is actually a type-and-effect system in which the
effect represents the type of the exception that can be raised by the typed expression.
Judgments are then the form D U e : T: under an environment D (a set of typing
assignments), the expression e has return type 7', while the effect type U is either O (the
expression is pure) or 7" (the expected type of exceptions).

The typing rules for A* are shown in Figure 4] Rule (ABS) types abstractions; it
decrees that the type of the exception possibly raised by the abstraction body will be
used as the effect associated to the arrow type. Rule (PRO) types abortable values ((v)),
as motivated earlier: it closely follows the principles of Rule (T®%) for session-based
processes; in particular, it requires all free variables in v to be abortable (cf. the premise
@D). Rule (LIFT) allows to cast an (trivially) effecful expression from a pure one.

There are three typing rules for let expressions LET a = e; INey; the actual rule
used depends on the exceptions possibly raised by its constituent sub-expressions e;
and e,. Rule (LET1) is used when both e; and e, are effectful. Observe that e; must be
typable in an abortable environment, in order to safely account for an exception raised in
e1. Rule (LET2) handles the case in which both e; and es are pure, while Rule (LET3)
covers the case in which only e; is pure. These three typing rules are crucial to isolate
effects and to exploit the combination of pure with effectful computations.

Rule (TRY) types the construct TRY e; CATCH x. e2; the type of the exception pos-
sibly raised by e; must match with the type of x in e5. Notice that e; and es must be
of the same type (7" in the rule). Rule (THROW) ensures that the type of the thrown
value is propagated as an effect. Rule (FORK) captures the essence of thread spawning
for communication types, creating a new (linear) session channel where one endpoint
is handed to the thread body and the other endpoint returned by the fork operation.

18 Luis Caires and Jorge A. Pérez

ABS APP
VAR D,z:A+Y e: B DY f:A%S B D'F a:A UNIT
2:TH 2:T DRV dpe:A % B D,D'+Y (fa): B FY « : unit
PRO LIFT LETI1
EBDI—OU:T DF’e: B D1|—T61:A @Dg,a:A}—Teng
@D F° (v) : &T D+” LIFTe: B D1, @Dy H' LETa = e, INey : B
LET?2 LET3
D1 0 e;: A D2, a:A [es: B D1 0 e : A D2, a:A T es:B

D:,Dy F° LETa = ey INes : B

TRY THROW
DR z:T

D1FU61:T m:UFOeQ:T

Di,Dy FT LETa = €1 INes : B

FORK
D,z:SH e: unit

D; F° TRY ey CATCHz.ep : T DT THROWz : U D+’ FORK z.e : S
CLOSE2
CLOSEI D+ e: unit
c:end, HT CLOSE? ¢ : unit D,c:end 7 CLOSE!c;e : unit
SEND RECV
DFa: Ty D',C:SFUe:T D,z:Tl,c:SFUe:T

D,D,c:Ty.5+HY SEND(c,a);e: T

SOME!
D,z:Th+FY e:T

D,c:?11.8 FY RECV(c, 2);e : T

SOME2

@D,z:TI—Oe:unit

D,z:®T Y SOME! z;e: T
NONE
DrY e: T

@D,z : &T F° SOME? 2; e : unit
NONDET
®D % ey : unit HD s : unit

D,z: Ty FY NONE! z;e: T

@D F e1®es : unit

Fig. 4. Typing rules for A*“.

Rules (CLOSE1) and (CLOSE2) type session channel closing operations; Rules (SEND)
and (RECV) type operations for sending and receiving values along session channels.

Rule (SOME1) and Rule (SOME?2) type the production and consumption of a non-
deterministic value as z, respectively. In particular, Rule (SOME2) applies to expres-
sions that do not return values, but that may interact with expressions that do return val-
ues via channel-based communication. Notice the similarities between Rules (SOMEI)
and (SOME2) (for functional expressions) and Rules (T&%) and (T®%) (for process
terms), respectively. In the same vein, Rule (NONE) can be seen as the analogue of
Rule (T&*) but for abortable expressions in our functional language. Rule (NONDET)
enables the non-deterministic choice between two pure expressions that do not return
values; this allows us to define, e.g., non-deterministic sessions.

In general, the (two-sided) typing rules in Figure 4] encompass a notion of duality,
in the sense that a connective appearing in the left-hand side of the turnstile in the
Figure[d]corresponds to its dual in the right-hand side of the turnstile. This intuition will
be captured in our embedding of functional expressions as processes, detailed next.

Linearity, Control Effects, and Behavioral Types 19

[unit] =1
[A % Bl = (TA] » ((1[B]) » 1))
[4 % B] = (TA] » ((&([B] = [U])) » (IB] 8 [U]) ® L))

[UTLTQ]] = [[Tl]] ® [[TQ]] |I?T1.T2]] = IIT1]] 3 [[TQ]]
[®T] = ®[T] [&T] = &[T] [end:] = L [end-] =1

Fig. 5. Encoding of A** types into logical propositions.

Example 4.1. We can now return to the code snippet in Fig. 2] and give some typings
using the type structure just introduced. As mentioned in the introduction, there is a
precise stage of the protocol along (dual) names res and f after which failure is safe.
In our type structure we can precisely delineate such a place. We would have:

l: 7string.?string.end- log : !string.!string.end,
f: 7string.lint.®(’string.end?) 7es:!string.?int.&(!string.end)

These typings require minor modifications in the code of Fig.[2f we add prefix ‘SOME ? f~
before ‘RECV(f, bk)’, and prefix ‘SOME ! res’ before ‘SEND(res, book)’.

Embedding **“ Into Session Typed Processes. We now present a typeful encoding of
A®€ into the logically motivated typed process model of §[2] and establish its correctness
(Theorem [£.2)). The encoding has two main components: the encoding of (functional)
types into linear logic based session types, and the encoding of A**¢ expressions into
(non-deterministic) concurrent processes.

Figure 5] gives the encoding of types. We use the following shorthand notations:

T2 [Tl (1)
[Wis[r = (Uje1) e ([T]®1))
&([T] + TU]) £ &[T (UTB[T]) ® 1)) 3)

Also, we assume the expected extension of the encoding of types to typing environ-
ments: given D = x1:Ty, - -+, 2,:T, then [D] = z:[T1], - - , 2n:[T0]-

The encoding of expressions is typeful: for each typing rule in Figure 4| we give
a corresponding type derivation for session-typed processes. Figures [6] and [7] give a
complete account; for readability, in those figures we show only the conclusion (final
judgment) in the derivation. Also, we use the following abbreviations for processes:

— we write y(z).P (where z is free in P) for the free output process, represented as
J(w).([w 2] | P) (cf. §):

— we write y.0; P and y.0 to stand for y.close; P and y.close, respectively;

- we define S, as the process ¢(u).¢.0; u.0; 0. Notice that S, F ¢ : 1 [unit].

As usual in encodings of (call-by-value) functional languages into the m-calculus, our
encoding of expressions is indexed by names, which are used to interact with the envi-
ronment; they can be seen as continuations or as locations where the value returned by
an expression will be made available. In our case, these names are related to the effects
of the source expression e:

20 Luis Caires and Jorge A. Pérez

— If e is pure then its encoding will be indexed by a single continuation name y. This
will be denoted [e],,.

— If e is effectful then its encoding will be indexed by names y and x. This will be
denoted [e], ,: name y represents an non-deterministic continuation, along which
the value to which e reduces may be produced; name x represents the continuation
to the enclosing try-catch block exception handler.

These intuitive distinctions are made precise in our main technical result, which exploits
the shorthand notations (I,), and (3) above:

Theorem 4.2 (Typability). Suppose D U e : T. Then, for some names y, x, we have:

- ey F Ly 1171, 5 = 0
~ [ely.o = [D], y:&([7] = [U]), 2:[U] B [T], if U # 0.

Consequently, our source language A**“ (which combines functions, concurrency, non-
determinism, and exceptions) will inherit key guarantees from the target process lan-
guage, namely preservation and global progress (deadlock absence and lock-freedom).
Due to space limitations, in the following we only discuss selected cases of Fig-
ures [6] and [7] As already mentioned, the type of a let expression LETa = e; INey
considers different possibilities for the interplay of pure and effectful computations in
ey and e,. If both expressions are pure (cf. Rule (LET2)) then the encoding is simple:

[LETa = e1 IN e, = (vq)([elq | a(a).q-0:[e2]y)

Since e is pure, we know [e1], will surely produce a value, which will be made avail-
able to [es], along the private (linear) name ¢. The case in which both e; and ey may
raise exceptions (cf. Rule (LET1)) is more interesting:

[LETa = e1 INea)y o = (vq)([er]y,x | ¢-s0mep; g(a).q(s).q.0; [e2]y s)

In this case, since e; may raise an exception, we account for this possibility via the
prefix ¢g.some p, which requires all values (including sessions) in [es], s (excepting a)
to be in abortable state. The production of a value within [e1], , will be signaled by a
prefix ¢q.some, while throwing of an exception will be signaled by a prefix q.none (see
next). Therefore, if [e1],,. produces a value (¢.Some is executed) then this value will be
passed to [eo],,s using the private name g; subsequently, the reference to the enclosing
try-block 2 will also be passed to [es],,s as parameter s, exploiting linearity of name-
passing (delegation). Otherwise, if [e1],,, ever raises an exception (g.none is executed)
then all the values in D will be safely and hereditarily discarded.

The encoding of values takes into account that a value may occur in an abortable
context. The encoding of a variable z of type T is as follows:

[2ly = y(2).y.0 [2ly,» = y.some; y(z).y(z).y.0

If z occurs in a pure context/expression, then its encoding, given on the left, is standard;
name y will have type 1 [T] (cf. (I)). Otherwise, if z occurs in an effectful (abortable)
context, then its encoding, given on the right, first announces the production of a value

Linearity, Control Effects, and Behavioral Types 21

using prefix y.Some; after z is sent along y, name x (representing the continuation of
the enclosing try-catch block exception handler) will be sent along y. The type of x will
be [U] B [T], where U is the type of the enclosing exception (cf. (). Thus, intuitively,
x encompasses the potential for a normal execution ([7']) but also contains information
on the (exceptional) behavior to be triggered upon failure (JUT). A more concrete jus-
tification for the typing x:[U] B [T] will become apparent next, when discussing the
deterministic choice that underlies the encoding of try-catch and throw expressions.

To encode an abstraction \z.e, we distinguish several cases, depending on whether
e and \z.e are effectful or not. The simplest case is when both e and Az.e are pure:

Az.ely =3(f)-(y-0 | f(2)-f(F).f.0: [e]x)

We follow closely known encodings of A-calculus in the 7-calculus, here adapted to a
linear setting in which the continuation y and the reference to the function body f are
session-typed [43]. When both Az.e and e are effectful we follow a similar principle:

Mz-ely.. = y-some;y(f).(y(x).y-0 [f(2).£(K)-f(5)-F-0; [€lk.;)

The prefix y.some declares the production of a value, namely the reference to the func-
tion body f. An invocation to f must supply the parameter of the function (z) but also
the continuations & and j, to be linearly used by the encoding [e]y, ;.

The encoding of applications goes hand in hand with the encoding of let expres-
sions. Given the let-expanded semantics (which forces an expression’s context to deal
with potentially abortable expressions), the encoding of applications (f a) is simple:

[(f)y = fla).fy)-f(x).f.0
We may now discuss the encodings of try-catch and throw expressions:
[TRY 1 CATCH 2. e2]y, = (vj)((vk)([elr,; | k.somegy; k(u).k(2).k.0; z.in1; 2(u).2.0) |
@O
j-case(j(u).j.05y(u).y.0, j(2).j.0;[e2ly))
an

[THROW 2], , = y.mome | .inr; z(2).2.0

The encoding of TRY e; CATCH z. e5 is in two parts, denoted (I) and (IT) above. Part (I)
concerns normal behaviors only; Part (IT) concerns normal and exceptional behaviors:

— If e; does not raise an exception then [e1]y ; will trigger a prefix k.5ome, which will
synchronize with Part (I). Subsequently, the obtained value and the reference to the
enclosing exception block will be passed around; in this case, z will be substituted
by j, and the prefix j.inl will synchronize with the choice on j (Part (II)) to send
the resulting value along y. This choice discards the right branch containing [es],,.

— If e; raises an exception then, because of the encoding of throw, process [e1] k.5 Will
trigger a prefix k.none which will synchronize with Part (I). As a result, the remain-
ing behavior on k and z will be discarded. However, the choice on j (Part (II)) will
continue to be available: this is used by the encoding of throw, which by executing
j.inr will select the right branch of Part (II). The value raised by the exception will
be then passed to [e2],, which can now be executed.

22 Luis Caires and Jorge A. Pérez

Our encoding of try-catch therefore elegantly amalgamates the key features of our pro-
cess model: most notably, the presence of abortable behaviors in a pleasant coexis-
tence with non-abortable behaviors, and the interplay between non-deterministic and
deterministic choices—indeed, it is the deterministic choice that underlies the excep-
tion mechanism what ultimately justifies the type [U] B [T7] for «, given in (2).

In the typed model presented here (and its encoding into processes), we consider
try-catch constructs TRY e; CATCH 2. e in which es is pure (cf. Fig. E]) However, there
is no fundamental obstacle to address the general case in which both e; and e; may
raise exceptions; the encoding given in Fig.[7]can be extended following expected lines.

Constructs for non-deterministic behaviors have fairly straightforward encodings:

[SOME! z; €], , = 2.5ome; [e]y » [NONE! z; €], = z.00on€ | [¢]y,»
[SOME? z; €], » = z.somep; (vq)([elq | Sq) | ¥(v).(v.0 | y.0)

In [SOME ? z; e]ly,x, notice that typing ensures that e does not return a value; also, set D
enables to safely discard behaviors in e in the event of an exception. Given the condi-
tions ensured by typing, the encoding of non-deterministic choices is unsurprising:

[er®es]y = ((vz)(leal- | S)®(w2)([eal- | S2)) [Ty

In essence, processes S, consume the (unit) value produced by [e1], and [e2], through
z. The resulting processes can then be composed first in a non-deterministic choice, and
then in an independent parallel composition with [+],. It would not be hard to extend
this encoding to handle the general case in which e; and es may raise exceptions and
return values different from unit. To that end, typing should ensure that e; and e, are
each typable in an abortable context (cf. Rule (T&)), but also that the name representing
the continuation to the enclosing exception handlers (i.e.,) is given an abortable type.

5 Further Related Work

In the purely functional (and sequential) programming setting, control operators have
been given Curry-Howard interpretations in the context of classical logic [26/36/2]. To
our best knowledge, this paper presents the first attempt at tackling state-aware concur-
rent programming features, involving linearity (our main focus herein), while building
on a Curry-Howard interpretation of classical linear logic as session types. A very ten-
tative sketch of some ideas behind this work was presented at Cardelli’s Fest [8]; here
we provide a complete account of non-determinism and failure, introduce new computa-
tional primitives, present associated results, and provide non-trivial examples, including
the typeful embedding of a realistic functional, concurrent language with exceptions.
The tensions between affinity, linearity and control effects have been widely inves-
tigated in different settings, and already referred in the introduction. The work [45]
considers a form of affinity in stateful settings (including session types) and explores
how to safely interface an affine language with a conventional one. We share several
high level aims with [45]], although following a fundamentally different approach, and
obtaining results of different relevance; in particular, we consider a unified (concurrent)
language that admits a fundamental Curry-Howard correspondence with linear logic,

Linearity, Control Effects, and Behavioral Types 23

“Mw%Jy_MmNHMMWm
T U+#o0 _ _
TR o |[YT T ysome; y(z).y(z).y.0 b 2 [T], y:&([T] + [U]), z:[U] B [T]
T D,Z:AI—Oe:B

0 0 vy=
UIDF Aze: A— B
[D,z:A+Y e: B

0 U y=
IDF Aze: A— B

£)-w0 | f(2).£(k).£.0;[e]x) - DI, y: 1[A % B]

-0 | f(2).f(R)-£()-f0: [elws) F DL y: 1[4 % B]

v, = 95058 5()-(y(@)-5.0 | (-4 (0)-4 (5)-1-0: el)
DL, y:&([A % B] + [V]),=:[V]B[A = B]

D,z:A+Y e: B
IDHY e:AS B

>m forF flAS Bl
([[1=+) x:[T] B [B], a:[4]

_—DFUfiALB D a: A
D,D'F (fa): B ﬂy’)1ty
DrF f:A%B D' a4
Ii D,D’'F° (fa): B]]y_ Fla).fly).flx).fO - f:[A S Bly: +[B],a:[A]
“Dl Foei: A D2, a:A Foeo: B
| Di,D; -’ LETa =ei INes : B ﬂy: (va)([exlq | a(a).q.0;[e2]y) + [D1], [D2], y: 1[B]

Y, T = (va)(lexlq | g(a).q.0; [e2]y,=)
= [D1], D], y:&([B] = [T1), 2:[T] B[5]

(D1 Fe1: A Doya:AFT e3:B
| D1,D2 " LETa = e1 INez : B

Y, = (V%ﬂlqﬁ.somep; q(a)ﬂs).q.o; le2ly,s)
= [D1], &[De], y:&([B] + [T]), a:[T] & [B]

'{Fe:Bﬂyﬁﬁ:@@m%|«mqmy&mamwy@»yw
|DF" LIFTe: B [D], y:&([T] =+ [B]), :[T] B [B]

D, Fle : A @Dy, a:A+Tey . B
__D1769D2 FTLETa = e1 INes : B

y = U(2)-(z.somep; (vq) ([l | 4(w).q.0; [u>2]) | y.0)

F &[Dly: 1 (@[T])

Fig. 6. Typeful encoding of A* terms into basic processes (Part 1).

@D v:T
| ©D F° () : &T

and offers strong guarantees by static typing such as deadlock-freedom. Within the ses-
sion types literature, the interplay of session types and functional languages (including
encodings of functional calculi) has received much attention (see, e.g., [25/48135132])
but non-determinism/failure do not seem to have been addressed. The paper [35] relates
effect and session type systems, but effects such as exceptions are not addressed. A work
exploring affinity in session calculi is [34]. Existing works on exception mechanisms
for session types impose severe syntactic restrictions to typable programs and/or do

24 Luis Caires and Jorge A. Pérez

- . Wi ((wk)([eilr.; |
D1 061 T z:Uk e T:|:| y = k.somey; k(u).k(z).k.0; z.inl; z(u).2.0) |
| Do TRY e CATGHZ. ez - 1 j.case(j(u)-5.0:y{u)-y.0., §(2).3.0: [ealy))

F[D1], y: 17T

I;'_OZ:T:H y,z = y-.0one | z.inr; z(z).x.0
| D" THROWz : U D1, y:&([7] + [U]), =:[T] B [U]

~ y(@).((va)([la | Sq) | 4-0) - IO, y: 1[5]

D,Z:SFUe:T
__D,Z:EBSI—U SOME!z;e: T

"D,:r : S +° e : unit
| DF°FORKz.c: S

Y, = Z'm; [6]%17 # mv Z:&M7 y&([[T]] - m)7
z:[U] B [T]

_ somen: (vq)([els | S2) | 5(0)- (20 | 5.0)
F &[D], z:®[S], y: 1 [unit]

EBDJ:SFOe:unit
__@D7z : &S F° SOME? z; € : unit

DFY e: T — T . LT
|D,z: @S FY NONE! ;e : Tﬂ y,@ = z.none | ﬂe]y,zg[[[[UD]]]]g.ﬁ[}[]Sﬂ,y.&([[T]] =0,
-DFOa:Tl D/C:TQFUe:T

; : o = c(a)[ely. - [D], c:[Th] ® [[2],
__Dy D,c: Ty Ty "U SEND(C, a);e : T:|:|y y&([[TII - [[UII) 2 U]] a: IITI]]

D,z: Ty c:Tgl—Ue:T
: : ,z = c(2).[ely.. [DL a[T1] ® [T,
__D,CZ?TLTQ "U RECV(C,Z);GZT:|:|y y&(IITII . HUﬂ)v [[IIHH[[]]

T 0 ¢, - uni ¢y : uni
®D F e : uo t obF ; = t]:|y = ((VZL[&L | S:)D(vz)([ea] | S2)) | [¥]y
@®D " e1Pes : unit F &[D], y: 1 [unit]

DF" e: unit -
T : — ||y, z = ¢0 | [ely,= L
L D,c:end * CLOSE! ;e : unit F c:fend:], y:&([unit] =+ [TT), =:[unit] B [T]
- = . :|:|y’q; = ¢.0;0 | y.some; y(r).(r.0 | y(x).y.0)
[c:end: = CLOSE? ¢ : unit - c:[ende], y:&([unit] = [T]), z:[T] B [unit]

0 unit unitﬂ Y T 9. (w0 | y.0) F y: 1 [unit]
Fig. 7. Typeful encoding of A*“ terms into basic processes (Part 2).

not ensure progress: this observation applies to models of interactional exceptions and
interruptible sessions based on both binary sessions (cf. [15]) and multiparty sessions
(cf. [14121]). Further work is required to connect our process model (based on binary
session types) with multiparty structured interactions with exceptions/interruptions, fol-
lowing logic-based relationships between binary and multiparty session types [9].

Linearity, Control Effects, and Behavioral Types 25

Also related are [3U17]. The work in [3] explores forms of non-determinism and
failure via the conflation of additive connectives. This is quite different from our ap-
proach, which is based on a new pair of monadic/comonadic connectives, fully justified
by a Curry-Howard interpretation and expressive enough to represent forms of affinity
and exceptions. The work in [17] does have non-determinism at the level of processes,
but its expressiveness is not analyzed, and non-determinism at the level of types is not
addressed. In contrast, we provide types for non-determinism via specific connectives
in the context of a Curry-Howard correspondence, and exploit the expressiveness of the
non-deterministic process model by modeling a realistic functional language.

As explained in the introduction, a main aim of this work is not just to propose yet
another point in the design space solution for exceptions, affinity, or linearity. Instead,
we show how a small set of logically motivated primitives is expressive enough to model
fairly general notions of (controlled) affinity and non-determinism in higher-order con-
current programs (including exception handling) while preserving all the fundamental
properties of a Curry-Howard interpretation for linear logic. We leave for future work a
deeper study of the expressiveness of our model, as exceptions and compensations are
key programming abstractions in models of service-oriented computing (see, e.g., [23]).

6 Concluding Remarks

We have presented the first type system that accommodates non-deterministic and abor-
table behaviors within session-based concurrent programs while building on a Curry-
Howard correspondence with linear logic. Conceptually simple, our approach conser-
vatively extends classical linear logic with two dual modal connectives, related to linear
logic exponentials, but that express non-determinism and failure rather than sharing.

We have shown that our type system enforces progress and session fidelity; its un-
derlying operational semantics, based on Curry-Howard principles, is actually compat-
ible with standard non-confluent formulations of internal non-determinism for process
algebra, in the sense of our postponing result (Theorem[3.5)). Our system is very expres-
sive, as illustrated by several examples, including a typed embedding of a higher-order
linear functional language with threads, sessions, non-determinism, and exceptions.

We have not discussed the presence of intuitionistic (unrestricted) types in the func-
tional language of §[4] as the main focus in the paper is on linearity and its challenging
combination with non-determinism and failure. The combination of these ingredients
with general (non-linear) functional values and shared sessions would be as expected,
resulting from the type discipline of the interpretation of the exponentials in the ba-
sic model. Also, key properties of our type system such as strong normalization and
confluence can be established along predictable lines [37]. A further advantage of our
approach is its natural compatibility with other extensions to the basic framework, for
example behavioral polymorphism [10]. Another interesting direction for future work
is to better understand the behavioral equivalences induced by our interpretation.

Acknowledgments. Thanks to the anonymous reviewers for useful remarks and sug-
gestions. This work has been partially sponsored by FCT PEst/UID/CEC/04516/2013;
by FCT CLAY PTDC/EEI-CTP/4293/2014; by EU COST Actions IC1201 (BETTY),
IC1402 (ARVI), and IC1405 (Reversible Computation); and by CNRS PICS project
07313 (SuCCeSS).

26

Luis Caires and Jorge A. Pérez

References

10.

11.

12.

13.

14.

15.

17.

18.

19.

20.

21.

22.

. J.-M. Andreoli. Logic Programming with Focusing Proofs in Linear Logic. J. Log. Comput.,

2(3):297-347, 1992.

. Z. M. Ariola and H. Herbelin. Minimal Classical Logic and Control Operators. In ICALP

2003, pages 871-885, 2003.

. R. Atkey, S. Lindley, and J. G. Morris. Conflation confers concurrency. In A List of Successes

That Can Change the World, volume 9600 of LNCS, pages 32-55. Springer, 2016.

. A. Barber. Dual Intuitionistic Linear Logic. Technical Report LFCS-96-347, Univ. of Edin-

burgh, 1996.

. P. N. Benton, G. M. Bierman, and V. de Paiva. Computational Types from a Logical Per-

spective. J. Funct. Program., 8(2):177-193, 1998.

. P.N. Benton, G. M. Bierman, V. de Paiva, and M. Hyland. A term calculus for intuitionistic

linear logic. In Proc. of TLCA ’93, volume 664 of LNCS, pages 75-90. Springer, 1993.

. M. Boreale. On the Expressiveness of Internal Mobility in Name-Passing Calculi. Theor.

Comput. Sci., 195(2):205-226, 1998.

. L. Caires. Types and Logic, Concurrency and Non-Determinism. In M. Abadi, P. Gardner,

A. D. Gordon, and R. Mardare, editors, Essays for the Luca Cardelli Fest, pages 69-83.
Microsoft Research TR MSR-TR-2014-104, 2014.

. L. Caires and J. A. Pérez. Multiparty session types within a canonical binary theory, and

beyond. In FORTE 2016, pages 74-95, 2016.

L. Caires, J. A. Pérez, F. Pfenning, and B. Toninho. Behavioral Polymorphism and Para-
metricity in Session-Based Communication. In ESOP’13, number 7792 in LNCS, 2013.

L. Caires and F. Pfenning. Session Types as Intuitionistic Linear Propositions. In CON-
CUR’10, number 6269 in LNCS, pages 222-236, 2010.

L. Caires, F. Pfenning, and B. Toninho. Towards concurrent type theory. In Types in Lan-
guage Design and Implementation, pages 1-12, 2012.

L. Caires, F. Pfenning, and B. Toninho. Linear Logic Propositions as Session Types. Math.
Struct. in Comp. Sci., 2016.

S. Capecchi, E. Giachino, and N. Yoshida. Global Escape in Multiparty Sessions. Mathe-
matical Structures in Computer Science, 26(2):156-205, 2016.

M. Carbone, K. Honda, and N. Yoshida. Structured Interactional Exceptions in Session
Types. In CONCUR 2008, volume 5201 of LNCS, pages 402—417. Springer, 2008.

. M. Carbone, S. Lindley, F. Montesi, C. Schiirmann, and P. Wadler. Coherence generalises

duality: A logical explanation of multiparty session types. In CONCUR 2016, pages 33:1—
33:15, 2016.

M. Carbone, F. Montesi, C. Schiirmann, and N. Yoshida. Multiparty session types as co-
herence proofs. In Proc. of CONCUR 2015, volume 42 of LIPIcs, pages 412-426. Schloss
Dagstuhl, 2015.

L. Cardelli. Typeful Programming. IFIP State-of-the-Art Reports: Formal Description of
Programming Concepts, pages 431-507, 1991.

R. De Nicola and M. Hennessy. CCS without tau’s. In Proc. of TAPSOFT’87, volume 249
of LNCS, pages 138-152. Springer, 1987.

R. DeLine and M. Fihndrich. Typestates for Objects. In ECOOP 2004 - Object-Oriented
Programming, 18th European Conference, pages 465-490, 2004.

R. Demangeon, K. Honda, R. Hu, R. Neykova, and N. Yoshida. Practical Interruptible Con-
versations: Distributed Dynamic Verification with Multiparty Session Types and Python.
Formal Methods in System Design, 46(3):197-225, 2015.

T. Ehrhard and L. Regnier. Differential Interaction Nets. Theor. Comput. Sci., 364(2):166—
195, 2006.

23

24.

25.

26.
217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.
40.

41.

42.

43.

44.

45.

46.

47.
48.

Linearity, Control Effects, and Behavioral Types 27

C. Ferreira, I. Lanese, A. Ravara, H. T. Vieira, and G. Zavattaro. Advanced Mechanisms for
Service Combination and Transactions. In Results of the SENSORIA Project, volume 6582
of LNCS, pages 302-325. Springer, 2011.

P. Gardner, C. Laneve, and L. Wischik. Linear Forwarders. Information and Compututation,
205(10):1526-1550, 2007.

S. Gay and V. T. Vasconcelos. Linear type theory for asynchronous session types. J. Funct.
Programming, 20(1):19-50, 2010.

T. Griffin. A Formulae-as-Types Notion of Control. In POPL’90, pages 47-58, 1990.

K. Honda. Types for Dyadic Interaction. In CONCUR’93, number 715 in LNCS, pages
509-523, 1993.

K. Honda, V. T. Vasconcelos, and M. Kubo. Language Primitives and Type Discipline for
Structured Communication-Based Programming. In ESOP’98, number 1381 in LNCS, 1998.
H. Hiittel, I. Lanese, V. T. Vasconcelos, and L. C. et. al. Foundations of Session Types and
Behavioural Contracts. ACM Comput. Surv., 49(1):3, 2016.

N. Kobayashi, B. C. Pierce, and D. N. Turner. Linearity and the pi-calculus. In 23rd Sympo-
sium on Principles of Programming Languages, POPL 96, pages 358-371. ACM, 1996.

N. R. Krishnaswami, A. Turon, D. Dreyer, and D. Garg. Superficially Substructural Types.
In ICFP’12, pages 41-54, 2012.

S. Lindley and J. G. Morris. Embedding session types in Haskell. In 9th International
Symposium on Haskell, Haskell 2016, pages 133-145, 2016.

F. Militdo, J. Aldrich, and L. Caires. Rely-Guarantee Protocols. In ECOOP 2014 - Object-
Oriented Programming - 28th European Conference, pages 334-359, 2014.

D. Mostrous and V. T. Vasconcelos. Affine Sessions. In Proc. of COORDINATION 2014,
volume 8459 of LNCS, pages 115-130. Springer, 2014.

D. A. Orchard and N. Yoshida. Effects as sessions, sessions as effects. In Proc. of POPL
2016, pages 568-581. ACM, 2016.

M. Parigot. Lambda-Mu-Calculus: An Algorithmic Interpretation of Classical Natural De-
duction. In LPAR’92, pages 190-201, 1992.

J. A. Pérez, L. Caires, F. Pfenning, and B. Toninho. Linear Logical Relations for Session-
Based Concurrency. In ESOP’12, number 7211 in LNCS, 2012.

F. Pfenning. Structural Cut Elimination. In /0th Annual IEEE Symposium on Logic in
Computer Science, LICS’95, pages 156-166. IEEE Computer Society, 1995.

G. D. Plotkin. A Powerdomain Construction. SIAM J. Comput., 5(3):452-487, 1976.

D. Sangiorgi and D. Walker. The m-calculus: A Theory of Mobile Processes. Cambridge
University Press, 2001.

A. Scalas and N. Yoshida. Lightweight Session Programming in Scala. In 30th European
Conference on Object-Oriented Programming, ECOOP 2016, pages 21:1-21:28, 2016.

B. Toninho, L. Caires, and F. Pfenning. Dependent session types via intuitionistic linear type
theory. In PPDP’11, pages 161-172, 2011.

B. Toninho, L. Caires, and F. Pfenning. Functions as Session-Typed Processes. In FoS-
SaCS’12, number 7213 in LNCS, 2012.

B. Toninho, L. Caires, and F. Pfenning. Higher-order processes, functions, and sessions: A
monadic integration. In ESOP’13, pages 350-369, 2013.

J. A. Tov and R. Pucella. Stateful Contracts for Affine Types. In ESOP 2010, pages 550-569,
2010.

J. A. Tov and R. Pucella. A theory of Substructural Types and Control. In OOPSLA 2011,
pages 625-642, 2011.

J. A. Tov and R. Pucella. Practical Affine Types. In POPL 2011, pages 447-458, 2011.

P. Wadler. Propositions as Sessions. In ICFP’12, ACM, pages 273-286, 2012.

28 Luis Caires and Jorge A. Pérez

A Typing the Encoding of Lambda with Exceptions

This section is devoted to the proof of Theorem [4.2] (Page [20). The proof proceeds by
induction on the structure of the typed expression e. Each case is treated separately in
its own subsection (below, from [A.T| until [A.T3).

Next, we present type derivations in the target language (the process model with non
determinism) avoiding abbreviations as much as possible; then, in the boxed frames, we
report the resulting typing judgment as given in Figures[6]and [7] Such figures use the
following abbreviations for types, which for convenience, we repeat here:

tr=re1
WiB[r] = (Ule1) e (T]e1)
&([11+[U]) = &([T] = (VIB[T]) ® 1))
Also, we recall the abbreviations for processes:
y(z).P 2 g(w).([ws 2] | P) (where z is free in P)
y.0; P £ y.close (similarly for y.close and y.0)
Sq = q(u).q.0;u.0;0

A.1 Variables
See Figure|[§]

A.2 Abstractions
See Figures 9] and

A.3 Application
See Figure[T1]

A4 Let
See Figures[12]and

In the typing derivation of Figure [I3] we require the following proposition, which
exploits the flexibility of labeled choices in the typing of exception handlers:

Proposition A.1. Let e be an expression. Then we have:

L Iflelye Fy:&([T]® (([UB[T]) ® 1)),z : [U] B [T] then also
lelyzFy: &([TTe(U]B[T]B[V])®1)),z: [U]B[T]B[V], for some V.
2 MfldyaFy: &(TTe (W]B[T]B[V]) ©1),: [U]B[T]B[V]
then also [e]y . by : &([T] @ (([U] B[T]) ® 1)),z : [U]B[T] (withV # T).
Intuitively speaking, we can modify the exception handler of an expression by adding

and removing possibilities. The proposition holds because exception handlers are es-
sentially chains of forwarders, which admit any type.

Linearity, Control Effects, and Behavioral Types 29
Encoding variables (first case):
[], = §(w).(w <> 2] | y.cTose)
Source type judgment for z:
2T F° 2T
Corresponding typing derivation:
[w s 2] - w:[T], z:[T] y.close F y:1
T(w).(Jw 2] | y.close) F 2:[T], y:[T] ® 1
|:|:2:T H° Z:T:|:| V= y(2).y.0F Z:mv y: T[11]
Encoding variables (second case):
[2ly.= = y-some; y(w).([w > 2] | Y(w).([z > w] | y.cLose)))

Source type judgment for z:

— WU #0

2T HY z:T(#0)
Corresponding typing derivation:

[z w] Fz:[U] B [T], w:[U] B [T] y.close F y:1
[w+s 2] Fw:[T7], 2:[T] Y(w).([x+>w] | y.close) F y:([U] B [T]) ® 1, 2:[U] B [T]

y(w)-([we 2] [g(w).([z o w] | y.close)) - 2 [T], y:[T] © (U] B[T]) @ 1), 2:[U] B [T]

y.5om8; g(w).([w 2] | §w).([x ow] | y.close))) - =TT, y:2([T1 © (UTB[T]) ® 1)), 2:[U] B[]

HM(U # O)ﬂ YT =y some; y(2).y(a).y.0 - 27T, y:&([T] + [U]), z:[U] B [T]

Fig. 8. Encoding variables.

30 Luis Caires and Jorge A. Pérez

Encoding abstractions (first case):
[Az.ely =Y(f).(y.close | f(2).f(k).f.close;[e])
Source type judgment for Az.e:
D,z: A+’e: B
DF A\ze: A% B

Corresponding typing derivation:
[l - [DI, = AL k:[B] © 1
f.close; [l - [D], f:L, 2:[A], k:[B] ® 1
f(k).f.close; [e]u + [D], f:([B] ® 1) ® L, :[A]
f(2).f(k).f.close;[e]x F [D], f:[A] ® ([B] ® 1) ® L) y.close F y:1
9(f)-(y-close | f(2).f(k).f.close;[d]x) - [DI,y: ([Al » ([B] ® 1) ® 1)) ®1

[A—)B]]

D,z:AF’e: B B _
D e A% g llY T 9O £(2)-f(K).£.0;[el) F DL y: 1[A 2 B]

Encoding abstractions (second case):
[Az-ely = Y(f)-(y-close | f(2).f(k).f(4).f-close;[elx,;)
Source type judgment for Az.e:
D,z:A+Ye: B
DFAze: AL B

Corresponding typing derivation:

[elx.; - [DI, [Al k:&([B] + [U]), 5:[B] &8 [U]
f.close;[elx.; F [DI, f+L, =[A], k:&([B] + [U]),:[B] B [U]
f(4)-f-close; [elx,; F [DI, f t([[B]] B [U]) % L, =[A], k:&([B] + [UT)

F(k)-£(j)-f-cLose; [elx.; - DI, £:(&([B] = T01)) ® (IB] & [U]) ® L), =[A]

f(2).f(k)-f(5).f.cLose; [e]x,; F [D], f:[A] = (&([B] < [U])) » ([BI B [U]) ® 1)) y.close - y:1
Y(f)-(y.cTose | f(2).f(k).f(4).f.cLose;[e]x,;) b [D], y: ([A]® (&([B] + [UT)) ® (IB] B [U]) ® 1)) ®1
145 B]

D.z:AFY ¢: B _
DR e A gllY T BH-WO| £(2).£(K).£(5)-£.0; [l ;) - DI, y: 1A = B]

Fig. 9. Encoding abstractions (Part 1).

Linearity, Control Effects, and Behavioral Types 31

Encoding abstractions (third case):
[Az-€ly,» = y-some; Y(f).(Y(w).([x <> w] | y.close) | f(2).f(k).f(j).f.close;[elx;))
Source type judgment for Az.e:
D,z:A+Ye: B
DF Xze: AL B

Corresponding typing derivation (writing ¢.0 instead of c.close):

[elx,; - [D]. =:[A], k:&([B] + [U1), j:[U] 8 [B]

1.0;[elx,; - [D, f:L, z:[A], &:&([B] = [U]), 5:[U] B [B]

f(])f07 [e]k,j = mv f(lIU]] i lIB]]) B L, Z:m) k:&(IIB]] _m) [:r(—)w] - w:[V]] B |IA i) B]],

y.0F y:1
F(k).£(5)-£-0; [el.; + IO, £:(&([B] <+ TUT)) »» (U] B[B]) '8 L), =[A] z:[V]B[A = B]

F(2)-£()-G) 05 el; + TOT, FTAT % (&(IB] = TOT) ® (1B [B]) 3 1)) Fw-(woul [3:0) Fy(IVIBA 5 B) @1,
wviB[a L B

(- @(w).([zw] | y.0) | f(2).f(k).£(5).f.0; [€]k.;))

F [P, : (TAT '» ((&(1B] =+ TUT) » (IWI B [BD) ® L) ® (IVIB[A 5 B) ®1),=:[V]H[A 5 B]
y.5ome; 7(f).(F(w).([z = w] | y.0) | £(2).F(k).£ ()05 [clw.;))

- BT v: &((TAT % ((&([B] + TOT)) ® (U1 B[BD) 2 1) &((IVIB[A 5 B) 1)), :[V] B[4 % B]

14 p

&(14-% B1=T71)

H D,z: AFY e :UB ﬂy’w _ y.5ome; (f)-(y(x).y.0 | f(2).f(K).f(5)-f.0;[elx,5))
DF Mze:A % B - Ol y:&([A S B) = [V]),=[V]B[A S B]

Fig. 10. Encoding abstractions (Part 2).

32 Luis Caires and Jorge A. Pérez

Encoding applications (first case):

[(f &)lye = far)-(larar] | F(ya)-([y 9] | fz1)-([wa1] | f.close)))
Source type judgment for (f a):
DFV f:A5L B D+ a:A
D,D'+" (fa): B

Corresponding typing derivation:

[z z1] F x:[T] B [B], z1:[T] B [B] f.close - f:1

[yery] - f(z1).([x<>z1] | f.close) -
y:&([Bl® ([BIB[T]) ® 1)), F(IT]T B [B]) ® 1,
yu:@([B]® (IB]B[T]) ® 1)) =:[T] B [B]
F)-(y= vl | f(@1).([wer 2] | f.close))
l[a<>a1] F a:[A], a1:[A] F@([Bl= (([BIB[T]) ® 1) @ ([TITB[B)) ®1)
y:&([B] ® ([B] B [T]) ® 1)),
z:[T] 8 [B]

Fla1)-(laerar] | F(y1)-(y <] | flz1).([z > 21] | f-cTose))) F
fIAl® ((eB]® (IBIB[T]) % 1)) ® ((ITTH [B]) ® 1)),

&(1B1+T71)

145 By
y: &([Bl @ ([BIB[T]) ® 1)),

&([B1+17T)
«:[T] B [B],
a:[A]

50T e B g = J(0)S () F(@).1.0

HDI—Uf:ALB D’I—Va:Aﬂ =
F £:0A S B, y:&([B] + [T1), =:[T] 8 [B], a:[A]

Encoding applications (second case):

[(f &)y = flar)-([asrar] | F(y1)-([y<>] | f.close))
Source type judgment for (f a):
DFY f:A4%B D+ a:A
D,D'+° (fa): B

Corresponding typing derivation:

[y Fy:[B]l®1,p:[B]®L fclosek f:1
laeai] k@A a:[A] - f(y).([y<m] | fclose) - f:([B]® L) @ 1,1:[B]® 1
fla)(Jasar] | Fy1)-([yey] | F(z).([wea] | felose))) - f:[Al@ ([B]® L) ©1),y: [B] ® 1,a:[A]
B 1B]

142 B]

DFY f:AS B D+ a:All
DD’ (fa): B Y7 fa).f).flx).fOF £[AS Bly: 1B, a:TA]

Fig. 11. Encoding applications.

Linearity, Control Effects, and Behavioral Types 33

Encoding let (first case):
[LETa = e1 INea], = (vq)([ei]q | g(a).q.close;[ea]y)
Source type judgment for LET a = e; INea:

DiFle1: A4 Da,a:AF’es: B
D1,Dy F° LETa = e1 INey : B

Corresponding typing derivation:

[e2]y F [D2], a:[A], y:[B] @ 1
g.close; [ez]y,w gL, [D2], a:[A], y:[B] @ 1
[ei]g,x F [Di], ¢:[A] @1 q(a).q.close;[ea]y. - ¢:[A] %® L, [D2], »:[B] ® 1
(va)([ealq | a(a).q.close; [ea]y) F [Da], [[Dz]],y:@fb_l/
1B]

D1 I—Oele Dg,a:Al—OeQ:B B
D1.Ds FOLETa— e TNes: B || (va)([esls | a(a).q.0[e2]y) - [D1], [D2], v: 1 [B]

Encoding let (second case):
[LETa = e1 INe2]y = = (vq)([ex]q | q(a).q.close;[e2]y)
Source type judgment for LET a = e; INea:

DiFle1: A4 Do,a:ArFT e:B
D:,D2 FT LETa = e1 INey : B

Corresponding typing derivation:

lezly = - [D2], a:[AL, y:&([B] © (ITTB[B]) ® 1)), z:[T] 8 [B]
g.close; [ea]y gL, [Da], a:[A], y:&([B] @ (ITT B [B]) © 1)), x:[T] B [B]
[eddo F [D1], ¢:[A]©@ 1 q(a).q.close;[ealy o - ¢:[A] '8 L, [D2], y:&([B] @ (ITTB[B]) ® 1)), z:[T] & [B]
(v@)(fexls | a(a).q.close;[ez]y.o) - [Da], [D2], y:&([B] ® (ITTB[B]) ® 1)), 2:[T] B [B]

Y, T = (vq)([erlq | 9(a).q.0; [e2]y,=)
tID1], [D2], y:&([B] + [T1), =:[T] 8 [B]

D:,D2 +T LETa = e1 INey : B

Hol Foer: A Dy,a:AFT eQ:Bﬂ

Fig. 12. Encoding let (Part 1).

34 Luis Caires and Jorge A. Pérez

Encoding let (third case) - D stands for the free variables in ez, excluding a:
[LETa = e1 INe2]y,. = (vq)([er]o,w | ¢-s0mep; g(a).q(s).q.close;[ea]y,s)
Source type judgment for LET a = e; INea:

D, R e1: A ®Ds,a:A T es: B
Dy,®Ds FY LETa = €, INey : B

Corresponding typing derivation (we use Propositionto ensure compatibility between [e1]q,«
and [e2]y,s):

le2]y,s &M7 ava
y:&([B] @ (IT1B[B]) ® 1)), s:[T] B [B]
le2]y,s - &Mv a:mv
y:&([B] @ (IT1B[B] B [A] ® 1)), s:[T] B [A] B [B]
g.close; [e2]y,s F q: L, &[D2], a:m,

y:&([B] @ ([T] B[A] B [B]) ® 1)),
s:[T] B [A] B [B]

q(s).q.close;[ez]y,s F
e:([T] B [A]B[B]) ® L,
&[D2], a:[A], y:&([B] ® (([TT B [A] B [B]) ® 1))
q(aﬁ(s).q.close; le2]y,s F

le1l.= F [D1], ¢:&(1A] ® ((TTH [A]) ® 1)), ¢TAT® (IT] B [A] B [B]) ® L),
@:[T] 8 [A] &[D2], y:&([B] ® ([TTH[A] B [B]) ® 1))

. = . T AT W TR g.somep;q(a).q(s).q.close;[ez]y,s -
=TT AT S 18] &I2], y:&([B] ® ((TTB[AIB[B]) ® 1))

(va)([e1la.= | g-somep; q(a).q(s).q.close; [ea]y,s) F [D1], &ID21, y:&([B] ® ([T 8 [A] B [B]) ® 1)), :[T] B [A] B [B]

(va)(ferlg,= | g-somep; q(a).q(s).g.close; [ea]y,s) F [D1], &[D2], y:&([Bl ® ([T] B [B]) ® 1)), =:[T] B [B]

vq)(leilq,= | g-somep; q(a).q(s).q.0; [e2]y,s)
F D11, &[Dal, y:&([B] + [T1), =:[B] 8 [T]

D1,®Dy T LETa =e1 INey : B

|:|:D1 Flei: A ®Dg, a:AFT eQ:B:|:|
yw = (

Fig. 13. Encoding let (Part 2).

Linearity, Control Effects, and Behavioral Types 35

A5 Lift

See Figure[T4]

Encoding lift:
[LIFT €]y, = (vq)([elq | ¢(v).q.close;y.some; §(w).([w<>v] | g(w).([w>z] | y.close)))
Source type judgment for LIFT e:

DF’e: B
D+T LIFTe: B

Corresponding typing derivation (writing c.0 instead of c.close and [w]|v] instead of [w <> v]):

[w]z] b «:[T] 8B [B], w:[T] B [B] y.0F y:l

[w]v] - v:[B], w:[B] H(w).((wlz] | 4.0) - y:(ITT B [B]) ® 1, 2:[T] B [B]

F(w).([wlv] | F(w).([wlz] | y.0)) F v:[BL, »:[B] © (ITTH[B]) ® 1), 2:[T] B [B]

y.some; g (w). ([w]v] | §(w).([w]z] | 9.0)) F v:[B], y:&([B] @ (ITTB [B]) ® 1)), =:[T] B [B]

q.0; y.5ome; F(w). ([w]v] | F(w).([w]z] | 4.0)) F ¢: L, v:[B], y:&([B] ® (ITTB[B]) ® 1)), z:[T] B [B]

[lo DL & [BI®1 q(v).q.0;y.5ome; G(w). ([w]v] | Y(w).([wlz] | 9.0)) - ¢:[B] ® L, y:&([B] @ (ITTB[B]) ® 1)), =:[T] B [B]

(va)(lelq | a(v).q.0; y.50m&; G(w). ([w]v] | H(w).([w]=] | y.0)))
F D], y:&([B] ® (ITTE [B]) ® 1)), z:[T] B [B]

[[DfBﬂ gz = (v0) (el | 9(v)-0.0; y.5m8; y(v)-y(2).4.0)
D7 LIFTe: B - o1, y:&(IB1 + [T1), =171 8 []

Fig. 14. Encoding lift.

A.6 Cast

See Figure[T3]

A.7 Throw and Try-Catch

See Figures[[6]and [T7}

A.8 Fork

See Figure[18]

36 Luis Caires and Jorge A. Pérez

Encoding casts:

[(w)], = y.50m8: §(2). (=.50me s (vq) (o], | q(u).q.close; [u<s 2]) | y.close)

Source derivations for ((v)):

@D Foow:T
@D F° {(v) : T

Corresponding typing derivation (below, D stands for the domain of D):

[uerzl bz [T],u: [T]

g.close;[u<rz] Fz: [T],u: [T],q: L

[v], - &[D), q: [T] ®1 q(u).q.close; [u<s 2] F z : [T],q: [T] 9 L
(va)([v]q | 4(u).q.close; [ut+2]) - &[D], 2 : [T]
z.somep; (1q)([V]q | ¢(u).q.close; [u+sz]) F &[D], z : @®[T]) y.closety:1

y(2).(z.somep; (vq)([v]q | 9(u).q.close;[u<s2]) | y.close) - &m,y @) ®1

H@DOFO”:TH y = U(2).(z.somep; (vq) ([vlg | q(w).q.0; [u>z]) | 4.0)
eD " (v) : @T + &[D],y t(a[T])

Fig. 15. Encoding casts.

Linearity, Control Effects, and Behavioral Types 37

Source typing derivation:

DiFVer:T 2:UFey:T
Dy F° TRY ey CATCHz. €5 : T

To obtain the corresponding typing derivation, we set the following abbreviations:

Ki(j,y) = j.case (j(u).j.close;@(U).([u(—ﬂ)] | y.close), j(z).j.close;[eg]y))
K> (k) = k.someg; k(u).k(z).k.close; z.inl; Z(v).([u <> v] | z.close)

[uev] b wT], v:[T] y.close b y:1

T(v).([uv] | y.close) F uw:[T], v:[T] ® 1 fealy F 2:[U], w:[T] ® 1

j.close; T(v).([u<rv] | y.close) F j: L, w:[T], v:[T] ® 1 j.close;fea]y F 2:[U],5: L, w:[T]®1

j(u).j.close; y(v).([u<+>v] | y.close) j:m? Ly[T]®1 j(2).j.close;[ez], F j : m% Ly[T]®1

Ki(j,y) b3 ([T1% L) & ([UT® L), y:[T]®1

[TI8B[U]

[u>v] Fw:[T],v:[T] =z.closel z:1

Z(v).([u+>v] | z.cTose) F w:[T], z:[T] ® 1
2.in1;Z(v).([u+>v] | z.close) F w:[T], 2:([T] B [U])

k.close; z.in1; Z(v).([u <> v] | z.close) b k: L, w:[T], z:([T] B [U])

k(z).k.close; z.inl; Z(v).([u <> v] | z.close) F k:([T] B [U]) % L, w:[T]

k(u).k(z).k.close; z.inl;Z(v).([u<>v] | z.close) F k:[T] 2 (([T] B [U]) ® L)
Ka(k) F R o([T]® (IT] 8 [U]) % L))

&([[T]] +M)

le1)e,; F [Dal, k:&([T] = [U]), :[T1 BIU] Ka(k) - k:&([T] = [U])
(vE)([elx,; | K2(k)) = [Da], 5:[T] B [U]

Wk)(lealk.s | K2(F)) F [Da], =TI B U] Ki(Ghy) FaTTB UL y:[T] @1
(v3)((vEk)([er]r,; | k.somey; k(u).k(z).k.close; z.in1; Z(v).([u<>v] | z.close)) |

j.case (j(u).j.close;y(v).([us+v] | y.close), j(z).j.close;[ea]y)) F [Di], y:[T] @ 1

DitV e :T 2:UFey:T (i) (vk)([e1lw,; | k.somey; k(u).k(2).k.0; z.in1; 2 (u).2.0) |
D, F° TRY ¢; CATCHz. 3 : T || ° j.case (j(u).5.0;3y(u).y.0, j(2).5.0;[e2]y))

F [[Dl]]v y: T [[T]]

Fig. 16. Encoding try-catch exceptions.

38 Luis Caires and Jorge A. Pérez

Encoding throw:

[THROW v]y,» = y.hone; z.inr; T(u).([v<>u] | z.close)

Source derivations for TRY e:
DFw:T
D+ THROWv : U

Corresponding typing derivation:

Z(w).(lwv] | z.close) - v:[T],z:[T] ® 1
y.mome - y:&([T] + [U]) z.inr; Z(w).([w o] | z.close) F v:[T],z: ([U] ® 1) @ ([T] ® 1)
[UISB[T]

y.mone | z.inr; T(w).([w 0] | z.close) F v:[T], y:&([T] + [U]), 2:[T] B [U]

DFv:T B _ _
DL THROWw : U Y>* =y nome | z.inr; z(v).2.0 F v:[T], y:&([T] =+ [U]), z:[T] B [U]

Fig. 17. Encoding throw.
Encoding fork:
[FORK 2.¢], = (). ((va) (el | a(u).g.close; [u <)) | y.cTose)
Source type judgment for FORK x:

D,z:SF e: unit
D+’ FORKz.c: S

Corresponding typing derivation:

oF-

u.close; 0 F u: L

q.close;u.close;0F q: L u:l

lelq m, x:m, ¢1l®1 q(u).q.close;u.close;0 - ¢: Lo L

(vq)([e]q | g(u).q.close; u.close; 0) - [D], z:[S] y.close y:1
7(2).((vq)([elq | q(u).q.close;u.close;0) | y.close) - [D], y:[S] ® 1

D,z:SF° e: unit B _
Do FORKz.c: S || 9(2)-(va)([els | Sq) | v-0) + [D, y: +[S]

Fig. 18. Encoding fork.

A.9 Some and None

See Figures[[9)and

A.10 Send and Receive
See Figure[21]

A.11 Non Deterministic Choice

See Figure

A.12 Close
See Figure 23]

A13 Unit
See Figure[24]

Linearity, Control Effects, and Behavioral Types

39

40 Luis Caires and Jorge A. Pérez

Encoding some (output):
[SOME! z; €]y, = z.50me; [€]y,«
Source type judgment for SOME ! z; .e:

D,z: S e: T
D,z: @S+ SOME!z;.e: T

Corresponding type derivation:

[ely. [D, 2:[ST, y:&(I7] @ (VT BT]) ® 1)), :[U] B [T]

z:some; [e]y . - [D], z:&[S], y:&([T] @ ([U] 8 [T]) ® 1)), z:[U] B [T]

D,z: S+ e: T B _ _
Dz @S SOME! zie: 7 ||V~ 250w [y, - [O], z:&[ST, y:&([7] + [U]), :[U] B [T]

Encoding some (input):
[SOME ? z; €], = z.somep; (vq)([e]q | ¢7(w).u.close; g.close; 0) | H(v).(v.close | y.close)
Source type judgment for SOME ? z; .e:

@D, z : S % ¢ : unit
®D, 7 : &S F° SOME? z; e : unit

Corresponding type derivation (below, D stands for the domain of D):

q.close;0F ¢q: L

u.close;q.close;0 F ¢: L, u: L

lelq F &[D], ¢:1 ® 1, 2:[S] q?(u).u.close;q.close;0 F ¢: Lo L
(v

9)([ely | ¢7(u).u.close; g.close; 0) F &[DJ, z:[S] v.close - v:1 y.close - y:1

z.somep; (vq)([elq | ¢7(u).u.close; g.close; 0) - &[D], z:®[S] y(v).(v.close | y.close) Fy:11® 1

z.somep; (1q)([e]q | ¢7(u).u.close; g.close;0) | F(v).(v.close | y.close) - &[D], 2:®[S], y:1 ® 1

. O . 3 — —_
H @D, z: f Fe {.?unlt :]]y,a: — z.somep; (vq)([elq | Sq) | T(v).(v.0] y.0)
@D,z : &S " SOME? z; e : unit - &[D], :®[S], v: 1 [unit]

Fig. 19. Encoding some.

Linearity, Control Effects, and Behavioral Types 41

Encoding none:
[NONE! z; €]y, = z.none; [€]y,«
Source type judgment for NONE ! z; e:

DY e:T
D,z:®SHFY NONE!z;¢: T

Corresponding type derivation:

zmone - 2:&[S] [ely.« F [D], y:&([T] = [U]), =:[T] B [U]
z.mone | [e]y,. - [D], z:&[9], y:&([T] +M),x:[[Tﬂ B [U]

DFe:T B _ _
D,z:®S Y NONE!z;e: T b= z.nome; [e]y. = [D], z:&[[S]],y:&([[T]] - [[U]]),x:[[T]] B [U]

Fig. 20. Encoding none.

42 Luis Caires and Jorge A. Pérez

Encoding send:
[SEND(c, a); ely,» = (a1)-([a <> ar] | [ely.z)
Source type judgment for SEND(c, a); e:

DF'a:Ty D, c:TatVe:
D,D,c: N Ty +Y SEND(c,a);e: T

Corresponding typing derivation:

[a+ra1] F a:m, ar:[Th] lely,= F [D'], e:[T2], y:&([[T]] - [[U]]),:v:[[T]] H[U]
e(ar).([a+>ar] | [ely.0) F [D], e[Th] @ [T2], y:&([T] + [U]), 2:[T] 8 [U], a:[T1]

y,z = c{a)-lely.. F [ﬂ, c[Th] ® [T2], o
y:&([[T]] = HU]])“CE:HT]] B [U], a:[T1]

DFa:Ty D, ,c:TatVe:T
D,D,c: V. Tu +Y SEND(c,a);e: T

Encoding receive:
[RECV(c, 2); ely.e = c(2).[e]y.«
Source type judgment for RECV(c, 2); e:

D7z:T1,c:T2FUe:T
D,c: ?Ty. T, FY RECV(c, 2);e : T

Corresponding typing derivation:

[ely.= F [D], z:[T1], a[Tz], y:&([T7] +m>, z:[T] B [U]
c(2).[ely,« F [D], :[T1] % [T2], y:&([T] + [U]), a:[T] 8 [U]

D,z:Ti,c:TotYe:T —
: — yo = ¢(2) [ely,« F [D], ¢[Th] ® [T2],
|i|rD7 C: ?Tl.TQ l_ R.ECV(C, Z); e . T” Y y&(HT]] = HUﬂ)vxﬂTﬂ Ba [[U]]

Fig. 21. Encoding send and receive.

Linearity, Control Effects, and Behavioral Types 43

Encoding non determinism:
[61@62]3;,9: = [el]y,m@[eﬂy,z
Source type judgment for e; Pea:

®D ey : unit @D F° es : unit
@D (Y e1Pes : unit

Corresponding typing derivation (writing c.0 instead of c.close):

Ok -
%.0;0 F u: L

2.0;u.0;0 F z: L, u: L

lel): F &[D],2:1®1 z(u).q.0;u.0;0 F z: L% L (as in the LHS)
(v2)([e1): | 2(u).2.0;u.0;0) = &[D] (vz)([e2): | z(u).2.0;u.0; 0) - &[D]
(v2) (exl- | 2(u)-2-0; 5.0; 0)(v2) (eal- | 2(u)-2-0;4-0;0) - &ID] [y - v 1 [unit]

((v2)(ler) | 2(u).2.0;u.0;0)B(vz)([e2]: | z(u).2.0;u:.0;0)) | [+]y F [D], y: 1 [unit]

@D [e1 :unit @D 0 es 1 unit B _
@D ¥ e, de, : unit Y= ((w2)(fer)- | S)®(v2)(leal: | S2)) | [y + &[DI, : 1 [unit]

Fig. 22. Encoding non-determinism.

44 Luis Caires and Jorge A. Pérez

Encoding close (output):
[CLOSE!]y, = z.close | y.some;y(r).(r.close | Y(c1).([c<>ci] | y.close))
Source type judgment for CLOSE ! ¢:

DT e: unit

D,c: end; T CLOSE!c; e : unit

Corresponding typing derivation for [CLOSE ! ¢y, a:

ccloseF el [ely.e F y:&([unit] + [T]), z:[unit] & [T]

c.close | [e]y,» - c:1, y:&([unit] + [T7]), z:[unit] B [T]

D+ e: unit
ST = = o1 . T .
D,c:end 7 CLOSE!c;e : unit Y c.0 [[e]y,z = c:[end], y:&([[umt]] - [[T]])7$:[[un1t]] B [7]

Encoding close (input):
[CLOSE? ¢]y,« = c.close; 0 | y.some; y(r).(r.close | Y(z1).([x > x1] | y.close))

Source type judgment for CLOSE ? x:

c:end; FT CLOSE? ¢ : unit

Corresponding typing derivation for [CLOSE ?]y, (writing c.0 instead of c.close):

[z 1] b 2:[T] B [unit], z1:[T] B [unit] yOky:1l

roF 1l gle).(zez] | y.0) F y:([T] B [unit]) @ 1, 2:[7] B [unit]
g(r).(r0 | Y(a1)-([z 1] | 9.0)) F y:1 @ (([TT S [unit]) ® 1), 2:[T] B [unit]
c0;0F L y.some;%(r).(r0 | (). (x> 21] | .0)) F y:&(1 ® ([T B [unit]) ® 1)), :[T] B [unit]
¢.0;0 | y.5ome; y(r).(r.0 | g(z1).([z > 21] | 9.0)) F c:L, y:&([unit] = [T]), z:[T] B [unit]

|:|: —~ - :|:|y,c = ¢.0;0 | y.s0me; y(r).(r.0 | y(x).y.0)
¢:endy - CLOSE?c : unit F c:[end-], y:&([unit] = [TT), z:[T] B [unit]

Fig. 23. Encoding close.

Linearity, Control Effects, and Behavioral Types 45

Encoding unit:
[¥]ly = y(v).(u.close | y.close)

Source type judgment for *:

- F% % : unit

Corresponding typing derivation:

u.close F u:l y.close - y:1

Y(u).(u.close | y.close) Fy:1 ® 1

Hmﬂ Y= G(w).(uB | 9.0) - y: 1 [unit]

Fig. 24. Encoding unit.

	Linearity, Control Effects, and Behavioral Types-8pt

